
Composition: the �Roman� Approach
Composition via Simulation

Simulation

•  A binary relation R is a simulation iff:

 (s,t) 2 R implies that

–  s is final implies that t is final
–  for all actions a

•  if s !a s� then 9 t� . t !a t�� and (s�,t�)2 R

•  A state s0 of transition system S is simulated by a state t0 of transition
system T iff there exists a simulation between the initial states s0 and t0.

•  Notably
–  simulated-by is a simulation
–  simulated-by is the largest simulation

Note it is a co-inductive definition!

•  NB: A simulation is just one of the two directions of a bisimulation

2 Service Integration Giuseppe De Giacomo

Computing Simulation on Finite
Transition Systems

Algorithm ComputingSimulation
Input: transition system TSS = < A, S, S0, δS, FS> and
 transition system TST = < A, T, T0, δT, FT>
Output: the simulated-by relation (the largest simulation)

Body

 R = S £ T
 R� = S £ T - {(s,t) | s 2 FS % ¬(t 2 FT)}
 while (R ≠ R�) {
 R := R�
 R� := R� - {(s,t) | 9 s�,a. s !a s���% ¬9 t� . t !a t��% (s�,t�) 2 R� }
 }
 return R�

Ydob

3 Service Integration Giuseppe De Giacomo

•  The potential behavior of the whole community is obtained by executing
concurrently all TSs allowing for all possible interleaving (no
synchronization).

•  Available services:

•  Resulting potential behavior described as a transition system TSc

TSc can be computed as
the asynchronous product of TS1 and TS2.

Potential Behavior of the
Whole Community

a

c
TS1

b

c
TS2

a

c

TSc b

c

c

a
b

c

4 Service Integration Giuseppe De Giacomo

Asynchronous Product of TSs
(Community TS)
To compute the potential behavior of the community called
Community TS we simply apply the asynchronous product

Let TS1, ! ,TSn be the TSs of the component services. The
asynchronous product of TS1, ! ,TSn, is defined as:
TSc = <A, Sc, Sc

0, δc, Fc> where:
•  A is the set of actions
•  Sc = S1 £!£ Sn
•  Sc

0 = {(s0
1,!, s0

n)}
•  F µ F1 £!£ Fn
•  δc µ Sc £ A £ Sc is defined as follows:

 (s1� !� sn) !a (s�1� !� s�n) iff
1.  9 i. si !a s�i 2 δi
2.  8 j≠i. s�j = sj

5 Service Integration Giuseppe De Giacomo

Composition via Simulation

•  Thm[IJFCS08]
A composition realizing a target service TS TSt exists if there exists a
simulation relation between the initial state st

0 of TSt and the initial state
(s1

0, .., sn
0) of the community TS TSc.

•  Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

•  Corollary[IJFCS08]

A composition realizing a target service TS TSt exists
iff (st

0 , (s1
0, .., sn

0)) 2 S.

•  Thm[IJFCS08]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS…

•  ... hence it is EXPTIME in the size of the available services.

6 Service Integration Giuseppe De Giacomo

Example of Composition

a

c
TS1

b

c
TS2

b
c

TS0

a

•  Available Services

• Target Service

7 Service Integration Giuseppe De Giacomo

Example of Composition

b
c

TS0

a

Community TS

Target Service

a

c

TSc b

c

c

a

b

c

Composition exists!
8 Service Integration Giuseppe De Giacomo

Orchestrator Generator

•  Given the largest simulation S form TSt to TSc (which include the initial states), we can
build the orchestrator generator.

•  This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

•  Def: OG = < A, [1,…,n], Sr, sr
0, ωr, δr, Fr> with

–  A : the actions shared by the community
–  [1,…,n]: the identifiers of the available services in the community
–  Sr = St£ S1 £!£ Sn : the states of the orchestrator program
–  sr

0 = (s0
t, s0

1, ..., s0
m) : the initial state of the orchestrator program

–  Fr µ { (st , s1 , ..., sn) | st 2 Ft : the final states of the orchestrator program

–  ωr : Sr £ Ar ! [1,…,n] : the service selection function, defined as follows:

 ωr(t, s1,..,sn, a) = { i | TSt and TSi can do a and remain in S}

i.e., …= {i |st !a, s�t % 9 si�. si !a, si��% (st�, (s1 , ..., s�i , ..., sn))2 S}

–  δr µ Sr £ Ar £ [1,…,n] ! Sr : the state transition function, defined as follows:
 Let k 2 ωr(st, s1 , ..., sk , ..., sn, a) then

 (st, s1 , ..., sk , ..., sn)!a,k (st�, s1 , ..., s�k , ..., sn) where sk !a, s�k

9 Service Integration Giuseppe De Giacomo

Orchestrator Generator

•  For generating OG we need only to compute S and then

apply the template above

•  For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) …

•  … and compute ωr and δr at each step (polynomial time and space)

10 Service Integration Giuseppe De Giacomo

Example of
composition via simulation (1)

•  A Community of services over a shared alphabet A
•  A (Virtual) Goal service over A

Community)

Goal)Service)

11 Service Integration Giuseppe De Giacomo

Community)

X)

Asynchronous)product)

Target)Service)
Compute)

Simula:on))

(if)any))

Largest)Simula:on)Rela:on)

Example of
composition via simulation (2)

12 Service Integration Giuseppe De Giacomo

Example of
composition via simulation (3)

13 Service Integration Giuseppe De Giacomo

Orchestrator)Generator)• )ALL)orchestrators))
• )JustBinB:me)composi:on)
• )Can)deal)with)failures)

Community)

Largest)Simula:on)Rela:on)

Example of
composition via simulation (4)

14 Service Integration Giuseppe De Giacomo

