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Service Integration 

Logics of Programs 

•  Are modal logics that allow to describe properties of 
transition systems 

•  Examples: 
–  HennesyMilner Logic 
–  Propositional Dynamic Logics 
–  Modal (Propositional) Mu-calculus 

•  Perfectly suited for describing transition systems: they can 
tell apart transition systems modulo bisimulation 
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HennessyMilner Logic 

HM Logic aka (multi) modal logic Ki 
•  Syntax: 
 

 Φ := Final |  P                                      (atomic propositions) 
            [a]Φ | <a>Φ                                               (modal operators) 
         ¬Φ | Φ1 ! Φ2 | Φ1 " Φ2 |  true |  false       (closed under booleans) 
 

 
•  Propositions are used to denote final states and other TS atomic 

properties 

•  <a>Φ means there exists an a-transition that leads to a state where 
Φ holds; i.e., expresses the capability of executing action a bringing 
about Φ"

"
•  [a]Φ means that all a-transitions lead to states where Φ holds; i.e.,  

express that executing action a brings about Φ"
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HennessyMilner Logic 

•  Semantics: assigns meaning to the formulas. 

•  Given a TS T = < A, S, S0, δ, F>, a state s 2 S, and a formula 
Φ, we define (by structural induction) the �truth relation�  
 
                                    T,s ² Φ  
 
–  T,s ² Final        if s 2 F    (similarly T,s ² P  if s 2 P);    
–  T,s ² [a] Φ        if for all s′ such that s !a s� we have T,s’ ² Φ;  
–  T,s ² ⟨a⟩Φ           if exists s′ such that s !a s� and T,s’ ² Φ;  
–  T,s ² ¬Φ           if it is not the case that T,s ² Φ;  
–  T,s ² Φ1 � Φ2    if T,s ² Φ1 or T,s ² Φ2 ;  
–  T,s ² Φ1 � Φ2    if T,s ² Φ1 and T,s ² Φ2 ;  
–  T,s ² true          always;    
–  T,s ² false         never.  
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HennessyMilner Logic 

•  Another way to give the same semantics to formulas: 
formulas extension in a transition system assigns meaning to 
the formulas. 

•  Given a TS T = < A, S, S0, δ, F> �the extension of a formula 
Φ in T�, denote by (Φ)T, is defined as follows: 
 
–  (Final)T   =  F    (similarly PT = {s | s 2 P});    
–  ([a] Φ)T   =  {s | 8 s′. s !a s� implies s’ 2 (Φ)T }; 
–  (⟨a⟩Φ)T   =  {s | 9 s′. s !a s� and s’ 2 (Φ)T};  
–  (¬Φ)T   =    S - (Φ)T ;  
–  (Φ1 � Φ2)T  =  (Φ1)T [ (Φ2)T ;  
–  (Φ1 � Φ2)T  =  (Φ1)T ( (Φ2)T;  
–  (true) T    =  S;    
–  (false) T   =  ;.  

•   Note:   T,s ² Φ    now written as    s 2 (Φ)T 
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Model Checking 

•  Given a TS T, one of its states s, and a formula Φ verify whether the 
formula holds in s. Formally: 
 
                  T,s ² Φ       or  s 2 (Φ)T"

•  Examples (TS is our vending machine): 
–  S0 ² Final  

 
–  S0 ² <10c>true                             capability of performing action 10c 

 
–  S2 ² [big]false                               inability of performing action big 

 
–  S0 ² [10c][big]false                       after 10c cannot execute big 
 

•  Model checking variant (aka “query answering”): 
–  Given a TS T …                                     – the database 
–  … compute the extension of Φ                      – the query 

 
    Formally: compute the set (Φ)T  which is equal to {s | T,s ² Φ} 
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Examples 

•  Usefull abbreviation (let actions A = {a1,…, an}): 
–  <any> Φ  stands for <a1>Φ "  " <an>Φ"
–  [any] Φ  stands for [a1]Φ !  ! [an]Φ"
–  <any - a1> Φ  stands for <a2>Φ "  " <aν>Φ"
–  [any –a1] Φ  stands for [a2]Φ !  ! [aν]Φ"

•  Examples: 
–  <a>true                           capability of performing action a!
–  [a]false                            inability of performing action a 
–   ¬Final ! <any>true ! [any-a]false   

                  necessity/inevitability of performing action a  
                 (i.e., action a is the only action 
possible) 

–   ¬Final ! [any]false   deadlock! 
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Satisfiability 

•  Observe that a formula Φ may be used to select among all TS 
T those such that for a given state s   we have that T,s ² Φ"

•  SATISFIABILITY: Given a formula Φ verify whether there 
exists a TS T and a state s such that. Formally: 
 
          check whether exists T, s such that T,s ² Φ"
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Satisfiability 
•  Satisfiability: given a formula Φ verify whether there exists a (finite/

infinite)  TS T and a state of T such that the formula holds in s.  
 
      SAT: check the existence of T,s such that T,s ² Φ"
"
"
•  Validity: given a formula Φ verify whether in every (finite/infinite)  

TS T and in every state of T the formula holds in s.  
 
      VAL: check the non existence of T,s such that T,s ² ¬Φ 

"
 Note: VAL = non SAT 

 
Examples: check the satifiability / validity of the following formulas: 

–  <10p><small><collects>Final 
–  Final →  

     ((<10p><small><collects>Final)   !   (<20p><big><collectb>Final))  
–  <10p><small><collects>Final ! [10p]false 
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Logic of Programs and 
Bisimulation 
•  Consider two TS, T = (A,S,s0,δ, F) and T� = (A,S’,t0,δ’, F’). 
•  Let L be the language formed by all HennessyMilner Logic formulas. 

•  We define: 
–  ~L = {(s,t) | for all Φ  of L we have T,s ² Φ iff T’,t ² Φ} 

–  ~ = {(s,t) | exists a bisimulation  R s.t., R(s,t)} 
"
•  Theorem:  s ~L t iff s ~ t  
•  Proof: we show that   

–  s ~ t implies s ~L t by structural induction on formulas of L. 
–  s ~L t implies s ~ t by coinduction showing that s ~L t is a bisimulation. 

 
This theorem says that HennessyMilner Logic has exactly the same 

distinguishing power of bisimulation.  
So L is the right logic to predicate on transition systems. 

 
An same results holds also  for the PDL and Modal Mu-Calculus 

 introduced below. 
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Logic of Programs and 
Bisimulation 

Show: s ~ t implies s ~L t by structural induction on 
formulas of L. 

 
Proofs by induction  

 
Show that property (s~t) is closed wrt the rules of the 
inductively defined set (formation rules for formulas in L) 

 
That is: 

 
•  Show Base Cases (atomic formulas) 
•  Show Recursive Cases by assuming property holds for 

smaller cases (inductive hypothesis) 
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Logic of Programs and 
Bisimulation 

Show: s ~L t implies s ~ t by coinduction showing that s ~L 
t is a bisimulation. 
 
 

Proofs by coinduction  
 

Show that property (s~Lt) is closed wrt the rules of the 
coinductively defined set (bisimulation s ~ t) 

 
That is: 

 
•  Assume property holds, show that applying the recursive 

rules it continues to hold. 
 
 

Notice: no base cases, only recursive cases!!! 
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Propositional Dynamic Logic 

•   Φ := P |                                        (atomic propositions) 
            ¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 |                (closed under boolean operators) 
            [r]Φ | <r>Φ                                        (modal operators) 
 
       r := a | r1 + r2| r1;r2| r* | Φ?                 (complex actions as regular expressions) 
 
 
•  Essentially add the capability of expressing partial correctness assertions via 

formulas of the form  
–   Φ1 ![r]Φ2                   under the conditions Φ1 all possible executions of r that terminate 

                                                                 reach a state of the TS where Φ2 holds 

•  Also add the ability of asserting that a property holds in all nodes of the 
transition system 
–  [(a1+  + aν)*]Φ                                in every reachable state of the TS Φ holds 

 
•  Useful abbereviations: 

–  any  stands for (a1+  + aν)          Note that + can be expressed also in HM Logic 
–  u  stands for any*                 This is the so called master/universal modality!

!
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Modal Mu-Calculus 

•   Φ := P |                                 (atomic propositions) 
            ¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 |        (closed under boolean operators) 

            [r]Φ | <r>Φ                               (modal operators) 
 
               µ X.Φ(X) | ν X.Φ(X)                  (fixpoint operators) 
 
 
•  It is the most expressive logic of the family of logics of programs. 
•  It subsumes  

–  PDL (modalities involving complex actions are translated into formulas involving fixpoints) 
–  LTL (linear time temporal logic),  
–  CTS, CTS* (branching time temporal logics) 

•  Examples: 
•  [any*]Φ can be expressed as ν X. Φ ! [any]X  
"
•   µ X. Φ " [any]X    along all runs eventually Φ 
•   µ X. Φ " <any>X    along some run eventually Φ 
•   ν X. [a](µ Y. <any>true ! [any-b]Y) ! X 

      every run that contains a contains later b 
"
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Modal Mu-Calculus 

•  To understand fixpoint operators one has to consider them as fixpoint of equations: 

•  Namely given µX.Φ(X) and νX.Φ(X) consider the equation 
 
    X ´ Φ(X) 
 
Then: 
�  µX.Φ(X) stands for the smallest predicate X such that X ´ Φ(X)   – or Φ(X) ! X"
�  νX.Φ(X) stands for the largest predicate X such that X ´ Φ(X)     – or X ! Φ(X) 
 
Notice: 
�  µX.Φ(X) is defined by induction and computed by least fixpoint algorithm over the TS 
�  νX.Φ(X) is defined by coinduction and computed by greatest fixpoint algorithm over 

the TS 
 
•  Examples: 

�   ν X. Φ ! [any]X   - gfp of  X  ´ Φ ! [any]X "
–   µ X. Φ " [any]X  - lfp of  X  ´ Φ " [any]X  
–   µ X. Φ " <any>X  - lfp of  X  ´ Φ " <any>X  
�   ν X. [a](µ Y. <any>true ! [any-b]Y) ! X 

–  lfp of y  ´ <any>true ! [any-b]Y 
–  gfp of  X ´ [a](lfp above) ! X"
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Examples of Modal Mu-Calculus 

 
•  Examples (TS is our vending machine): 

–  S0 ² Final  
 

–  S0 ² <10c>true                             capability of performing action 10c 
 

–  S2 ² [big]false                               inability of performing action big 
 

–  S0 ² [10c][big]false                       after 10c cannot execute big 
 

–  Si ² µ X. Final " [any] X                eventually a final state is reached 
 

–  S0² ν Z. (µ X. Final " [any] X) ! [any] Z     or equivalently 
    S0 ² [any*](µ X. Final " [any] X)    from everywhere eventually final 
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Modal Mu-Calculus extends PDL 

We can easily translate in Mu-Calculus all PDL formulas. 
Here is the translation function T: PDL ! Mu Calculus: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Notice: no alternation of least and greatest fixpoints!!! 
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T(<a>Φ) = <a>T(Φ)  
T(<r1 + r2>Φ) = T(<r1>Φ) " T(<r2>Φ) 
T(<r1;r2>Φ) = T(<r1> <r2>Φ) 
T(<r*> Φ) = µ X. T(Φ) " T(<r>X) 
T(<Φ1?>Φ2) = T(Φ1) ! T(Φ2) 
 

 
T([a]Φ) = [a]T(Φ)  
T([r1 + r2]Φ) = T([r1]Φ) ! T([r2]Φ) 
T([r1;r2] Φ) = T([r1][r2]Φ) 
T([r*] Φ) = ν X. T(Φ) ! T([r]X) 
T([Φ1?]Φ2) = T(Φ1) ! T(Φ2) 

T(P) = P 
T(¬Φ) = ¬T(Φ) 
T(Φ1 ! Φ2) = T(Φ1 ) ! T(Φ2) 
T(Φ1 ! Φ2) = T(Φ1 ) " T(Φ2) 
 
 
 

 
T(X) = X 
 
(although X  is not a PDL formula we need 
this auxiliary definition in the translation) 

 

Modal Mu-Calculus extends CTL 

We can easily translate in Mu-Calculus all CTL formulas. 
Here is the translation function T: CTL ! Mu Calculus: 
 
CTL formulas:  
Φ  := P |                                             (atomic propositions) 

¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 |                          (boolean operators) 
    EXΦ | EFΦ  | EGΦ | Φ1 EU Φ2|                    (temporal (modal) operators on a path) 
    AXΦ | AFΦ  | AGΦ | Φ1 AU Φ2                    (temporal (modal) operators on all paths) 

 
 
 
 
 
 
 

 
 

Notice: no alternation of least and greatest fixpoints!!! 
Service Integration Giuseppe De Giacomo 18 

T(EX Φ) = <->T(Φ)  
T(EFΦ) = = µ Z. T(Φ) " <->Z 
T(EGΦ) = = ν Z. T(Φ) ! <->Z 
T(Φ1EUΦ2) = = µ Z. T(Φ2) " Φ1 ! <->Z 
 
T(P) = P 
T(¬Φ) = ¬T(Φ) 
T(Φ1 ! Φ2) = T(Φ1 ) ! T(Φ2) 
T(Φ1 ! Φ2) = T(Φ1 ) " T(Φ2) 
 
 
 

T(AX Φ) = [-]T(Φ)  
T(AFΦ) = = µ Z. T(Φ) " [-]Z 
T(AGΦ) = = ν Z. T(Φ) ! [-]Z 
T(Φ1AUΦ2) = = µ Z. T(Φ2) " Φ1 ! [-]Z 
 



Modal Mu-Calculus extends CTL* 

We can translate in Mu-Calculus all CTL* formulas. 
Here is the translation function T: CTL ! Mu Calculus: 
 
CTL formulas:  
Φ  := P |                                             (atomic propositions) 

¬ Φ | Φ1 ! Φ2 | Φ1 " Φ2 |                          (boolean operators) 
    EΘ | AΘ                                                             (Exist a path/Forall paths) 
 where Θ  any LTL formula                     (LTL temporal formula on a path) 
 
 

The translation function is not trivial (the translation may generate an 
exponential formula).  
 
Important:   the resulting formula as at most one alternation of least 
and greatest fixpoint. 
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Model Checking/Satisfiability 

•  Model checking is polynomial in the size of the TS for 
–  HennessyMilner Logic 
–  PDL 
–  Modal Mu-Calculus 

•  Also model checking is wrt the formula 
–  Polynomial for HennessyMiner Logic 
–  Polynomial for PDL 
–  Polynomial for Modal Mu-Calculus with bounded alternation of 

nested fixpoints, and NP(coNP in general 
•  Satisfiability is decidable for the three logics, and the 

complexity (in the size of the formula) is as follows: 
–  HennessyMilner Logic: PSPACE-complete  
–  PDL: EXPTIME-complete 
–  Modal Mu-Calculus: EXPTIME-complete 
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