
Composition: the �Roman��Approach
Reduction to SAT in PDL

Encoding in PDL

Basic idea:
•  A orchestrator program P realizes the target service T iff at each point:

�  8 transition labeled a of the target service T …

–  … 9 an available service Bi (the one chosen by P) that can make an a-
transition, realizing the a-transition of T

•  Encoding in PDL:
�  8 transition labeled a …

 use branching
�  9 an available service Bi that can make an a-transition …

 use underspecified predicates assigned through SAT

Service Integration Giuseppe De Giacomo 2

Structure of the PDL Encoding

Φ = Init ∧ [u](Φ0 ∧ ∧i=1,…,nΦi ∧ Φaux)

PDL encoding is polynomial in the size of the service TSs

Initial states of all
services

PDL encoding of
target service

PDL encoding of i-
th component
service

PDL additional
domain-
independent
conditions

Service Integration Giuseppe De Giacomo 3

PDL Encoding

•  Target service S0 = (Σ, S0, s0
0, δ0, F0) in PDL we define Φ0 as

the conjunction of:
%
–  s → ¬ s' for all pairs of distinct states in S0

service states are pair-wise disjoint

–  s → <a> T ∧ [a]s' for each s'=δ0(s,a)

target service can do an a-transition going to state s�

–  s → [a] ⊥ for each δ0(s,a) undef.

target service cannot do an a-transition
–  F0 ≡ ∨ s ∈ F0 s

denotes target service final states
•  …

Service Integration Giuseppe De Giacomo 4

PDL Encoding (cont.d)

•  available services Si = (Σ, Si, s0
i, δi, Fi) in PDL we define Φi as

the conjunction of:

–  s → ¬ s' for all pairs of distinct states in Si

Service states are pair-wise disjoint

–  s → [a](movedi ∧ s' ∨ ¬ movedi ∧ s) for each s'=δi(s,a)
if service moved then new state, otherwise old state

–  s → [a](¬ movedi ∧ s) for each δi(s,a) undef.
if service cannot do a, and a is performed then it did not move

–  Fi ≡ ∨ s ∈ Fi s

denotes available service final states
•  …

Service Integration Giuseppe De Giacomo 5

PDL Encoding (cont.d)

•  Additional assertions Φaux
–  <a>T → [a] ∨ i=1,…,n movedi for each action a

at least one of the available services must move at each step

–  F0 → ∧ i=1,…,n Fi
when target service is final all comm. services are final

–  Init ≡ s0
0 ∧ i=1....n s0

i
Initially all services are in their initial state

PDL encoding: Φ = Init ∧ [u](Φ0 ∧ i=1,…,n Φi ∧ Φaux)

Service Integration Giuseppe De Giacomo 6

Results

Thm[ICSOC�03,IJCIS�05]:
Composition exists iff PDL formula Φ SAT

From composition labeling of the target service one can build a
tree model of the PDL formula and viceversa

Information on the labeling is encoded in predicates movedi

Corollary [ICSOC�03,IJCIS�05]:

Checking composition existence is decidable in EXPTIME

Thm[Muscholl&Walukiewicz FoSSaCS’07]:
Checking composition existence is EXPTIME-hard

Service Integration Giuseppe De Giacomo 7

Results on TS Composition

Thm[ICSOC�03,IJCIS�05]:
If composition exists then finite TS composition exists.

From a small model of the PDL formula Φ,
one can build a finite TS machine

Information on the output function of the machine is encoded in

predicates movedi

) finite TS composition existence of services expressible as
finite TS is EXPTIME-complete

Service Integration Giuseppe De Giacomo 8

Example (1)

a

c
S1

b

c
S2

b
c

S0

a
…
…
…

s0
0 ∧ s1

0 ∧ s2
0

<a> T → [a] (moved1 ∨ moved2)

 T → [b] (moved1 ∨ moved2)

<c> T → [c] (moved1 ∨ moved2)

F0 → F1 ∧ F2

Target service

Available services

PDL

Service Integration Giuseppe De Giacomo 9

Example (2)

s0
0 → ¬ s0

1

s0
0 → <a> T ∧ [a] s0

1

s0
0 → T ∧ [b] s0

1

s0
1 → <c> T ∧ [c] s0

0

s0
0 → [c] ⊥

s0
1 → [a] ⊥

s0
1 → [b] ⊥

F0≡ s0
0

…
…
…

b
c

S0

a

Target service

Service Integration Giuseppe De Giacomo 10

Example (3)
…
s1

0 → ¬ s1
1

s1
0 → [a] (moved1 ∧ s1

1
 ∨ ¬moved1 ∧ s1

0)
s1

0 → [c] ¬moved1 ∧ s1
0

s1
0 → [b] ¬moved1 ∧ s1

0

s1
1 → [a] ¬moved1 ∧ s1

1

s1
1 → [b] ¬moved1 ∧ s1

1

s1
1 → [c] (moved1 ∧ s1

0
 ∨ ¬moved1 ∧ s1

1)
F1≡ s1

0

s2

0 → ¬ s2
1

s2
0 → [b] (moved2 ∧ s2

1
 ∨ ¬moved2 ∧ s2

0)
s2

0 → [c] ¬moved2 ∧ s2
0

s2
0 → [a] ¬moved2 ∧ s2

0

s2
1 → [b] ¬moved2 ∧ s2

1

s2
1 → [a] ¬moved2 ∧ s2

1

s2
1 → [c] (moved2 ∧ s2

0
 ∨ ¬moved2 ∧ s2

1)

F2≡ s2
0

…

Available services

a

c
S1

b

c
S2

Service Integration Giuseppe De Giacomo 11

Example (4)

Check: run SAT on PDL formula Φ%

Service Integration Giuseppe De Giacomo 12

Example

Check: run SAT on PDL formula Φ
Yes ⇒ (small) model a b

c c a b

s0
0, s0

1, s0
2,

F0, F1, F2,
Init

s00, s0
1, s02,

F0, F1, F2,
moved2

s10, s11, s0
2,

F2, moved1

s10, s01, s1
2,

F1, moved2

s00, s01, s0
2,

F0, F1, F2,
moved1

b a

Service Integration Giuseppe De Giacomo 13

Example

Check: run SAT on PDL formula Φ
Yes ⇒ (small) model

⇒ extract finite TS

a,1 b,2

c,1 c,2
a,1

b,2
b,2

a,1

Service Integration Giuseppe De Giacomo 14

Example

Check: run SAT on PDL formula Φ
Yes ⇒ (small) model

⇒ extract finite TS
⇒  minimize finite TS
 (similar to Mealy machine minimization)

c,1 c,2
a,1 b,2

Service Integration Giuseppe De Giacomo 15

Results on Synthesizing
Composition
•  Using PDL reasoning algorithms based on model

construction (cf. tableaux), build a (small) model
Exponential in the size of the PDL encoding/services finite TS

Note: SitCalc, etc. can compactly represent finite TS,

PDL encoding can preserve compactness of representation

•  From this model extract a corresponding finite TS

Polynomial in the size of the model

•  Minimize such a finite TS using standard techniques (opt.)

Polynomial in the size of the TS

Note: finite TS extracted from the model is not minimal
because encodes output in properties of individuals/states

Service Integration Giuseppe De Giacomo 16

Tools for Synthesizing
Composition
•  In fact we use only a fragment of PDL in particular we use

fixpoint (transitive closure) only to get the universal
modality …

•  … thanks to a tight correspondence between PDLs and

Description Logics (DLs), lately highly optimized tableaux
based reasoning systems are available to:
–  check for composition existence
–  do composition synthesis (if the ability or returning models is present)

•  Among them we recall:

–  Racer (http://www.racer-systems.com/) based on DLs
–  Pellet (http://clarkparsia.com/pellet) based on DLs
–  Fact++ (http://owl.man.ac.uk/factplusplus/) based on DLs
–  PDL Tableaux (http://www.cs.manchester.ac.uk/~schmidt/pdl-tableau/) based on PDL
–  Tableaux Workbench (http://twb.rsise.anu.edu.au/) based on PDL
–  Lotrec (http://www.irit.fr/Lotrec/) based on PDL

Service Integration Giuseppe De Giacomo 17

Reduction to PDL SAT works also for
nondeteministic available services

Service Integration Giuseppe De Giacomo 18

Technique1: Reduction to PDL

Basic idea:
•  A orchestrator program P realizes the target service T iff at each point:

�  8 transition labeled a of the target service T …

–  … 9 an available service Bi (the one chosen by P) which can make an a-
transition …

–  … and 8 a-transition of Bi realize the a-transition of T

•  Encoding in PDL:
�  8 transition labeled a …

 use branching
�  9 an available service Bi …

 use underspecified predicates assigned through SAT
�  8 a-transition of Bi … :

 use branching again

Giuseppe De Giacomo Service Integration 19

Technical Results: Practical

•  Use state-of-the-art tableaux systems for OWL-DL for checking SAT
of PDL formula © coding the composition existence

•  If SAT, the tableau returns a finite model of ©

•  Project away irrelevant predicates from such model, and possibly
minimize

•  The resulting structure is a finite orchestrator program that realizes
the target behavior

Reduction to PDL provides also a practical sound and
complete technique to compute the orchestrator program
also in this case

polynomial in the size of the model

exponential in the size of the behaviors

eg, PELLET @ Univ. Maryland

Giuseppe De Giacomo Service Integration 20

