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Abstract—In recent decades, manufacturing practices have
undergone a significant transformation, with the integration of
computers and automation playing a central role. Concurrently,
there has been a growing interest in utilizing intelligent tech-
niques to effectively manage manufacturing processes. These
processes entail the seamless integration of various activities
across the supply chain. Given the diverse range of actors
in a supply chain, each one with distinct characteristics such
as cost, quality, and probability of failure, task assignment
becomes a crucial challenge. In such a complex scenario, manual
decision-making becomes impractical, necessitating the adoption
of automated techniques to effectively address these challenges
in a resilient and adaptive manner. This paper proposes a
service-oriented approach to model each manufacturing actor
within the supply chain. Furthermore, it categorizes automated
synthesis approaches for smart manufacturing on the basis of
(i) the characteristics of each actor, which are retrieved by
their Industrial API, and (ii) the goal(s) of the manufacturing
process. Finally, the paper evaluates three distinct approaches
that implement automated synthesis techniques for composing
services and generating operational plans.

Index Terms—Smart manufacturing, Industrial API, Auto-
mated reasoning, Markov Decision Processes, Planning

I. INTRODUCTION

Manufacturing has undergone a profound transformation
in recent decades, increasingly incorporating computers and
automation. This evolution, known as smart manufactur-
ing [1], has taken advantage of the integration of several
approaches and technologies, including Artificial Intelligence
(AI), Internet-of-Things (IoT), Big Data and Cloud computing.
They have significantly enhanced the efficiency of manufac-
turing processes by enabling automated, adaptive, optimized,
and precise decision-making solutions [2]–[6]. Depending on
the specific technologies which are employed, terms such as
Industry 4.0 or, more recently, Industry 5.0, are also frequently
used. In the following, we consider the concept of smart
manufacturing as being broader and more widely accepted,
and we will refer to it.

In recent years the concept of manufacturing has shifted
from isolated processes to interconnected ones across multiple
entities along a smart supply chain [7], [8]. A supply chain
is typically described as a network of companies engaged in

different procedures and operations that generate value for the
ultimate customer in the form of goods and services [9]; it
becomes smart when now it incorporates smart manufacturing
technologies. This integration generates a wealth of data,
providing comprehensive insights into supply chain behavior
and facilitating accurate and resilient decision-making. The
term digital thread is also used to describe the data stream
produced in a supply chain [10].

Supply chains are expected to exhibit certain quality prop-
erties. The Triple-A strategy [11] emphasizes three concep-
tual aspects: adaptability – modifying the process design to
account for changes in the market; alignment – encouraging
partners to enhance overall performance; and agility – quickly
responding to short-term changes in supply or demand. The
idea of resilience, which is the capacity to function well in dif-
ficult situations, is also increasingly becoming important [12].
Throughout this paper, we use the term resilience to generally
refer to the expected quality of a smart supply chain.

Manufacturing processes require the multi-layered integra-
tion of numerous operations across the supply chain [13]. In-
dividual organizations operate as autonomous entities, dynam-
ically adjusting their structures to fulfill required tasks [14].
However, these activities are susceptible to unexpected dis-
ruptions [15], which can be caused by internal malfunctions
or external events such as pandemics. Designing solutions to
anticipate and respond to such disruptions is crucial to mitigate
negative impacts on revenues and costs.

Given the multitude of actors involved in a supply chain,
ranging from humans (e.g., operators) to devices (e.g., ac-
tuators), robots (e.g., cobots), and software (e.g., business
information systems), the size and diversity of supply chains
are substantial. Each actor possesses unique properties, such
as quality and costs, and is designed to perform specific tasks,
potentially affecting the status and progress of the overall
(supply chain’s) process execution. Additionally, supply chains
often include multiple instances or duplicates of identical
actors distributed across various locations, each with distinct
characteristics but producing identical outputs.

On the basis of these considerations, the optimal assignment
of tasks and resources along the supply chain is essential for
achieving resilience. Manual planning, implementation, and
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control of supply chains require significant effort. Moreover,
defining optimality in such contexts can be ambiguous due to
conflicting objectives, such as cost versus quality.

Automated optimal task assignment is a common prob-
lem in logistics, often addressed using numerical optimiza-
tion methods. While effective, formalizing these problems,
particularly when expressing preconditions between actors,
can be challenging. Symbolic AI offers automated synthesis
techniques (e.g., automated planning, Markov Decision Pro-
cesses (MDPs)) to model optimization problems using formal
languages and achieve the best solutions according to prede-
fined goals. However, these techniques can be computationally
intensive, with costs growing exponentially with problem size.

In this paper, we (i) propose a service-oriented approach
to model each manufacturing actor involved in the supply
chain, (ii) categorize automated synthesis strategies for smart
manufacturing based on actors’ characteristics and goals, and
(iii) present, discuss and evaluate three different approaches
implementing automated synthesis techniques for composing
services and generating operative plans in a complex supply
chain. In such a way, we demonstrate that a service-oriented
approach (i.e., modular) can achieve practical outcomes.

The paper is structured as follows. Section II presents
the service-oriented modeling of manufacturing actors (and
resources) accessible through an Industrial Application Pro-
gramming Interface (Industrial API) [16]–[19]. Section III
reviews and categorizes state-of-the-art techniques in the area.
Section IV introduces a realistic case study. Sections V
and VI demonstrate how to map the proposed categorization to
selected automated synthesis techniques addressing common
requirements in smart supply chains. Section VII (i) evalu-
ates the performance of three selected automated synthesis
techniques with respect to the problem size, (ii) discusses
the practical applicability of the different approaches, and
(iii) briefly introduces the AIDA tool realizing the proposed
approaches. Finally, Section VIII concludes the paper outlining
open challenges.

II. A SERVICE-ORIENTED APPROACH

We propose applying a service-oriented approach to indus-
trial supply chains. For simplicity, we use the term supply
chain to refer to (the collection of) industrial manufacturing
processes across different organizations and production sites,
along with the actors involved in producing goods/services.
The word actor refers to machines, humans, or entire organi-
zations that interact with industrial information systems.

Following the suggestion in [16], all actors in the supply
chain can be modeled in terms of the digital services they offer
(e.g., a REST service). These services can be coordinated by
implementing an orchestrator to achieve the intended goals
(sometimes also referred to as mediator, composition engine,
etc.). We refer to the collection of digital services provided
by an actor as its Industrial API. Each digital service within
the Industrial API offers a set of operations for instructing the
actor to perform physical or virtual actions. Our work assumes
that all actor operations can be described using:

• Preconditions. These are boolean conditions that enable
the execution of an action. They are defined over a set of

variables, including sensor values, configuration settings,
phases, and other contextual information.

• Postconditions. They indicate the effects of executing an
action by the actor and are expressed in terms of the
variables that change. Notably, (i) postconditions may
include a change in the machine’s phase, (ii) effects can
be probabilistic (but the actor’s API should provide this
information).

• Rewards. These indicate the contribution of executing the
action to the overall supply chain. They can represent
negative effects, such as quality loss associated with
action execution.

We formalize the aforementioned concepts as follows.

Definition II.1. An actor is defined as A = (X, s, s0, O),
where X = {x1, . . . , xn} represents the set of variables
(e.g., sensor variables and machine phases), s denotes the
current state of the machine (i.e., the current assignment of the
variables in X), s0 is the initial state and O = {o1, . . . , om}
represents the set of the actions (or operations) executable by
the actor. Each variable xi ∈ X has a corresponding domain
D(xi), thus s ∈ S = D(x0)× · · ·×D(xn). An action o ∈ O,
applicable for an actor in state s ∈ S, is defined as a tuple
o = ⟨PREo, POSTo(s)⟩. Specifically, PREo is a logical
expression representing the preconditions necessary for exe-
cuting the action, meaning the action can be executed if the ac-
tor’s state satisfies these preconditions (i.e., s |= PREo). The
multifunction POSTo(s) = {(s′1, rs′1 , ps′1) . . . (s

′
n, rs′n , ps′n)}

denotes the effects of the action, including the next state s′k,
the associated reward rs′k and the probability ps′k of reaching
s′k, where

∑
k ps′k = 1.

In essence, we assume that actions in O can be executed
using the Industrial API provided by the actor. Furthermore,
there is a continuous update of action specifications (i.e.,
rewards r and probabilities p) to reflect the current conditions
of the actors. In the case of humans, information can be
extracted, for example, from smart wristbands or information
systems that report injuries [20]. In the case of machines this
information can be estimated using automated techniques (e.g.,
remaining useful life and quality estimation) [21]. Obtaining
such information is simplified when digital twins of actors are
available [22]. However, these detailed aspects are beyond the
scope of this paper.

According to the previous definition, we distinguish two
types of actors: deterministic and stochastic. For a determin-
istic actor, actions result in a unique state and we assume
that their execution is always correct, yielding exactly the
expected effects. This implies that, for deterministic actors,
from a state s it leads to a single s′k such that ps′k = 1. In
contrast, for a stochastic actor, the destination state depends
on a variety of conditions [23], including internal factors
such as malfunctions, wear level, device age, and temporary
limitations, as well as external factors like environmental con-
ditions. Cumulatively, all these factors and conditions induce
a stochastic behavior which cannot be analyzed in details, but
can be observed (hence the probability in the model).

We propose representing a supply chain process as a com-
position of Industrial APIs, where composition is achieved
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by modeling the services as automata. The final goal of the
process corresponds to a target service, which is a system
of automata resulting from the synthesis of the available
services. This approach, known in the literature on automatic
service composition as the Roman Model [24], provides a
framework for effectively orchestrating complex supply chain
processes. In the original Roman Model, each available service
is modeled as a finite-state machine (FSM), in which at each
state, the service offers a certain set of actions and each action
changes the state of the service in some way. A new service,
the target, is generated from the set of existing services,
specified as an FSM too. However, this solution does not fit
the requirements of smart manufacturing, as services (i.e., the
manufacturing actors) do not exhibit a deterministic behavior.

Whereas the goal of this paper is the categorization of
automated synthesis techniques to obtain resilience in smart
manufacturing and to prove that, despite their computational
complexity, they can still be used in practical settings when
the size of the problem grows, it is worth discussing the
relationship with the previous research on service composition.
The more recent survey in this area is provided in [25], where
a taxonomy of service composition approaches is provided.
With respect to this taxonomy, the relevant categories are:

• Concerning the language dimension, we compose the
application logic of different manufacturing actors at run-
time, described through diagrams, with a pull mechanism
in order to target a business process. Proposed approaches
follow an Event Condition Action (ECA)-based paradigm
to extract control flow patterns. Cross cutting concerns
driving the selection include exceptions and Service Level
Agreements (SLAs) & Quality of Service (QoS).

• With respect to knowledge reuse, components, i.e., actors,
are reused through copy/paste.

• Categorized approaches fall in the synthesis and planning
categories.

• The execution engine is supposed to be a business process
engine.

• The target users are supposed to be domain experts.
Finally, it is worth noting that while we model actors as

services, we do not endorse any specific technology for their
implementation. Services can be implemented in various ways,
including synchronous/asynchronous, blocking/non-blocking,
and using diverse technologies. Our modeling formulation
abstracts their behavior, allowing flexibility in implementation
choices.

III. RESILIENCE IN SMART MANUFACTURING

Resilience and flexibility of processes (not only in manu-
facturing) are discussed in [26], where the authors focus on
general processes, with no specific reference to manufacturing
processes. The deployment of resilient manufacturing pro-
cesses requires, in particular, specialized supporting systems
and technologies. Among them, we mention Process-aware
Information Systems (e.g., MES and ERP) coupled with
key-enabling technologies such as AI and Process Mining
(PM) [27]. The adoption of such an approach enables the
emergence of AI-augmented Business Process Management

Instance repair
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t

s

t

s

t
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Fig. 1: Intuitive representation of a controller outcome.

Systems (ABPMSs), a new class of process-aware information
systems powered by reliable AI technology [28]. ABPMSs
improve the execution of business processes, making them
more adaptive, proactive, explainable, and context-sensitive.

Various strategies for enhancing resilience are outlined in
the literature [29]. These strategies can be conceptualized as
black box systems, referred to as controllers, which receive
inputs specifying the resources involved (such as a set of
services representing manufacturing entities) and the desired
outcome (in our case, a manufacturing goal), and generate a
resilience plan as output.

We present a conceptual framework for categorizing these
approaches based on the different possibilities for inputs
and targets/outcomes [30]. Concerning inputs, specifically the
services, a distinction can be made between deterministic and
stochastic behaviors exhibited by the entities. Additionally, the
definition of the target, i.e., the manufacturing goal, can vary.
It may be fully specified or loosely specified, allowing for
flexibility in adaptation strategies.

Figure 1 presents an intuition of the three potential strategies
derived from a controller by utilizing automated reasoning
techniques. Across all strategies, the horizontal axis illustrates
the progression of time, while the vertical axis encapsulates
the collective state of resources (represented as a tuple) in a
numerical format. Each action undertaken is denoted by a pair
(a, r), where a signifies the action and r denotes the resource
executing the specific action. As the sequence of actions is
chosen, resources transition from an initial state to a final
one, signifying the end of the process, potentially fulfilling
the goal(s). To achieve the end goal, the several strategies
that are generated as outputs representing processes can focus
on either the process instance or the coherence of data. The
various categories are outlined below.

Definition III.1 (Instance Repair). This strategy involves well-
defined process instances within the supply chain. In the
event of an unexpected disruption (e.g., machinery failure),
automated reasoning techniques are utilized to restore the state
of resources to the expected condition within the original
process instance. Adaptation is localized, ensuring that the
overall forthcoming process remains unaltered. In Figure 1,
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the process model is depicted with a solid line, while the
adaptation is illustrated with a thin dashed line.

Definition III.2 (Instance Planning). In this strategy, auto-
mated reasoning techniques are employed each time a new
process instance is required. These techniques utilize the latest
information about resources to generate an entire process
instance. If any unforeseen event (e.g., a malfunctioning
resource) obstructs the execution of the plan, automated rea-
soning is reapplied to produce a new process instance which
should achieve the same goal(s) of the original one (cf. the
same final point). In Figure 1, the segment of the process that
cannot be executed is indicated by a thin dashed line, whereas
the executed process is depicted with a thick dashed line.

Definition III.3 (Policy-based). Here, automated reasoning
techniques are utilized to derive a policy, which is essentially
a function that suggests the next action for each state. In case
of unexpected occurrences, there is no need to reapply the ap-
proach since all potential actions from each state have already
been computed. In Figure 1, dashed lines represent all feasible
legal instances of the process. Among these instances, based
on the state of various resources, a specific one (represented
as a thick dashed line) is selected.

Although theoretically, all combinations of input services
and output policy representations are feasible, the literature
has only explored certain configurations. In our study, we
concentrate on methodologies harnessing automated reasoning
techniques, a specialized field of AI tailored for representing
and reasoning about dynamic domains, to facilitate adaptation
in smart manufacturing, particularly within the supply chain
context. Our research aligns within the broader scope of stud-
ies that apply automated planning techniques. It is pertinent
to differentiate between automated planning and automated
scheduling. Automated planning refers to the utilization of
AI technologies to devise a correct and efficient sequence
of actions [31]. Conversely, scheduling [32] addresses the
task of optimally allocating time and other resources to a
predefined sequence of actions. Furthermore, there is a distinc-
tion between classical planning, which handles deterministic
scenarios, and decision-theoretic planning [33], which deals
with stochastic behavior scenarios.

Several works exemplify the application of classical plan-
ning in smart manufacturing, specifically in implementing
instance repair strategies. The authors in [34] employ auto-
mated planning to address unexpected events, employing it to
rectify process instances and restore conditions to facilitate the
continuation of predefined processes. Similarly, authors in [35]
evaluate the use of classical planning in a physical smart
factory context to manage detected exceptional situations and
ensure uninterrupted process execution. Furthermore, authors
in [36] introduce a variant of the classical planning approach
to address the challenge of reacting to a dynamic environment
like manufacturing, where plans may fail due to changing
contexts. Moreover, classical planning is utilized in various
works to realize instance planning strategies. In [37], the
authors demonstrate the planning of small truck assembly
using available components and allocating specific production

operations to existing production resources. Additionally, au-
thors in [38] combine temporal planning with computer vision
to automate manufacturing tasks using low-cost robots. How-
ever, it is important to emphasize that all methods based on
classical planning ignore a significant aspect of manufacturing
production: the inherent uncertainty that exists throughout the
manufacturing actors and the production process as a whole.

To address this limitation, employing decision-theoretic
planning methodologies with the integration of MDPs could
offer a viable solution. While MDPs are extensively utilized
to model decision-making boundaries, their application within
manufacturing remains relatively limited. A policy strategy
is proposed by the authors in [39] where an MDP-based
self-adaptive control model for Automated Guided Vehicles
(AGVs) is proposed to facilitate navigation efficiently and
safely. Even not adhering to one of the proposed strategies,
other works employing MDPs are explored in the literature.
For instance, in [40], authors utilize MDPs to explore the
optimal control policy for real-time allocation of multiple
workforce units. In [41], authors leverage an MDP to de-
termine the optimal and cost-effective maintenance decisions
based on the circumstances found during a single diesel
engine examination. Additionally, aiming at creating a policy
for sequential decision-making to maximize expected gains
while adhering to predetermined constraints, authors in [42]
present a hierarchical MDP approach for adaptive multi-
scale prognostics and health management within smart man-
ufacturing systems. In these instances, employing MDPs is
particularly suitable for the manufacturing domain and other
non-deterministic domains as it facilitates making the best
choice under varying circumstances.

Several approaches have also been proposed in the oper-
ational research area to solve scheduling, allocation and task
assignment problems in smart manufacturing [43]–[45]. These
approaches include static methods such as linear programming
techniques, dynamic methods such as genetic algorithms, and
AI-based methods based on machine (ML) and reinforce-
ment learning (RL) combined with heuristics and optimization
methods. In this context, problem model implementation is
a delicate task that must consider the complexities of the
existing relations and behavior of the studied environment.
Additionally, the problem model, which is formulated through
mathematical formalisms, can often be challenging to inter-
pret. In our work, we instead leverage logic-based approaches
which offer a more human-readable representation, facilitating
better understanding.

IV. CASE STUDY

In this section, we present the case study of a supply
chain producing integrated circuits, commonly known as chips,
referred to as ChipChain1. The process involves multiple
actors, including suppliers, machines, operators, and software,
all dedicated to producing CPUs (central processing units).
Chip production is a precise and accurate procedure com-
prising several crucial steps. It begins with the acquisition

1Cf. https://www.screen.co.jp/spe/en/process, https://www.asml.com/
en/news/stories/2021/semiconductor-manufacturing-process-steps and
https://www.amd.com/en/technologies/introduction-to-semiconductors.
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of essential elements and raw materials, such as chip design
blueprints, silicon, impurities, resistance, and chemicals. The
mask template is then created to define the pattern of the
silicon wafer. Subsequently, photolithography operation is
employed to transfer this intricate pattern onto the wafer,
requiring precise alignment and exposure to ensure accuracy.
The process further incorporates ion implantation, a critical
step involving the introduction of specific dopants to modify
the electrical properties of the wafer. This step is crucial
for establishing regions with varying conductivity for the
formation of transistors and the altering of semiconductor
material behavior. Rigorous functionality tests and quality
checks follow to ensure the standards and reliability of the
produced chips. The fabricated wafer is then carefully diced
into individual chips. Finally, the chips undergo packaging, a
step designed to provide not only protection but also effective
cooling solutions, ensuring high performance and durability.

The manufacturing process is primarily based in the United
States (US), given that a significant portion of leading chip
suppliers worldwide are situated there2. Furthermore, we have
identified the states involved in the procurement phase and
treated them as individual entities within the supply chain.
Additionally, we have established the cost associated with
each operation by gauging the distance between the US and
the respective states involved. For instance, acquiring the chip
design from an organization in the United Kingdom incurs a
cost of 6.8. Concerning the manufacturing process itself, since
all manufacturing actors are situated within a single factory in
the US, the cost of operations therein is standardized to one.
However, we consider scenarios where multiple copies of the
same actor undertake identical operations, in which case their
cost is set to a value greater than one.

The proposed case study is used in the following sections
to present three approaches orchestrating the manufacturing
actors adaptively and resiliently, with the final goal of chip
production. Specifically, we describe (i) an instance planning
approach employed in a setting based on deterministic services
and a loosely specified target (see Section V), (ii) a policy-
based approach applied to services exhibiting stochastic be-
haviors and a fully specified target (see Section VI-A), and
(iii) another policy-based approach employed with services
with stochastic behaviors and a loosely specified target (see
Section VI-B).

The three approaches presented in the following cover
two out of the three categories introduced in Section III. In
particular, we are not introducing any instance repair approach.
The reason is as it follows: in the instance repair approaches
process models and involved resources (i.e., actors) are pre-
defined and available data are only used once something odd
happens, conversely in real world scenarios it is fundamental to
use information as soon as it is available, triggering adaptivity
since the very beginning of a process instance. Instance
planning and policy-based approaches are based on this latter,
more realistic, intuition.

2Cf. https://macropolo.org/digital-projects/supply-chain/ai-chips/
ai-chips-supply-chain-mapping.

V. INSTANCE PLANNING

By harnessing automated planning techniques, one can
seamlessly coordinate the supply chain to meet precise man-
ufacturing objectives while adhering to anticipated Key Per-
formance Indicators (KPIs) [16]. Automated planning refers
to the automated synthesis of plans derived from a model
that outlines the operational dynamics of the environment in a
concise mathematical style. Its integration with industrial man-
ufacturing enables the automatic adjustment, enhancement,
and coordination of the tasks required to meet output targets.

Definition V.1 (Classical planning). Classical planning deals
with the selection of actions to achieve goals under conditions
where the initial situation is fully understood and actions yield
deterministic outcomes [46]. In essence, a classical planning
problem can be conceptualized as akin to a path-finding
problem within a directed graph. Here, nodes symbolize states,
and edges represent actions that transition the state from the
source node to the target node. A plan, denoting the sequence
of actions necessary to transform the initial state into a goal
state, can thus be represented as a path originating from the
initial node in the graph and extending to a node whose state
aligns with one of the specified goal states of the problem.

A classical planning problem [47] is formally described as
(X, I, γ,O), where X is the set of state variables, I is the
description of the initial state of the system (i.e., an evaluation
over X), γ is a formula over X representing the goal condition,
and O is a list of operations (or actions). An action o ∈ O is
defined as a tuple o = ⟨χ, e⟩, where χ is the precondition and
e is the effect. Both precondition and effect are conjunctions
of literals (positive or negative atomic sentences) over X .
χ defines the states in which o can be executed, i.e., o is
applicable in a state s if and only if s |= χ; and e defines
the result of executing o. For each effect e and state s, [es]
denotes the set of state variables whose value is modified
when executing the action. The successor state of s with
respect to the action o, is the state s′ such that s′ |= [es]
and s′(v) = s(v) for all state variables v not mentioned in
[es]. Solving a planning problem means automatically finding
a sequence of actions that, when applied to the initial state,
leads to a state s such that s |= γ (s satisfies γ).

The state space of a problem may be huge. Throughout
the years, numerous heuristics and algorithms have emerged
and integrated into planners (planning systems) to efficiently
seek solutions. Planners receive the problem model presented
in the format of domain and problem descriptions using a
standardized interface language. This division of descriptions
makes it easier to distinguish intuitively between parts that
define the specific problem (such as available objects, initial
state, and objective) and elements that are inherent in each
unique problem within the domain (like types, predicates,
functions, and goal). The Planning Domain Definition Lan-
guage (PDDL) [48] is the standard language used by classical
planners. It allows the definition of the planning problem
covering and extending STRIPS (Stanford Research Institute
Problem Solver [49]), where the variables are boolean and
specify whether a proposition about the world holds in a given
state. Different extensions and versions of PDDL have been

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3495521

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping
https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping


6

developed to increase expressivity and describe more realistic
problems, e.g., problems with time and number elements.
However, classical planners ground the actions defined in
PDDL, transforming predicates, variables, and constants into
a propositional representation like STRIPS.

We describe a method for orchestrating services using
classical planning to achieve a production goal and adjust to
unexpected events. The involved manufacturing actors behave
deterministically. That is, given an actor Ai = (Xi, si, s0i, Oi)
with oi = ⟨PREoi , POSToi(si)⟩ (cf. Definition II.1), the
multifunction POSToi(si) leads to exactly one next state
s′i with probability ps′i = 1. This means that the effects of
executing the actions lead to at most one successor state. A
classical planning problem for a given manufacturing goal γ
and a set of n deterministic manufacturing actors {A1, . . . An}
can be derived in a straightforward way as (X, I, γ,O), where
X =

⋃n
i=0 Xi, I = {s01, . . . , s0n} and O =

⋃n
i=0 Oi.

The Industrial API of each actor Ai provides information,
modeled in a PDDL-like fashion, related both to the actions
Oi runnable by the specific actor (cf. Section IV) and the
internal properties si indicating their current status, which
might change over time. Each action contains specifics of
the parameters, requirements, and effects (both positive and
negative) necessary to perform such an action. In our mod-
eling, we consider the notion of actor’s objects, i.e., entities
without actions, representing passive objects having nothing
but properties to be satisfied to reach the production goal. In
our case study, among the involved actors, we include raw
materials and design. The other actors in the case study are
inventories, machines, and humans, who, unlike passive items,
specify the activities they are capable of performing.

The information retrieved by the Industrial API is combined
with the production goal γ. All of this is translated into a
classical planning problem. The domain description (or simply
domain) contains the list of the types of actors involved in
the problem (e.g., Material, Service3) and their inheritance.
Additionally, it describes the predicates that apply either to
specific types of objects or to all objects and are either true
or false at any point in the plan. An example of a predicate
included in our case study is Taken(d), meaning that the
design d has been taken. Finally, the domain contains the
list of actions with the preconditions, effects, and the cost
of execution which is represented as a function (similar to a
predicate) named total-cost.

The list of actions contained in the domain corresponds
to the operations offered by the available actors. In our
case study, since we have multiple copies of similar actors
performing actions having the same effects, we are forced
to distinguish the actions’ names, hence having different
operations related to an action. For example, three operations
that take a design (i.e., TakeDesignCN, TakeDesignUK, and
TakeDesignUS) could be present if three actors providing the
design are involved. Below, we present the grounded action

3We refer to all non-passive actors, such as machines and inventories, as
being of the type Service. This contrasts with the concept of digital services
in the Industrial API of an actor.

schema of the TakeDesignCN action4.
A c t i o n ( TakeDesignCN ( s r v , d ) ,

PRECOND: P r o v i d e s ( s r v , t a k i n g D e s i g n ) ∧ ¬Taken ( d ) ∧
S t a t u s ( s r v , a v a i l a b l e )

EFFECT: Taken ( d ) ∧ I n c r e a s e ( t o t a l −c o s t , 11 ) )

It defines the parameters (i.e., a service srv and a design d),
the preconditions (i.e., the service srv must be able to take a
design and the design d must not already be taken and the
service srv need to be available) and the effects of the action
(i.e., the design d is taken and the cost of the plan is increased
by 11).

The problem description (or simply problem) contains the
objects involved in the problem. The term objects has a more
generic meaning here, referring to all the possible arguments
of the predicates. In our case study, the problem contains the
list of the actor identifiers and the types, e.g., design - Design,
takingDesign - Capability, designerchina - Service des ch.
Furthermore, an init section is present that defines which
predicates are true at the beginning of the problem, i.e., the
initial state I . The data contributing to the initial state is
collected from the Industrial API of the actors, including
information on the state variables X and the machine operating
status, which, in our case, can assume values from the set
{available, broken}. Finally, the problem specifies the goal of
the process. The goal of ChipChain is Packed(wafer) since
packaging is the last operation of chip manufacturing.

The plan produced by the planner comprises a sequence
of actions aimed at achieving the final goal while minimiz-
ing total-cost. These outcomes precisely entail the effective
orchestration (synthesis) of the digital services available to
the actors to fulfill a production objective. It’s crucial to
emphasize that prior to executing an action (via the designated
Industrial API), the current status of the relevant actor is
verified. If the status is available, the action request is sent.
Conversely, if the status is broken, a re-evaluation of the
plan commences to ensure the attainment of the final goal.
As outlined in Section III, the proposed method employs an
instance planning approach, generating a new plan based on
the current environmental state when one or more actors are
in a broken state.

VI. POLICY-BASED SYNTHESIS THROUGH MDPS

The actors involved in industrial manufacturing are com-
monly entities that can exhibit stochastic behaviors. Manu-
facturing actors, indeed, often present behaviors where, de-
pending on some probability, they act as either working or
broken actors. Consequently, orchestrating the manufacturing
process becomes a probabilistic problem. This problem can be
addressed by leveraging Markov Decision Processes (MDPs)
which can model the probabilities and costs related to the ex-
ecution of an action. In particular, differently from Section V,
the Industrial APIs of the actors are mapped to a set of MDPs.

Definition VI.1 (Markov Decision Processes). An MDP [50]
M = ⟨Σ, O, P,R, λ⟩ is a discrete-time stochastic control
process consisting of (i) a set Σ of states, (ii) a set O of

4The complete domain expressed using PDDL can be found at https://
github.com/iaiamomo/TSC-planning-experiments/tree/main/res pddl.
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actions, (iii) a transition function P : Σ × O → IP(Σ) that
returns for every state σ and action o a distribution over
the next state, (iv) a reward function R : Σ × O → R that
specifies the reward (or the operation cost) when transitioning
from state σ to state σ′ by applying action o, and (v) a
discount factor λ ∈ (0, 1). The discount factor λ indicates the
importance of future rewards. Values of λ close to 0 specify
an interest in immediate rewards, while values of λ close to 1
indicate an interest for future rewards. A solution to an MDP
is represented by a function known as a policy, which maps
each state to an action, potentially influenced by past states and
actions [51]. The value of a policy ρ at a given state σ, denoted
as vρ(σ), represents the expected sum of rewards obtained
when initiating from state σ and choosing actions according
to policy ρ. The policy value vρ(σ) could be discounted by the
factor λ. Every MDP has an optimal policy ρ∗, i.e., a policy
that maximizes vρ(σ). Typically, the MDP is assumed to start
in an initial state σ0 and policy optimality is evaluated with
respect to it, i.e., vρ(σ0). In the realm of finding an optimal
policy of an MDP, notable techniques include value iteration
and policy iteration [51].

We describe an MDP-based approach that orchestrates
manufacturing actors by finding a policy that accomplishes
a manufacturing goal. We consider the manufacturing actors
that behave in a stochastic manner, i.e., Ai = (Xi, si, s0i, OAi)
with oi = ⟨PREoi , POSToi(si)⟩ (cf. Definition II.1), where
the next state s′i and the reward rs′i of the effects POSToi

depend on the probability ps′i . We identify each actor Ai

as an MDP Mi = ⟨Σi, Oi, Pi, Ri, λi⟩. In particular, Σi =
{sj : ∀oj ∈ OAi , sj |= PREoi}, Oi = OAi , Pi =
{ps′i : ∀oi ∈ OAi , ps′i ∈ POSToi(si) ∧ si |= PREoi} and
Ri = {rs′i : ∀oi ∈ OAi

, rs′i ∈ POSToi(si) ∧ si |= PREoi}.
The resulting translation is not straightforward since, on the
one hand, the MDPs rely on the concept of states, while, on
the other hand, the formalization of actors proposed in Section
II is described in terms of their actions, which here contributes
to the definition of the MDPs representing the actors.

We distinguish different types of actors involved in the
ChipChain case study, i.e., humans, warehouses, generic
breakable actors and complex breakable actors, which differ
in the number of states they are composed of. The human,
depicting a human worker, has one state, is less efficient and
does not break. For instance, we model as humans the actors
performing the testing and packaging operations. Like humans,
the warehouse has one state and permits the retrieval of raw
materials and objects provided along the supply chain. The
generic and complex breakable actors have three and five
states respectively. The former represents machines that may
break while executing an operation, while the latter represents
machines having configuration and verification phases to incur
breakages less frequently. An important aspect the breakable
actors expose is that both can be repaired in case of failures.

We characterize the MDPs actors as stochastic services [52].
A stochastic service, also known simply as a service, is defined
by the tuple S̃ = ⟨Σs, σs0, Fs, Os, Ps, Rs⟩, where: (i) Σs is
the finite set of service states, (ii) σs0 ∈ Σ is the initial state,
(iii) Fs ⊆ Σs is the set of final states, (iv) Os is the finite

READY pick silicon, 1.0,−1.0

Fig. 2: The MDP of the silicon warehouse actor.

READY

DONE

BROKEN

implant ion, 0.95,−1.0

implant ion, 0.05,−1.0

check implantation, 1.0, 0

check implantation, 1.0,−10.0

Fig. 3: The MDP of the ion implanter machine.

set of services actions, (v) Ps : Σs × Os → Prob(Σs) is
the transition function, and (vi) Rs : Σs × Os → R is the
reward function. The stochastic service can be conceptualized
as an MDP, facilitating a flexible modeling approach for real
manufacturing actors. This approach allows for the definition
of various states, including conditions of unavailability (such
as a malfunctioning machine) along with their associated
probabilities. Rewards can also be used to model different
aspects like the loss of quality over time or the cost of
execution. Stochastic services are continuously monitored via
the Industrial API to retrieve information. Figure 2 provides
the model of the silicon warehouse. It has a single state and a
self-loop deterministic transition triggered by the pick silicon
action which has a cost of -1.0. Notably, the same structure is
used for all human and warehouse actors.

Figure 3 illustrates the ion implanter machine depicted as
a generic breakable actor. Initially, the machine resides in
the READY state, ready to undertake an action OPi (e.g.,
implant ion). This action may result in the machine tran-
sitioning to the BROKEN state with a probability pbi , or to
the DONE state with a probability 1 − pbi . No matter of
the outcome, executing OPi incurs a certain cost ci < 0.
Following the execution of OPi, the actor performs the action
CHECKOPi (e.g., check implantation) to prepare itself for
subsequent operations and to trigger repairs in case it ends
up in the BROKEN state. In the latter scenario, cri < 0
denotes the repair cost for actor i. Actors involved in executing
generic operations, designed as generic breakable actors, are
characterized in this manner.

A more autonomous and comprehensive machine can be
represented as a complex breakable actor, as depicted in
Figure 4. Initially, the actor is in the AVAILABLE state,
where it awaits commands. Upon receiving the CONFIG[DEV]
command, it transitions to the CONFIGURATION state for
setup and warming up. Subsequently, upon execution of the
CHECKED[DEV] action, if the configuration fails (with a
probability pui ), the actor moves to the BROKEN state; oth-
erwise (with a probability 1− pui ), it proceeds to the READY
state, where a series of operations (OP) can be performed.
In certain instances, executing an action OPi may lead the
actor (with a probability pbi ) to the BROKEN state, incurring
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AVAILABLE CONFIGURING READY

BROKENREPAIRING

CONFIG [DEV], 1.0, 0 CHECKED [DEV], 1− pui , 0

OPi, p
b
i , ci

RESTORE [DEV], 1.0, cri

REPAIRED [DEV], 1.0, 0

CHECKED [DEV], pui , 0

OPi, 1− pbi , ci

Fig. 4: The (template) MDP of complex breakable actors.

a cost ci < 0. Regardless of the cause, when the actor ends
up in the BROKEN state, it must undergo a RESTORE[DEV]
operation (incurring a repair cost cri < 0) to transition to the
REPAIRING state, followed by a REPAIRED[DEV] operation
that returns it to the AVAILABLE state, making it available for
further use. Challenging operations involve actors modeled as
complex breakable services.

A set of actors (stochastic services) define a community
of services and we use the concept of stochastic system
service [52] Z̃ = ⟨Σz, σz0, Fz, Oz, Pz, Rz⟩ to model it. A
stochastic system service is defined as follows: (i) Σz =
Σ1×· · ·×Σn is the set of the states of all the involved services,
(ii) σz0 = (σ10, . . . , σn0) is the set of current states of each
service, (iii) Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n} is the
set of the final states of the services, (iv) Oz = Oi×{1, . . . n}
is the set of pairs (o, i) formed by a shared action o and the
index i of the service that executes it, (v) Pz(σ

′ | σ, (o, i)) =
P (σ′

i | σi, o), for σ = (σ1 . . . σn), σ′ = (σ′
1 . . . σ

′
n) and

o ∈ Oi(σi), with σi ∈ Σi and σj = σ′
j for j ̸= i, represent

the transition function, and (vi) Rz(σ, (o, i)) = Ri(σi, o) for
σ ∈ Σz , o ∈ Oi(σi) depict the reward function.

In the following sections, we propose two techniques relying
on the above-mentioned concepts: (i) Section VI-A describes a
solution based on a fully specified manufacturing goal, and (ii)
Section VI-B solves the problem in the presence of a loosely
specified manufacturing goal.

A. Fully specified target process

A manufacturing process can usually be represented using
imperative process model notations such as Petri Nets and
BPMN [53]. Such notations explicitly specify all possible
behaviors, prescribing the execution flow in its entirety. In
this section, we show how to synthesize a policy when the
target to realize is a fully specified process. In particular, as
demonstrated in prior work [52], [54], the manufacturing goal
will be modeled as an additional service, referred to as the
target service [52], [54], to be achieved by combining the
actions of actor services.

Formally, the target service is specified by the tuple T =
⟨Σt, σt0, Ft, Ot, δt, Pt, Rt⟩, where (i) Σt represents the finite
set of target states, (ii) σt0 ∈ Σ denotes the initial state, (iii)
Ft ⊆ Σ indicates the set of the target final states, (iv) Ot

denotes the finite set of target actions, (v) δt : Σt ×Ot → Σt

signifies the deterministic and partial transition function, (vi)
Pt : Σt → π(Ot)∪∅ represents the action distribution function,

typically uniform distribution, indicating which actions can be
executed in each state, and (vii) Rt : Σt × Ot → R denotes
the reward function. This definition characterizes the target
service as a specific instance of an MDP. Unlike stochastic
services, the target service is primarily deterministic in nature.
This concept serves the functional purpose within our formal
framework, with Pt ∈ {0, 1} and Rt remaining constant.

It is worth noting that the set Ot ⊆ Oz , as the target may
ignore specific actions that are instead needed for composing
services to operate. These latter are called auxiliary actions.

Figure 5 depicts the target service of the ChipChain case
study (due to space constraints, some steps are omitted).
The target service represents the deterministic sequence of
actions related to the process. It is evident the intuition of
the “fully specified” concept: the entire set of actions and
their order of execution are specified, including the auxil-
iary ones, e.g., CONFIG[CREATOR], CHECKED[CREATOR],
check test smart for the relative services characterized by
that property.

The proposed approach’s solution is based on finding an
optimal policy for the composition MDP. Given the speci-
fication of the stochastic system service and the target ser-
vice, the composition MDP is computed as M̃(Z̃, T̃ ) =
⟨SM̃, OM̃, TM̃, RM̃, λ⟩, where: (i) SM̃ = ΣZ̃ × ΣT̃ × O ∪
{sM0} is the set of states which, in this case, contains also
the next actions; (ii) OM̃ = {oM0, 1, . . . , n} is the set of
actions that are the selections of a specific service that execute
an action (specified in the state); (iii) the transition func-
tion is defined as TM̃(sM0, oM0, (σz0, σt0, o)) = Pt(σt0, o),
TM̃((σz, σt, o), i, (σ

′
z, σ

′
t, o

′)) = Pt(σ
′
t, o

′) ·Pz(σ
′
z | σz, ⟨o, i⟩)

if Pz(σ
′
z | σz, ⟨o, i⟩) > 0 and σt

o−→ σ′
t and 0 otherwise, it takes

into account the probability of transitioning to the stochastic
system service successor state σ′

z from σz doing the action
⟨o, i⟩; (iv) RM̃((σz, σt, o), i) = Rt(σt, o) + Rz(σz, ⟨o, i⟩) if
(o, i) ∈ O(σz) and 0 otherwise is the reward function which
includes also the reward observed from doing a system action
⟨o, i⟩ in σz , and sums it to the reward signal coming from the
target; and (v) λ is the discount factor.

The objective is to derive a plan (policy) from the compo-
sition MDP that delineates a sequence of actions assigned to
actors (services) for execution. The primary aim is to consider
breaking probabilities and action and repair costs to devise a
plan where the overall expected sum of costs is minimized
(i.e., an optimal policy). The optimal policy illustrates a
comprehensive orchestration of the actors (and their digital
services) involved in the problem. The digital services provide
information about breaking probabilities and costs; therefore,
determining beforehand which actor a certain action should
be assigned to is not straightforward. The computation of the
optimal policy employs the value iteration algorithm [51].

B. Loosely specified target process

In the following, rather than utilizing a structured formalism
as demonstrated in Section VI-A, we employ DECLARE, a
flexible process model that describes the process through the
definition of constraints [55]. Declarative process models en-
able the description of dynamic environments where processes
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Fig. 5: The fully specified target service of ChipChain

are flexible and subject to changes. The proposed technique
is an extension of the approach presented in Section VI-A,
with a notable distinction in the representation of the target
specification for the manufacturing process.

Definition VI.2 (Linear Temporal Logic & DECLARE). LTLf

is a variant of Linear-time Temporal Logic (LTL) interpreted
over finite, instead of infinite, traces [56]. Given a set P
of atomic propositions, LTLf formulas φ are defined by
φ ::= a | ¬φ | φ∧φ | ◦φ | φU φ, where a denotes an atomic
proposition in P , ◦ is the next operator, and U is the until
operator. We use abbreviations for other Boolean connectives,
as well as the following: eventually as ♢φ ≡ trueU φ; always
as □φ ≡ ¬♢¬φ; weak next as •φ ≡ ¬◦¬φ (on finite
traces, ¬◦φ is not equivalent to ◦¬φ); and weak until as
φ1 W φ2 ≡ (φ1 U φ2 ∨ □φ1) (φ1 holds until φ2 or forever).
LTLf formulas are interpreted over finite traces, denoted as
a = a0 . . . al−1, where ai at instant i represents a propositional
interpretation from the alphabet 2P , and l is the length of the
trace. An LTLf formula φ can be converted into a deterministic
finite automaton (DFA) Aφ = ⟨P, Q, q0, F, δ⟩ where (i) P
represents the alphabet, (ii) Q denotes a finite set of states,
(iii) q0 signifies the initial state, (iv) F ⊆ Q indicates the set
of accepting states and (v) δ : Q × P → Q represents the
transition function. The alphabet of the DFA corresponds to
the set of traces satisfying the formula φ.

DECLARE is a language and framework designed for the
declarative constraint-based modeling of processes [57]. It
revolves around a set P of propositions representing atomic
tasks, which serve as the fundamental units of work within the
process. In a DECLARE model, denoted as C, LTLf constraints
over P are employed to define and constrain the permissible
execution traces. DECLARE operates under the assumption that
at any given point in time, precisely one task is executed.
This assumption is captured implicitly by the following LTLf

formula, referred to as the DECLARE assumption: ξP =
□(

∨
a∈P a)∧□(

∧
a,b∈P,a ̸=b a→¬b). Among all possible LTLf

constraints, some specific patterns have been singled out as
particularly meaningful for processes, i.e., existence, choice,
relation, and negation constraints. These patterns play a crucial
role in defining the constraints within a DECLARE model.

As proposed in [58], the process specification is defined as
an LTLf formula φ over the set of propositions P , delineating
the allowed traces for the process. The collection of finite
traces satisfying the specification φ alongside the DECLARE
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Fig. 6: The supply chain manufacturing process represented
using DECLARE.

assumption ξP can be encapsulated by a single deterministic
process DFA Aφ. This is achieved through the following
steps: (i) generating the corresponding nondeterministic fi-
nite automaton (NFA), involving an exponential computational
step, (ii) converting the NFA into a DFA, also entailing an
exponential computational step [59], and (iii) trimming the
resulting DFA by eliminating any state from which no final
state is reachable, which is a polynomial computational step.
The resulting DFA serves as a process, meaning that at each
step, contingent solely upon the history (i.e., the current state),
it delineates the set of actions that are legal and ultimately lead
to a final state. This assumes fairness of execution, disallowing
the process from indefinitely remaining in a loop.

Figure 6 depicts the DECLARE model of the ChipChain case
study. The procurement phase involves the acquisition of five
materials. These are retrieved in any order and then eventually
the mask is defined (alternate succession constraints). After
the mask is created, photolithography and ion implantation
operations are performed (alternate succession constraints),
and at most one (alternate precedence and not coexistence
constraints) between testing and the branch smart testing
and quality check is carried out. Subsequently, the dicing
operation yields single chips (precedence branched constraint)
that are then packed into either standard or with cooling pack
(alternate precedence and not coexistence constraints).

We define the manufacturing actors as stochastic services
capable of performing the process actions in P . To enhance
our model, we allow services to carry out a wider range of
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actions, denoted as P ′ s.t. P ⊆ P ′, specific to the factory
model aiming to implement the manufacturing process.

In this case, the composition MDP is defined as a function
of the stochastic system service Z̃ and the DFA Aφ derived
from the LTLf formula φ. It is represented as M(Z̃,Aφ) =
⟨SM, OM, TM, RM, λ⟩, where: (i) the set of states SM =
Σz × Q is the product of the states of the system service
and the DFA states; (ii) OM represents the set of actions
and comprises the product between the DFA action and the
service acting; (iii) the transition function is defined as follows
TM((σ, q), ⟨o, i⟩, (σ′, q′)) = Pz(σ

′ | σ, ⟨o, i⟩) if ⟨o, i⟩ ∈
Oz(σ)∧

(
(o ∈ P ∧ q

o−→ q′) ∨ q′ = q
)

and 0 otherwise, here,
Pz(σ

′ | σ, ⟨o, i⟩) represents the probability of transitioning
to the system successor state σ′ from σ by performing the
system action ⟨o, i⟩ and q′ denotes the successor state of q in
Aφ after reading o if it is a process action (o ∈ P), otherwise,
q′ = q indicating the system remains in the same state; (iv)
RM((σ, q), ⟨o, i⟩, (σ′, q′)) is the reward function that models
the process specification φ, it is either equal to 1 if q′ ∈ F , or
equal to Rz(σi, o, σ

′
i) if ⟨a, i⟩ ∈ Ôz(σ), or 0; particularly the

reward function returns 1 if the automaton component of the
state is an accepting state q′ ∈ F ; (v) λ is the discount factor.

An optimal policy of the composition MDP that minimizes
the overall expected sum of costs can be computed as in
Section VI by employing the value iteration algorithm. The
solution induces an orchestration that coincides with the exact
solution if a composition exists. Otherwise, it provides an
approximate solution that maximizes the expected discounted
sum of values of user requests that can be serviced.

VII. EXPERIMENTS AND DISCUSSION

As stated in Section I, the primary disadvantage of auto-
mated synthesis techniques is that their performance quickly
degrades as the size of the problem (i.e., number of actors, ac-
tions available, complexity of the goal) increases. As resilience
requires a quick reaction to changes, the time required to
compute a new plan or policy for the supply chain is of utmost
importance. As, to the best of our knowledge, no standard
dataset exists in this area, we will perform experiments by ad-
justing the complexity of the use case presented in Section IV.

This section provides experimental results on the case
study described in Section IV. Moreover, we provide further
experiments on other two different case studies in the provided
repositories6.

A. Experimental setup
We conducted experiments to compare the performance

and demonstrate the usage of (i) the instance planing-based
approach based on classical planning (cf. Section V), (ii)
the policy-based approach based on MDPs with fully spec-
ified target (cf. Section VI-A), and (iii) the policy-based
approach based on MDPs with loosely specified target (cf.
Section VI-B). The classical planning approach is imple-
mented by leveraging the Fast Downward planner [60], which
supports PDDL 2.2 with cost actions [61]. The MDP-based
approaches are implemented using the MDP-DP-RL library5.

5https://github.com/coverdrive/MDP-DP-RL

These methods were tested using the ChipChain case study.
The experiments were run on a computer with an Intel
Core Ultra 7-155U (1.70GHz) processor with 32 GB RAM.
Execution time (in seconds) and memory usage (in MiB)
were measured over four scenarios differing in the number of
available actors (services) capable of performing a particular
action. The scenarios include: xsmall case – the simplest and
basic supply chain case, containing exactly one service for
each action, resulting in a total of 14 services; small, medium,
and large cases – these cases include additional copies for
the services, resulting in a total of 21, 28, and 35 services,
respectively. These cases more effectively represent supply
chains where multiple copies of actors (likely with different
quality and status properties) cooperate toward a common
goal. The presence of extra copies results in more complex
scenarios where the controller needs to consider characteristics
such as costs, rewards, and probabilities of the available actors.
The experiment source codes are available at the provided
repositories6.

B. Discussing the experimental results

Figure 7 presents the results of the experiments. It is evident
that depending on the approach used, performance values vary
greatly.

The planning approach exhibits time and memory con-
sumption that remain relatively stable and effective as the
number of services increases. The planning solver applies
well-known heuristics to derive a solution efficiently. How-
ever, this approach does not account for the stochasticity of
the manufacturing environment, such as the probability of a
machine encountering a failure situation. Indeed, this is the
main motivation driving the other approaches addressed in the
paper, which sacrifices performance - even if still realistic as
demonstrated in this section for greater representativeness and
realism of the modeling.

The resources needed by stochastic policy approaches show
an exponential increase with the growing number of services.
This escalation can be attributed to the composition MDP’s
formulation, which necessitates a cartesian product operation
involving both the target and system service sets. While the
target remains static and clearly defined, the system service’s
states may increase with the inclusion of additional services,
consequently elevating memory usage and execution duration
for both the composition MDP and policy computation.

Moreover, the stochastic constraint-based policy approach
proves to be more resource-intensive in terms of time and
memory compared to the stochastic policy approach. This
substantial variance stems from the nature of the target service,
particularly when expressed in LTLf , where it comprises a
series of logical constraints among actions. Converting such
constraints into a DFA can lead to an explosion of states.
Additionally, the presence of auxiliary actions — actions

6The instance planning approach source code is available at https:
//github.com/iaiamomo/TSC-planning-experiments, the stochastic policy
approaches source code is available at https://github.com/iaiamomo/
TSC-mdp-experiments. The same links also report the results of the experi-
ments described in the main text, to demonstrate the full repeatability of the
approaches, and the results of the experiments run on two other case studies.
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(a) Memory usage (b) Execution time (c) Policy execution time (LTLf target)

Fig. 7: Experimental results

indirectly linked to the process but necessary for the services
to execute specific actions — exerts influence on the transition
function and the overall state count.

An important observation concerns the time and memory
consumption of the stochastic constraint-based policy. It was
found that policy computation contributes significantly to the
increase in execution time. While one might expect that once
the composition MDP is available, the policy can be directly
derived, these results vary greatly depending on the lambda λ
value. Figure 7b displays the overall results (composition MDP
and policy calculation) with λ = 0.9; this value is experimen-
tally adopted as the one allowing the solver to calculate the
complete solution. A high value of lambda is commonly used
to generate more strategic and optimal policies. Additional
experiments were performed varying lambda over the four
cases. Results of such experiments are depicted in Figure 7c.
The effects of decreasing λ are observed in a reduction of
time, suggesting that having a low lambda prioritizes short-
term results.

The experimental results illustrate the practical applicability
of automated synthesis techniques, not with the aim of proving
the superiority of any one approach over the others, but rather
to demonstrate that all approaches can indeed be employed in
real manufacturing scenarios.

The comparison, in terms of performance, between planning
and MDPs may seem clearly in favor of the former. Nonethe-
less, the employment of MDP-based approaches (whether with
fully or loosely specified targets) and the resulting additional
computational cost are sometimes unavoidable because of the
specific requirements of the application scenario. The selected
tool must indeed enable the designer to naturally represent the
assets’ behaviors and the target process. In order to enforce
this concept, let us discuss the possible characteristics of assets
(services) and how they fit with the presented approaches:

• Unpredictability. This is common in certain types of in-
dustries, particularly those dependent on semiconductors
and, consequently, affected by geopolitical tensions. In
such cases, the additional computational cost is unavoid-
able as the number of nodes and especially connections in
MDPs increases. Conversely, if MDPs are used to model
completely predictable services, the size of the diagrams
is reduced, and the performance becomes comparable
to that of planning-based approaches, not significantly

influencing the performance. Noticeably, in this paper, we
do not address cases where probabilities exist but cannot
be estimated (e.g., the likelihood of lightning striking a
working machine).

• Modeling costs. While the cost of many actions can be
considered unitary (i.e., the execution of any action incurs
a similar cost), some actions can be significantly more
expensive (e.g., repairing a device). The cost (or reward)
of an action is naturally modeled by MDPs, but it can also
be incorporated into classical planning. However, when
costs are factored into planning, the computational cost
of finding a solution increases exponentially.

• Sequential dependencies between actions. In many
cases, assets naturally undergo sequential working phases.
While these phases can be modeled in classical planning
by introducing appropriate predicates, representing them
as state machines is much more intuitive for the user.
Once again, in MDPs, the computational challenge does
not arise from the number of states, but from the number
of connections between states, which increases due to the
presence of probabilities.

• Dependency of decisions on data. In this case, using
MDPs would require an increase in the number of states
(exponential in the number of considered variables),
making it more challenging for the designer to model the
asset. In this case, using planning (specifically planning
languages like PDDL) simplifies the designer’s work
more than it impacts performance.

• Structure of the manufacturing goal. If the goal of
manufacturing is expressed in terms of data conditions,
modeling the problem is much simpler using planning
or when the process is modeled declaratively in the case
of MDPs. However, planning is less suited for scenarios
where temporal constraints between actions are imposed,
as modeling these constraints is not intuitive, requiring
the introduction of auxiliary predicates. In such cases,
it is easier to use MDPs, whether with fully or loosely
specified targets. Here again, the crucial factor to be
considered is the effort required by the designer, as
the computation cost of planning increases exponentially
anyway with the number of predicates and objects.

From the previous considerations, it is clear that the com-
parison proposed in the paper is aimed more at demonstrating
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how both approaches scale computationally as the problem
size increases. However, the modeling features utilized in each
case, which impact the computational cost, are quite different.
If both approaches were evaluated under similar settings,
their computational costs would be comparable. Notably, the
additional features available in MDPs are also supported by
planners that support Probabilistic PDDL (PPDDL) [62]. It has
been demonstrated that PPDDL problems can be represented
and solved using MDPs, leading to comparable performance
among the three evaluated approaches. However, if MDPs are
used while only exploiting some of their features (e.g., making
all actions deterministic), their computational cost approaches
that of planning. As discussed then, the key consideration
is not the computational cost itself, which is unavoidable in
certain cases, but rather the modeling effort and cognitive
distance required by designers when modeling the scenarios.

To analyze the trade-off between the expressive power of the
modeling approaches and the effort required for practitioners
to apply them, we conducted a user study with eight practition-
ers. We provided a questionnaire containing several scenarios
and asked them to model these scenarios. We measured the
time each practitioner spent on the modeling exercises and
then conducted interviews with them.

The results indicated that MDP-based modeling was more
expressive, enabling a detailed representation of manufactur-
ing assets when needed. However, it was also more time-
consuming and required more effort from practitioners. Addi-
tionally, some experts struggled to produce the correct version
of the model, highlighting its higher complexity.

In contrast, planning-based modeling was simpler and faster
for all practitioners but could only be adopted in certain
scenarios. Every practitioner was able to model the services
correctly within a shorter time frame, suggesting that this
method, while less expressive, is more accessible. However,
the limitation is that not all scenarios can be modeled using
this approach.

These findings illustrate that while MDPs offer more pow-
erful representations, they require greater effort to implement.
In contrast, planning-based modeling should be utilized when
control flow is not a critical factor. For the sake of brevity,
the details and results of the user study are included in the
repository link.7

C. The AIDA tool

All the proposed approaches are also available as part of
the AIDA tool8 (Adaptive InDustrial APIs) [63]. The tool
implements a platform to manage the digital services of the
manufacturing actors, called Industrial API platform. The
Industrial API relates to the concept of Asset Administration
Shell (AAS), which facilitates the digitization of physical
things (assets) for virtual representation, turning an object
into an Industry 4.0 component [64]–[66]. The digital services
of each Industrial API are implemented as REST services,
however, any other synchronous/blocking-invocations-based

7https://github.com/iaiamomo/TSC-planning-experiments.
8Source code of AIDA can be found at https://github.com/

DIAG-Sapienza-BPM-Smart-Spaces/AIDA

standard for Web services can be used. The REST services
can wrap already available endpoints of actors or realize new
endpoints for new actors. Information through the various ac-
tors in the factories is made available by available technologies
including OPC-UA, EtherCAT or CANopen [67].

AIDA includes a design GUI for the final user, e.g., a
production manager, allowing to specify both the manufactur-
ing goal and actors. The former is described using the target
description language (tdl) format, while the latter employs the
service description language (sdl) format. Essentially, both
formats are realized as JSON files, offering a standardized
language for defining the problem specification. The controller
(described below) imports the resulting .sdl files, which are
used in the Industrial API platform for deploying the services,
and the .tdl file, which is used to synthesize the plan.

VIII. CONCLUDING REMARKS

In this paper, we proposed a service-oriented approach to
model the manufacturing actors involved in manufacturing
processes, identifying each actor through the set of digital
services exposed via the Industrial API. This enables the
retrieval of important information such as operating status
and available actions. We leveraged this modeling approach
to explore and showcase the utilization of automated rea-
soning techniques in smart manufacturing, with the objective
of enhancing adaptivity and resilience within supply chains.
Through a use case centered around chip manufacturing, we
applied various techniques and thoroughly assessed the exper-
imental outcomes. The techniques selected were representative
of the categories defined in Section III.

In certain cases, it may be necessary to model constraints
between actors. For example, we may need to specify that if
actor A is used, then actor B cannot be used due to commercial
or political issues. At the current stage, we do not directly
support this kind of rules. However, they could be modeled
using PDDL conditional effects in the approach based on auto-
mated planning, although this may impact computation costs.
In the case of the MDP-based approach, these rules are more
challenging to model as the representation is hierarchical and
the target process is not aware of the specific actors employed.
One option in this case would be to include constraints when
computing the composition MDP.

Additionally, the presented case study and conducted experi-
ments assume that the state space is discrete. While continuous
variables can be discretized, this often results in an explosion
of the number of states, making the solution harder to compute.
In the case of automated planners, while continuous variables
are supported by the latest versions of PDDL, few planners
support them. In the case of MDPs, discretization must be
done manually.

Regarding the employed approaches, we mainly focused on
AI synthesis. Classical numerical optimization techniques can
also be applied; however, these techniques, even if potentially
fast, are challenging in terms of modeling. Usually, a set
of equations forms an optimization problem, which is more
complex to edit and validate than the formalisms used here.

Furthermore, in terms of AI, in this paper, we focused
on symbolic AI instead of machine or deep learning. In
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particular, a policy-based approach could be implemented via
Reinforcement Learning (RL) that, interestingly, can be math-
ematically modeled through MDPs. With respect to synthesis,
learning requires a minor modeling effort relying instead on
the availability of a huge amount of training data, which
can be a challenging requirement to fulfill in manufacturing
environments, especially concerning negative samples. While
techniques exist to make RL more sample efficient, they
usually result on a major modeling effort [68]. The problem of
data availability can be solved through simulation techniques,
that could in turn be addressed through synthesis techniques.
Finally, provided a standard way to model actors in the supply
chain, transfer learning can be used to alleviate the problem
of data availability even more.
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