

Service Integration Giuseppe De Giacomo 1

Formal Models of Service
Behaviors

Logics of Programs

Giuseppe De Giacomo

Service Integration

Logics of Programs

•  Are modal logics that allow to describe properties of
transition systems

•  Examples:
–  HennesyMilner Logic
–  Propositional Dynamic Logics
–  Modal (Propositional) Mu-calculus

•  Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation

Service Integration Giuseppe De Giacomo 2

HennessyMilner Logic

HM Logic aka (multi) modal logic Ki
•  Syntax:

 Φ := Final | P (atomic propositions)
 [a]Φ | <a>Φ (modal operators)
 ¬Φ | Φ1 ! Φ2 | Φ1 " Φ2 | true | false (closed under booleans)

•  Propositions are used to denote final states and other TS atomic

properties

•  <a>Φ means there exists an a-transition that leads to a state where
Φ holds; i.e., expresses the capability of executing action a bringing
about Φ"

"
•  [a]Φ means that all a-transitions lead to states where Φ holds; i.e.,

express that executing action a brings about Φ"
" Service Integration Giuseppe De Giacomo 3

HennessyMilner Logic

•  Semantics: assigns meaning to the formulas.

•  Given a TS T = < A, S, S0, δ, F>, a state s 2 S, and a formula
Φ, we define (by structural induction) the �truth relation�

 T,s ² Φ

–  T,s ² Final if s 2 F (similarly T,s ² P if s 2 P);
–  T,s ² [a] Φ if for all s′ such that s !a s� we have T,s’ ² Φ;
–  T,s ² ⟨a⟩Φ if exists s′ such that s !a s� and T,s’ ² Φ;
–  T,s ² ¬Φ if it is not the case that T,s ² Φ;
–  T,s ² Φ1 � Φ2 if T,s ² Φ1 or T,s ² Φ2 ;
–  T,s ² Φ1 � Φ2 if T,s ² Φ1 and T,s ² Φ2 ;
–  T,s ² true always;
–  T,s ² false never.

Service Integration Giuseppe De Giacomo 4

HennessyMilner Logic

•  Another way to give the same semantics to formulas:
formulas extension in a transition system assigns meaning to
the formulas.

•  Given a TS T = < A, S, S0, δ, F> �the extension of a formula
Φ in T�, denote by (Φ)T, is defined as follows:

–  (Final)T = F (similarly PT = {s | s 2 P});
–  ([a] Φ)T = {s | 8 s′. s !a s� implies s’ 2 (Φ)T };
–  (⟨a⟩Φ)T = {s | 9 s′. s !a s� and s’ 2 (Φ)T};
–  (¬Φ)T = S - (Φ)T ;
–  (Φ1 � Φ2)T = (Φ1)T [(Φ2)T ;
–  (Φ1 � Φ2)T = (Φ1)T ((Φ2)T;
–  (true) T = S;
–  (false) T = ;.

•  Note: T,s ² Φ now written as s 2 (Φ)T
Service Integration Giuseppe De Giacomo 5

Model Checking

•  Given a TS T, one of its states s, and a formula Φ verify whether the
formula holds in s. Formally:

 T,s ² Φ or s 2 (Φ)T"

•  Examples (TS is our vending machine):
–  S0 ² Final

–  S0 ² <10c>true capability of performing action 10c

–  S2 ² [big]false inability of performing action big

–  S0 ² [10c][big]false after 10c cannot execute big

•  Model checking variant (aka “query answering”):
–  Given a TS T … – the database
–  … compute the extension of Φ – the query

 Formally: compute the set (Φ)T which is equal to {s | T,s ² Φ}
Service Integration Giuseppe De Giacomo 6

Examples

•  Usefull abbreviation (let actions A = {a1,…, an}):
–  <any> Φ stands for <a1>Φ "  " <an>Φ"
–  [any] Φ stands for [a1]Φ !  ! [an]Φ"
–  <any - a1> Φ stands for <a2>Φ "  " <aν>Φ"
–  [any –a1] Φ stands for [a2]Φ !  ! [aν]Φ"

•  Examples:
–  <a>true capability of performing action a!
–  [a]false inability of performing action a
–  ¬Final ! <any>true ! [any-a]false

 necessity/inevitability of performing action a
 (i.e., action a is the only action
possible)

–  ¬Final ! [any]false deadlock!

Service Integration Giuseppe De Giacomo 7

Satisfiability

•  Observe that a formula Φ may be used to select among all TS
T those such that for a given state s we have that T,s ² Φ"

•  SATISFIABILITY: Given a formula Φ verify whether there
exists a TS T and a state s such that. Formally:

 check whether exists T, s such that T,s ² Φ"

Service Integration Giuseppe De Giacomo 8

Satisfiability
•  Satisfiability: given a formula Φ verify whether there exists a (finite/

infinite) TS T and a state of T such that the formula holds in s.

 SAT: check the existence of T,s such that T,s ² Φ"
"
"
•  Validity: given a formula Φ verify whether in every (finite/infinite)

TS T and in every state of T the formula holds in s.

 VAL: check the non existence of T,s such that T,s ² ¬Φ

"
 Note: VAL = non SAT

Examples: check the satifiability / validity of the following formulas:

–  <10p><small><collects>Final
–  Final →

 ((<10p><small><collects>Final) ! (<20p><big><collectb>Final))
–  <10p><small><collects>Final ! [10p]false

Service Integration Giuseppe De Giacomo 9

Logic of Programs and
Bisimulation
•  Consider two TS, T = (A,S,s0,δ, F) and T� = (A,S’,t0,δ’, F’).
•  Let L be the language formed by all HennessyMilner Logic formulas.

•  We define:
–  ~L = {(s,t) | for all Φ of L we have T,s ² Φ iff T’,t ² Φ}

–  ~ = {(s,t) | exists a bisimulation R s.t., R(s,t)}
"
•  Theorem: s ~L t iff s ~ t
•  Proof: we show that

–  s ~ t implies s ~L t by structural induction on formulas of L.
–  s ~L t implies s ~ t by coinduction showing that s ~L t is a bisimulation.

This theorem says that HennessyMilner Logic has exactly the same

distinguishing power of bisimulation.
So L is the right logic to predicate on transition systems.

An same results holds also for the PDL and Modal Mu-Calculus

 introduced below.
Service Integration Giuseppe De Giacomo 10

Logic of Programs and
Bisimulation

Show: s ~ t implies s ~L t by structural induction on
formulas of L.

Proofs by induction

Show that property (s~t) is closed wrt the rules of the
inductively defined set (formation rules for formulas in L)

That is:

•  Show Base Cases (atomic formulas)
•  Show Recursive Cases by assuming property holds for

smaller cases (inductive hypothesis)

Service Integration Giuseppe De Giacomo 11

Logic of Programs and
Bisimulation

Show: s ~L t implies s ~ t by coinduction showing that s ~L
t is a bisimulation.

Proofs by coinduction

Show that property (s~Lt) is closed wrt the rules of the
coinductively defined set (bisimulation s ~ t)

That is:

•  Assume property holds, show that applying the recursive

rules it continues to hold.

Notice: no base cases, only recursive cases!!!

Service Integration Giuseppe De Giacomo 12

Propositional Dynamic Logic

•  Φ := P | (atomic propositions)
 ¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 | (closed under boolean operators)
 [r]Φ | <r>Φ (modal operators)

 r := a | r1 + r2| r1;r2| r* | Φ? (complex actions as regular expressions)

•  Essentially add the capability of expressing partial correctness assertions via

formulas of the form
–  Φ1 ![r]Φ2 under the conditions Φ1 all possible executions of r that terminate

 reach a state of the TS where Φ2 holds

•  Also add the ability of asserting that a property holds in all nodes of the
transition system
–  [(a1+  + aν)*]Φ in every reachable state of the TS Φ holds

•  Useful abbereviations:

–  any stands for (a1+  + aν) Note that + can be expressed also in HM Logic
–  u stands for any* This is the so called master/universal modality!

!

Service Integration Giuseppe De Giacomo 13

Modal Mu-Calculus

•  Φ := P | (atomic propositions)
 ¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 | (closed under boolean operators)

 [r]Φ | <r>Φ (modal operators)

 µ X.Φ(X) | ν X.Φ(X) (fixpoint operators)

•  It is the most expressive logic of the family of logics of programs.
•  It subsumes

–  PDL (modalities involving complex actions are translated into formulas involving fixpoints)
–  LTL (linear time temporal logic),
–  CTS, CTS* (branching time temporal logics)

•  Examples:
•  [any*]Φ can be expressed as ν X. Φ ! [any]X
"
•  µ X. Φ " [any]X along all runs eventually Φ
•  µ X. Φ " <any>X along some run eventually Φ
•  ν X. [a](µ Y. <any>true ! [any-b]Y) ! X

 every run that contains a contains later b
"

Service Integration Giuseppe De Giacomo 14

Modal Mu-Calculus

•  To understand fixpoint operators one has to consider them as fixpoint of equations:

•  Namely given µX.Φ(X) and νX.Φ(X) consider the equation

 X ´ Φ(X)

Then:
�  µX.Φ(X) stands for the smallest predicate X such that X ´ Φ(X) – or Φ(X) ! X"
�  νX.Φ(X) stands for the largest predicate X such that X ´ Φ(X) – or X ! Φ(X)

Notice:
�  µX.Φ(X) is defined by induction and computed by least fixpoint algorithm over the TS
�  νX.Φ(X) is defined by coinduction and computed by greatest fixpoint algorithm over

the TS

•  Examples:

�  ν X. Φ ! [any]X - gfp of X ´ Φ ! [any]X "
–  µ X. Φ " [any]X - lfp of X ´ Φ " [any]X
–  µ X. Φ " <any>X - lfp of X ´ Φ " <any>X
�  ν X. [a](µ Y. <any>true ! [any-b]Y) ! X

–  lfp of y ´ <any>true ! [any-b]Y
–  gfp of X ´ [a](lfp above) ! X"

Service Integration Giuseppe De Giacomo 15

Examples of Modal Mu-Calculus

•  Examples (TS is our vending machine):

–  S0 ² Final

–  S0 ² <10c>true capability of performing action 10c

–  S2 ² [big]false inability of performing action big

–  S0 ² [10c][big]false after 10c cannot execute big

–  Si ² µ X. Final " [any] X eventually a final state is reached

–  S0² ν Z. (µ X. Final " [any] X) ! [any] Z or equivalently
 S0 ² [any*](µ X. Final " [any] X) from everywhere eventually final

Service Integration Giuseppe De Giacomo 16

Modal Mu-Calculus extends PDL

We can easily translate in Mu-Calculus all PDL formulas.
Here is the translation function T: PDL ! Mu Calculus:

Notice: no alternation of least and greatest fixpoints!!!
Service Integration Giuseppe De Giacomo 17

T(<a>Φ) = <a>T(Φ)
T(<r1 + r2>Φ) = T(<r1>Φ) " T(<r2>Φ)
T(<r1;r2>Φ) = T(<r1> <r2>Φ)
T(<r*> Φ) = µ X. T(Φ) " T(<r>X)
T(<Φ1?>Φ2) = T(Φ1) ! T(Φ2)

T([a]Φ) = [a]T(Φ)
T([r1 + r2]Φ) = T([r1]Φ) ! T([r2]Φ)
T([r1;r2] Φ) = T([r1][r2]Φ)
T([r*] Φ) = ν X. T(Φ) ! T([r]X)
T([Φ1?]Φ2) = T(Φ1) ! T(Φ2)

T(P) = P
T(¬Φ) = ¬T(Φ)
T(Φ1 ! Φ2) = T(Φ1) ! T(Φ2)
T(Φ1 ! Φ2) = T(Φ1) " T(Φ2)

T(X) = X

(although X is not a PDL formula we need
this auxiliary definition in the translation)

Modal Mu-Calculus extends CTL

We can easily translate in Mu-Calculus all CTL formulas.
Here is the translation function T: CTL ! Mu Calculus:

CTL formulas:
Φ  := P | (atomic propositions)

¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 | (boolean operators)
 EXΦ | EFΦ | EGΦ | Φ1 EU Φ2| (temporal (modal) operators on a path)
 AXΦ | AFΦ | AGΦ | Φ1 AU Φ2 (temporal (modal) operators on all paths)

Notice: no alternation of least and greatest fixpoints!!!
Service Integration Giuseppe De Giacomo 18

T(EX Φ) = <->T(Φ)
T(EFΦ) = = µ Z. T(Φ) " <->Z
T(EGΦ) = = ν Z. T(Φ) ! <->Z
T(Φ1EUΦ2) = = µ Z. T(Φ2) " Φ1 ! <->Z

T(P) = P
T(¬Φ) = ¬T(Φ)
T(Φ1 ! Φ2) = T(Φ1) ! T(Φ2)
T(Φ1 ! Φ2) = T(Φ1) " T(Φ2)

T(AX Φ) = [-]T(Φ)
T(AFΦ) = = µ Z. T(Φ) " [-]Z
T(AGΦ) = = ν Z. T(Φ) ! [-]Z
T(Φ1AUΦ2) = = µ Z. T(Φ2) " Φ1 ! [-]Z

Modal Mu-Calculus extends CTL*

We can translate in Mu-Calculus all CTL* formulas.
Here is the translation function T: CTL ! Mu Calculus:

CTL formulas:
Φ  := P | (atomic propositions)

¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 | (boolean operators)
 EΘ | AΘ (Exist a path/Forall paths)
 where Θ any LTL formula (LTL temporal formula on a path)

The translation function is not trivial (the translation may generate an
exponential formula).

Important: the resulting formula as at most one alternation of least
and greatest fixpoint.

Service Integration Giuseppe De Giacomo 19

Model Checking/Satisfiability

•  Model checking is polynomial in the size of the TS for
–  HennessyMilner Logic
–  PDL
–  Modal Mu-Calculus

•  Also model checking is wrt the formula
–  Polynomial for HennessyMiner Logic
–  Polynomial for PDL
–  Polynomial for Modal Mu-Calculus with bounded alternation of

nested fixpoints, and NP(coNP in general
•  Satisfiability is decidable for the three logics, and the

complexity (in the size of the formula) is as follows:
–  HennessyMilner Logic: PSPACE-complete
–  PDL: EXPTIME-complete
–  Modal Mu-Calculus: EXPTIME-complete

Service Integration Giuseppe De Giacomo 20

References

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order
Workshop LNCS 1043, 149-237, Springer 1996

[Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook
of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical
Computer Science, Vol. B, 789–840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.
[Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of

Automated Reasoning 2001: 1635-1790
[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.
[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical

Computer Science, Vol B: 995-1072. North Holland, 1990.
[Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive

Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996
[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science

Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.
[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic

Approach to Branching-Time Model Checking (full version of CAV'94 paper).
[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Service Integration Giuseppe De Giacomo 21

