

Composition: the "Roman" Approach Composition via Simulation

Simulation

A binary relation R is a simulation iff:

```
(s,t) \in R implies that
- s is final implies that t is final
- for all actions a
• if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R
```

- A state s_0 of transition system S is **simulated by** a state t_0 of transition system T iff there **exists** a **simulation** between the initial states s_0 and t_0 .
- Notably
 - **simulated-by** is a simulation
 - simulated-by is the largest simulation

Note it is a co-inductive definition!

NB: A simulation is just one of the two directions of a bisimulation

Service Integration Giuseppe De Giacomo

Computing Simulation on Finite Transition Systems

Algorithm ComputingSimulation

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

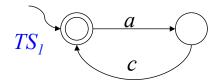
Output: the **simulated-by** relation (the largest simulation)

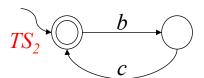
Body

```
\label{eq:resolvent} \begin{split} R &= S \times T \\ R' &= S \times T - \{(s,t) \mid s \in F_S \wedge \neg (t \in F_T)\} \\ \text{while } (R \neq R') \, \{ \\ R &:= R' \\ R' &:= R' - \{(s,t) \mid \exists \, s' \, , a. \, s \to_a s' \, \wedge \neg \exists \, t' \, . \, t \to_a t' \, \wedge (s' \, , t') \in R' \, \} \\ \text{return } R' \end{split}
```

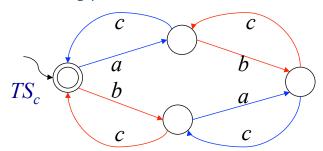
Ydob

Service Integration


Giuseppe De Giacomo


_

Potential Behavior of the Whole Community



- The potential behavior of the whole community is obtained by executing concurrently all TSs allowing for all possible interleaving (no synchronization).
- Available services:

Resulting potential behavior described as a transition system TS_c

 TS_c can be computed as

the asynchronous product of TS₁ and TS₂

Asynchronous Product of TSs (Community TS)

To compute the potential behavior of the community called Community TS we simply apply the asynchronous product

Let TS_1 , ..., TS_n be the TSs of the component services. The **asynchronous product** of TS_1 , ..., TS_n , is defined as: $TS_c = \langle A, S_c, S_c^0, \delta_c, F_c \rangle$ where:

- A is the set of actions
- $S_c = S_1 \times \cdots \times S_n$
- $S_c^0 = \{(s_1^0, \dots, s_n^0)\}$
- $F \subseteq F_1 \times \cdots \times F_n$
- $\delta_c \subseteq S_c \times A \times S_c$ is defined as follows:

$$(s_{\scriptscriptstyle 1},\,\cdots\!,\,s_{\scriptscriptstyle n})\rightarrow_{\scriptscriptstyle a} (s'_{\scriptscriptstyle 1},\,\cdots\!,\,s'_{\scriptscriptstyle n})$$
 iff

- 1. \exists i. $s_i \rightarrow_a s'_i \in \delta_i$
- 2. $\forall j \neq i. s'_j = s_j$

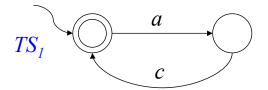
Service Integration

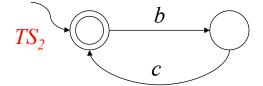
Giuseppe De Giacomo

-

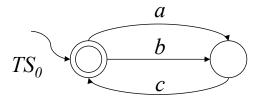
Composition via Simulation

- Thm[IJFCS08]
 - A composition realizing a target service TS TS_t exists if there **exists** a simulation relation between the initial state s_t^0 of TS_t and the initial state $(\mathsf{s}_1^0, ..., \mathsf{s}_n^0)$ of the community TS TS_c .
- Notice if we take the union of all simulation relations then we get the largest simulation relation S, still satisfying the above condition.
- Corollary[IJFCS08]


A composition realizing a target service TS TS_t exists iff $(\mathsf{s}_\mathsf{t}^0\,,\,(\mathsf{s}_\mathsf{1}^0,\,..,\,\mathsf{s}_\mathsf{n}^0)) \in \mathbf{S}$.


- Thm[IJFCS08]
 - Computing the largest simulation **S** is polynomial in the size of the target service TS and the size of the community TS...
- ... hence it is **EXPTIME** in the size of the available services.

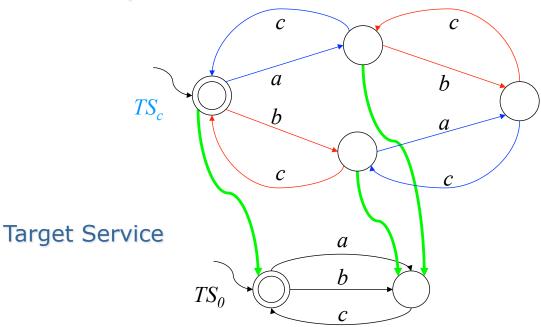
Example of Composition



Available Services

Target Service

Service Integration


Giuseppe De Giacomo

7

Example of Composition

Community TS

Composition exists!

Service Integration Giuseppe De Giacomo

Orchestrator Generator

- Given the largest simulation ${\bf S}$ form ${\rm TS_t}$ to ${\rm TS_c}$ (which include the initial states), we can build the **orchestrator generator**.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.
- Def: OG = $< A, [1,...,n], S_r, s_r^0, \omega_r, \delta_r, F_r > with$
 - A: the actions shared by the community
 - [1,...,n]: the **identifiers** of the available services in the community

 - $S_r = S_t \times S_1 \times \cdots \times S_n$: the **states** of the orchestrator program $s_r^0 = (s_t^0, s_1^0, \dots, s_m^0)$: the **initial state** of the orchestrator program
 - $F_r \subseteq \{ (s_t^-, s_1^-, ..., s_n^-) \mid s_t \in F_t : \text{the } \text{final states} \text{ of the orchestrator program }$
 - $\omega_r: S_r \times A_r \to [1,...,n]$: the **service selection function**, defined as follows:

 $\omega_r(t, s_1,...,s_n, a) = \{i \mid TS_t \text{ and } TS_i \text{ can do } a \text{ and remain in } S\}$

i.e., ...= {i |
$$s_t \rightarrow_{a_i} s'_t \land \exists s'_i$$
 . $s_i \rightarrow_{a_i} s'_i \land (s'_t, (s_1, ..., s'_i, ..., s_n)) \in \textbf{S}$ }

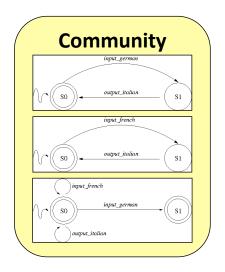
 $\delta_r\subseteq S_r\times A_r\times [1,...,n]\to S_r: \text{the ${\bf state transition function}$, defined as follows: } \text{Let $k\in\omega_r(s_t,\,s_1\,,\,...,\,s_k\,,\,...,\,s_n\,,\,a)$ then}$ $(s_t, s_1, ..., s_k, ..., s_n) \rightarrow_{a,k} (s_t, s_1, ..., s_k, ..., s_n)$ where $s_k \rightarrow_{a,} s_k'$

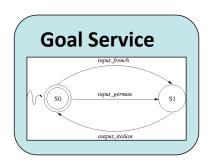
Service Integration

Giuseppe De Giacomo

10

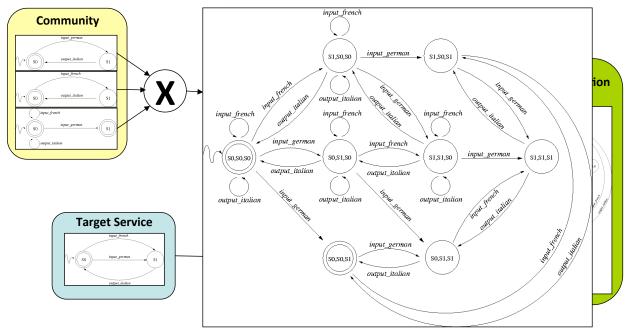
Orchestrator Generator


- For generating OG we need only to compute **S** and then apply the template above
- For running an orchestrator from the OG we need to store and access **S** (polynomial time, exponential space) ...
- ... and compute ω_r and δ_r at each step (polynomial time and space)


Service Integration Giuseppe De Giacomo

Example of composition via simulation (1)

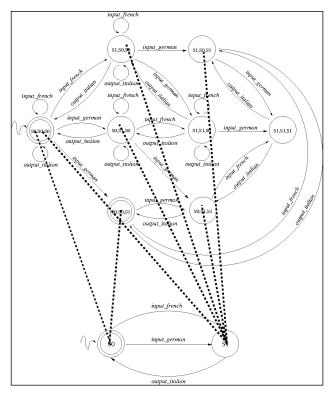
- A Community of services over a shared alphabet A
- A (Virtual) Goal service over A


Service Integration

Giuseppe De Giacomo

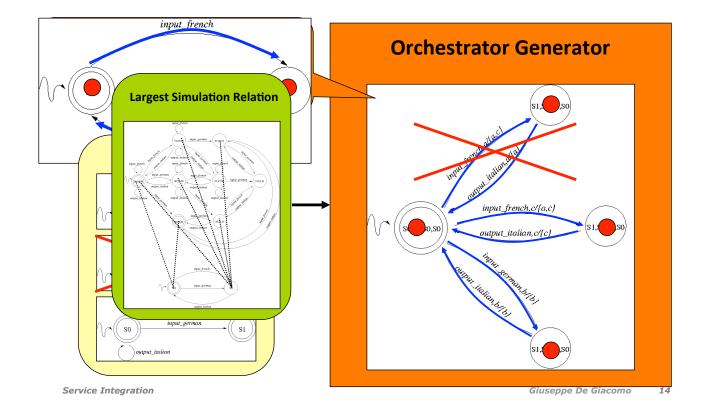
11

Example of composition via simulation (2)



Service Integration Giuseppe De Giacomo 12

Example of composition via simulation (3)


Service Integration

Giuseppe De Giacomo

13

Example of composition via simulation (4)

