Minimal Knowledge Approach to Reasoning about Actions and Sensing

Giuseppe De Giacomo and Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{degiacomo,rosati}@dis.uniromal.it

Abstract

We present an autoepistemic approach for rea-
soning about actions in the presence of incom-
plete information and sensing. Specifically, we
introduce a logical formalism that combines a
very expressive logic of programs, the modal
mu-calculus, with a minimal knowledge modal-
ity. We show that reasoning in such a formal-
ism can be done by integrating model checking
for modal mu-calculus and propositional infer-
ence. This allows for exploiting existing model
checking techniques and systems for sophisti-
cated forms of reasoning about actions, without
renouncing to deal with incomplete information
about the dynamic system.

1 Introduction

Research in Cognitive Robotics [22; 23] is forcing the
area of reasoning about actions to go through a “reality
check”. It has shown that, when one wants to equip an
actual robot with the ability of reasoning about its ac-
tions, it is essential to take into account that the robot
normally operates in an environment which it only par-
tially knows, and that it must dynamically acquire new
information through its sensors when needed [17]. More-
over, the basic reasoning task of projection is in general
not sufficient to reason about sophisticated aspects of
the robot’s behavior, such as being always responsive
to requests of other agents, or guaranteeing the success-
ful termination of certain activities. Finally, reasoning
about actions must be effective, i.e., reasonably efficient,
in this generalized setting.

In this paper we propose a logical formalism for rea-
soning about actions which has the potentiality of meet-
ing all the requirements above. Specifically, we define a
variant of modal mu-calculus [24], a logic of programs
that subsumes both propositional dynamic logics, such
as standard PDL and APDL [13], and branching time
temporal logics such as CTL and CTL* [9]. Modal mu-
calculus is used in the verification of concurrent systems
[12; 20], and for this task several automated model check-
ing]g techniques and systems have been developed [24; 3;
19].

We extend modal mu-calculus with an autoepistemic
modal operator in order to represent and reason about
the epistemic state of the robot. Autoepistemic opera-
tors have already been introduced for reasoning about
actions e.g. in [14; 18]. Here, following [6; 7], we use
a minimal knowledge modality in a way that strongly
characterizes how the deliberative behavior of the robot
is modeled: the robot may perform an action if it knows
that the preconditions for that action hold, not simply
if the preconditions are true. Similarly, the effects of
an action of interest for the robot are only the ones the
robot is aware of, i.e. the effects that change its epistemic
state. This is obtained by specifying what a robot knows
after an action, instead of specifying what is true after an
action. In this approach, the robot follows the changes
in the world through the changes in its epistemic state
only. The minimal knowledge modality is also used to
provide a natural formalization of sensing actions, i.e.,
actions that allow the robot to know whether a certain
p]roperty holds in the current state of the world [17; 11;
2|.

The special use of the minimal knowledge modality,
that we require in the axioms specifying preconditions
and effects of actions, forces a strong uniformity on the
models of the dynamic system specification. This uni-
formity allows for representing all models by means of a
single transition graph, whose nodes correspond to epis-
temic states of the robot, and transitions reflect how the
robot’s epistemic state changes by executing actions.

The proposed extension inherits from modal mu-
calculus the ability of expressing very general dynamic
and temporal properties. Moreover, by exploiting the
possibility of representing all models of a dynamic sys-
tem specification as a single graph, it becomes possible
to adapt model checking techniques for the modal mu-
calculus to our setting. Essentially, such model checking
techniques are used to visit the graph in a suitable fash-
ion, checking validity (instead of truth) of propositional
formulae on single states, while traversing the graph.

2 Logical formalism

The technical background of our proposal is constituted
by a logical formalism £ that originates from a suitable
integration of modal mu-calculus and autoepistemic de-

scription logics (see respectively [24; 9] and [8] for an
introduction to these formalisms). The basic elements
of £ are a finite set of actions Act, a countable set of
propositions Prop, and a countable set of propositional
variables Var.

Formulae of the formalism are divided in two layers:

e state description formulae:
pu=AlpiAp|-p
e dynamic formulae:

¢pu=kp|[d1 Ao || ald]| X |puX.¢
where A € Prop, p is a state description formula,
a € Act and X € Var. The formula ¢ in uX.¢
must be syntactically monotone in X, that is the
variable X must be in the scope of an even number
of negations.

We use the usual abbreviations V,D, tt,ff (the last
two denoting tautology and contradiction respectively),
and also the abbreviations (a)¢ = —[a]—¢ and vX.¢ =
-uX.m¢[X/-X] where [X/-X] denotes the syntactic
substitution of X by —X.

We give the semantics of £ by first fixing once and for
all a countable-infinite set S of state names which will
constitute the interpretation domain of £. We assume
to have a set of constants Const C S that are used to
denote state names.

A pre-interpretation Z is a function over S which as-
signs to each constant in Const the corresponding state
name, i.e. s = s; to each atomic proposition in Prop
a subset of S, i.e. AT C S; and to each action a € Act
a functional relation over S, i.e. aZ C & x S, with the
restriction that for every s,s’,s" € S if (s,s') € a? and
(5,8") € af then s’ = s”. In addition, the union of
the relations interpreting the actions is backward func-
tional, i.e. for every s,s’,s" € Sif (s',5) € Ugecactal and
(s",8) € Useacta® then s’ = s". Pre-interpretations are
extended to state description formulae as follows:

(mAp2)* = pinpy
(-p)* = S-p*

A wvaluation p is a function from Var to a subset of S
such that p(X) C S for every X € Var. Given a valu-
ation p and £ C §,, we denote by p[X /€] the valuation
obtained from p by changing to £ the subset assigned to
the variable X.

A interpretation W is a set of pre-interpretations over
S. We define interpretations of state formulae and ac-
tions respectively as:

PV = Nzewp*

aV = Nzew at
Interpretations and valuations are used to interpret dy-
namic formulae as follows:

(kp))Y = pV

(p1 Ag2))V = (1)) N(g2))¥

(=) = S—9¢)

([a]qﬁ)}f" = {s€8|Vs.(s,8)ea’Ds' € ¢ZV}
XV = p(X)

(IJX-d’)ZV = N{€cs| ¢Z\[)X/5] ce

In particular we will be interested in closed formulae (for-
mulae with no free variables). Such formulae are inter-
preted independently from the valuation, hence we will
interpret them using an interpretation ¥V alone: ¢"V.

A knowledge base Y is defined as a pair ¥ = (7, A),
where 7 is a finite set of state description formulae and
(closed) dynamic formulae, and A is a finite set of asser-
tions of the form % (s) with ¢ either a state description
formula or a dynamic formula, and s € Const.

An interpretation W satisfies a formula ¢ € T iff
YW = 8. W satisfies an assertion p(s) € A iff s € p".
W satisfies a knowledge base X = (7, .A) iff W satisfies
every formula from 7 and every assertion from A.

An interpretation W is a model for % iff W is a max-
imal set of interpretations satisfying X, i.e., for each in-
terpretation W', if W C W' then W' does not satisfy X.
This corresponds to impose a “minimal knowledge” se-
mantics on the epistemic states of the agent [8]. In fact,
each interpretation can be viewed as a Kripke structure
in which each pre-interpretation is a possible world, and
each world is connected to all worlds in the structure:
only structures satisfying ¥ and having a maximal set
of possible worlds are considered, which maximizes ig-
norance of the agent in its epistemic states.

Finally, ¥ logically implies a formula or an assertion
o, written ¥ |= o, iff every model for ¥ satisfies o.

3 Dynamic system representation

In this section we present our framework for representing
dynamic systems in the logic £. The framework essen-
tially follows the one presented in [6; 7].

The formalization of a dynamic system is constituted
by the following elements.

e Initial state description is formed by a finite set of
assertions of the form

P(Sinit)
where p is a state description formula and s;,;; is

a constant in Const. In fact we may assume that
Const = {Sinit}-

e Static azioms (also known as state constraints) are
a finite set of state description formulae p, which
are assumed valid, defining invariance properties of
states.

e Precondition axioms specify under which conditions
an action can be executed. In our case such a con-
dition depends on the epistemic state of the agent
and not on what is true in the world. Precondition
axioms are dynamic formulae of the the form:

kp D (a)kit

o Effect axioms specify the effects of an ordinary (i.e.,
non-sensing) action when executed under certain
conditions. Again, in our approach both effects and
conditions concern the epistemic state of the agent.
Effect axioms are dynamic formulae of the form:

kp; D [a]kps

No special treatment of the frame problem is con-
sidered here; we simply make use of frame axioms
constituted by effect axioms of the form:

kp D [a]kp

e Sensing effect axioms are effect axioms of a special
form, which specify the outcome of a sensing action.
Suppose ay is a generic sensing action whose effect is
to let the agent know the truth value of the property
f, where f is any state formula. Also, suppose p is
the precondition for the execution of a;y. Such a
sensing action is represented in our framework by
an usual action precondition axiom kp O (as)ktt,
plus the sensing effect axiom

kp O [af](kf Vk~f)

which formalizes the fact that, after the execution
of az, the robot knows whether f holds or —f holds.

Finally, for each sensing action ay, we enforce a frame
axiom schema of the form:

kp D [as]ky

which formalizes the fact that all the properties known
by the robot before the execution of the sensing action
are still known after executing it. Observe that, as a
consequence of the frame axiom schema, if the robot al-
ready knows the truth-value of f then the sensing action
ay does not have any effect, in the sense that, if the
robot knows f (—f), then after executing a; the robot
will still know f (—f). It is possible to show that the
above axiom schema can be represented, without loss of
generality, through a finite (linear) number of instances,
by replacing ¢ in the schema with the initial state de-
scription and with each effect appearing in effect axioms.

Let ¥ be the knowledge base describing the dynamic
system as above. We are interested in verifying if the
system satisfies a certain dynamic property. Formally,
we are interested in logical inference of the form

2 ¢(sinit) (1)

where ¢ can be any dynamic formula. As we shall see
later, in this way we can deal for instance with the projec-
tion problem, “given a sequence of actions, does a given
state description formula hold in the resulting state?”;
the planning problem, “is there a sequence of actions such
that the goal (a state description formula) holds in the
resulting state?”; but also very sophisticated dynamic
properties such as liveness, safeness, etc. that are easily
expressed using fixpoint formulae.

4 Reasoning technique

Let us now turn our attention to the problem of com-
puting the logical implication (1).

First of all, an £ knowledge base X corresponding to a
dynamic system specification has in general many mod-
els. When no sensing action is formalized, all models
of ¥ are isomorphic up to renaming of states, and it

ALGORITHM TG
INPUT: ¥ = (TsUTp UTlE, {p(sinit)})
OUTPUT: TG(2)
PROCEDURE CREATE NEW_STATE(s,a)
begin
s’ = NEW state name;
Prop(s') = {a|(kp' > [alkg € ') A (s U Ls(s) = p')};
if there exists s € S such that
(Ts U Ls(s')) and (I's U Lg(s")) are logically equiv.
then L4(s,a) =s"
else begin
Suctive = Suctive U{sl}y

S =8U{s'};
Ls(s'") = Prop(s')
end
end
begin
Sactive = {sinit};
S = {Sznzt},
Ls(sinit) = {p(sinit)};
repeat

s = choose(Sactive);
for each ordinary action a do
if (kp D (a)ktt) € I'r and (I's U Ls(s) = p)
then CREATE_ NEW_STATE(s,a);
for each sensing action ay do
if (kp D (as)kit) € I'p and
(I's U Ls(s) E p) and
(T's ULs(s) = f) and
(T's U Ls(s) = ~f)
then begin
CREATE_NEW _STATE(s, a});
CREATE_NEW_STATE(s, a})
end;
Sactive = Sactive _{3}
until Suctive = @,
return (S,Ls, L)
end;

Figure 1: Algorithm computing TG (X)

is possible to reason about a single model, since it can
be shown that all the properties that are expressible in
the right-hand side of (1) are independent of such state
names.

On the other hand, the presence of sensing effect ax-
ioms in X causes in general the existence of models which
structurally differ from each other. This can be intu-
itively explained by the fact that when the robot uses its
sensing capabilities to know whether a certain boolean
property p holds, its epistemic state changes according
to one of the two possible outcomes of the sensing ac-
tion. Hence, two different models for ¥ represent the
two different possible epistemic states resulting from the
execution of the sensing action.

We represent all the models of ¥ by means of the tran-
sition graph (TG) of ¥. Roughly speaking, the transition
graph is a graph in which:

e cach node corresponds to a state and is labeled with

a propositional formula representing the properties
which are known in such a state;

e each edge is labeled with an action name, and de-
notes the transition caused by the execution of the
corresponding action.

Observe that what the robot knows in the initial state
is the set of propositional formulae which are valid in
Sinit, 1.e. the set of propositional formulae which are
logically implied by p(sini:). Moreover, what the robot
knows after executing an ordinary action is the set of
propositional formulae which are logically implied by the
postconditions representing the effects of the action ex-
ecution, while what the robot knows after executing a
sensing action is the truth value of the sensed fluent, plus
the knowledge of the robot before executing the sensing
action.

In this way it can be shown that it is possible in each
state to verify whether an action can be executed (that
is, whether the preconditions are known by the robot)
by simply checking for the validity of the action pre-
condition. This correspondence between the notions of
robot’s knowledge (about propositional properties) and
propositional validity is exploited in the construction of
the transition graph.

Formally, TG(X) = (S,Ls,La), where S C S is the
set of states which includes s;,i, Lg is a function assign-
ing a finite set of propositional formulae to each state in
S, and L 4 is a partial function assigning a state to a pair
formed by a state and an action.

Let ¥ = (7,.A), where 7 is the set of static axioms
(T's), precondition axioms (I'p), and effect axioms (I'g),
and A = {p(sinit)} is the initial state description, be
the dynamic system specification. The transition graph
TG(Y) is computed by the algorithm shown in Fig. 1.

In order to compute the transition graph, we replace
each sensing action ay by two special actions a;{ and ay.

We denote by T'E the set of effect axioms I'g in which
those for the sensing action ay are replaced by:

kit O [af |kf kit O [a; k.

We also use only a finite number of 1nstances of the
frame axiom schemas. We denote by I‘IFR the set of
axioms

kp D [a} ke kp D [a; [ke

obtained by: (1) instantiating the frame axiom schemas
in I'pg for each propositional formula ¢ such that either
@(init) € I'r, or ky is in the postcondition of some effect
axiom in 'y (i.e., ¢ such that kp D [a]ky, or ¢, @
such that kT D [a,]ke Uk-yp in T'g); (2) replacing each
sensing action ay by the two special actions a}" and ay.

Finally, we add the axioms in the set F?F ptols.
Informally, the algorithm, starting from the initial
state s;nt, iteratively proceeds as follows. First, it finds
an action a which can be executed in the current state,
by identifying in the set I'p a precondition axiom for a
whose left-hand side is logically implied by the current

knowledge base. Then, it propagates the effects of the
action a, which again is based on checking whether the
left-hand side of each effect axiom for a in the set I'g is
logically implied by the properties holding in the current
state. In this way, the set of properties corresponding to
the effect of the execution of a in the current state is
computed. A new state (or two new states, if a is a
sensing action) is then generated, unless a state with
the same properties has already been created. This step
is repeated until all actions executable in the current
state have been considered. Then, a new current state
is chosen among those previously created and the main
iteration proceeds.

The transition graph is unique, that is, every order
of extraction of the states from the set S,ctive produces
the same set of assertions, up to the renaming of states.
Moreover, the algorithm terminates, that is, the condi-
tion Syetive = 0 is eventually reached, since the number
of states generated is bounded to the number of differ-
ent subsets of the set £ = {qlkp’ D [alkqg € T'g}, i.e.
2™ where n is the number of axioms in I'g. Finally, the
condition

(TsULg(s")) and (I's U Lg(s")) are logically equivalent

can be verified by a propositional validity check, as well
as the propositional logical implication

TsULs(s) =p

Next let us define the extension of a dynamic formula
in TG(X) wrt a valuation p as follows:

(kp), @ = {s€S8 |1, UL(s) =p}
(61 1)TG(E) = (6057 1(62),
(ﬂas)TG@) = 5—(0);°"
(@e);“® = {se€S|V¥s'(La(s,;a) =) D
XTG(E) (X) e ¢TG E))}

p = p
(nX.0); ¢ EC S| oram S E}

In fact, we are interested in closed formulae ¢, whose
extension in T'G(o) is independent of the valuation: each
such formula will be denoted simply by ¢7¢(>),

Given ¢ € L, we denote with d(¢) the formula ob-
tained from the negation normal form of ¢ by replacing
each occurrence of a subformula of the form [af]t, in
which ay is a sensing action symbol, with the formula
[a}L]@ZJ A la} i, and replacing each occurrence of a sub-
formula of the form (af)t, in which ay is a sensing action
symbol, with the formula (a7)¢ A (ay)9,

Formally the relationship between a knowledge base
Y and its transition graph is given by the following the-
orem.

Theorem 1 Let ¥ be a specification of a dynamic sys-
tem as above, and let ¢ be any closed dynamic formula in
L. Then, T = ¢(sinit) if and only if sijni € d(¢)TE®),

Observe that, being TG(X) essentially a finite “transi-
tion system” whose nodes represent sets of valid proposi-
tional formulae, it is immediate to modify model check-
ing algorithms for modal mu-calculus formulae for finite
transition systems [24; 3; 19], to verify whether s;,;; is
in the extension of a formula in TG(X), and hence, by
Theorem 1, to reason about actions in our setting.

5 Reasoning about actions in £

We illustrate the how the formalism proposed can be
used for various forms of reasoning about actions. Be-
low, we informally say that a formula “holds” in a state
if the formula is “known” in the robot’s corresponding
epistemic state.

Projection problem

We start by expressing the projection problem: “does
a proposition p hold after the execution of a given se-
quence of actions, say ai,as,as?” This can be checked
by verifying the following logical implication:

Y E [(a1)(az)(as)kp](sinit)

where (a;1)(a2)({as)kp expresses that the sequence of ac-
tions a1, as, az can indeed be executed and that it leads
to a state where p holds.

Planning

Let us now consider the planning problem: “is there a
sequence of actions that leads to a state where a given
goal pyoq holds?”. This can be expressed by

S | X kpgoar V' \/ (@) X](sinit) (2)
aE€Act

The dynamic formula on the right-hand side denotes the
following inductive property: either pgoq; holds in the
current state, or there is an action a that leads to a state
from which there exists a sequence of actions that leads
to a state where py,q; holds. Notice that, in the presence
of sensing actions, the planning process has to return a
conditional plan [17]. In fact, the presence of sensing
actions implies that if property (2) holds, then in each
model of ¥ there exists a sequence of actions, leading to
the goal, which is different in the different models.

It can be shown that in our setting a conditional plan
can be effectively returned by visiting TG(X) and intro-
ducing an if-then-else statement on the sensed condition
right after each sensing action. Notice that our formal-
ization guarantees that the existence of a plan can be
inferred if and only if there exists a constructive (condi-
tional) plan which achieves the goal. That is, unrealiz-
able plans are discarded a priori.

The planning problem can be more sophisticated than
what shown above. For example we may want to do
planning with archiving and maintenance goals: “is there
a sequence of actions which achieves a certain goal psgoa:
while another goal p,,g0a; is always satisfied?”. This can
be expressed by modifying the formula used above as
follows:

IJ'X- kpmgoal A (kpagoal \4 \/ <a>X)
a€Act

expressing the fact that, inductively, either both p.,g0a
and pggoqr hold in the current state, or pp,g0q; holds and
there is an action a leading to a state where there exists
a sequence achieving p,goq; While maintaining pimgoai-

Safeness, invariance, and liveness

Next we consider safeness properties. These in gen-
eral are properties that express that “something bad
can never happen”. For example, “it is not possible
to reach a state from which there exists no plan to get
the batteries charged”; in other words, in any reach-
able state the robot can formulate a plan to charge
its battery. In L, the existence of a plan to charge
the batteries can be expressed, as shown above, by:
bper = uX.kBttrChrgd V \/ ¢ 4.,(a)X. The fact that

this can always be done (a safeness property) is expressed

as
vX. gper A)\ [a]X.
a€Act

Invariance properties can be expressed in an analo-
gous way, since they can be seen as safeness properties:
the bad thing is the violation of the invariant. Liveness
properties, that in general express that “something good
is eventually achieved”, can also be captured. For ex-
ample, “a given job eventually comes to an end” can be
expressed as

pX.kJobEndedV (\/ (a)ktt) A(N [a]X)
ac€Act a€Act

Liveness and safeness conditions can be used together to
express complex properties as “whenever a job is started,
the job is also terminated”:

vX. [startjobly A /\ [a] X

acAct
where
p=wr.(\ @k)A(A laX)
acAct a€ActNa#endjob

Observe the use of ¢ to express the well-foundedness
of all sequences of actions not including endjob.

Programs
Finally, we introduce a notion of robot program in order
to enforce a control flow on actions. Robot programs are
not part of the basic action theory specifying the general
behavior of the robot; instead, they are used on top of
the action theory to introduce a notion of control on the
robot actions. This way to proceed mirrors the one used
in developing GoLOG [16].

We consider a simple programming language that al-
lows for building nondeterministic while-programs:

0 == mnoplaldi;d]| 01|02 |if ¢ thend; elseds |

while ¢ do ¢

where nop is a special instruction that does nothing, a
is the command requiring the execution of the action a,
“” is the sequential composition, “|” is nondeterministic

do - are the

choice, and if - then - else- and while -

classical if-then-else and while constructs. The semantics
of the various constructs is the usual one (see e.g. [21]),
except for atomic actions, whose semantics is given by
the basic action theory.

As in the case of GOLOG [16], formally programs are
not part of the formalism £. They are used to define
suitable macros that are translated into £ dynamic for-
mulae.

We illustrate this approach by showing how to express
the property “there exists a terminating execution of
program ¢ that terminates in a state where ¢ holds”,
which corresponds to the expression ds’.DO(4,s,s’) A
®(s) used in GOLOG computations [16]. We can cap-
ture the property by defining a £ dynamic formula
afterS (8, #) by induction on the structure of the program
as follows (we define (nop)¢ = [nop|¢ = ¢):

afterS (nop, §) = ¢
afterS(a,¢) = (a)¢
afterS(01;02,¢) =
afterS (81, afterS (42, ¢))
afterS (01|02, ¢) =
afterS(01,¢) V afterS(d2,d)
afterS(if ¢' then §; else s,) =
&' A afterS(61,0) V —d' A afterS(81,)
afterS (while ¢’ do §,) =
puX. ="' Ao V ¢ A afterS(5,X)

Notice that the formula afterS(d,¢) is particularly
meaningful if we assume that, at the various choice
points of the program, the robot can do the choice,
choosing the execution that eventually leads to termi-
nation in a state where ¢ holds (exactly as assumed by
GoLoG computations).

The expressive abilities of £ allow for the formaliza-
tion of a wide variety of program properties. As a further
example, the property “all executions of program § ter-
minate in states where ¢ holds”, can be expressed as
the £ formula afterA(d, ¢) defined as afterS (6, ¢) except
that the disjunction in the fourth equation is replaced by
a conjunction.’ Hence, the only difference between the
definitions of afterA(d, ¢) and afterS (6, ¢) is in the treat-
ment of the choice construct: in the case of afterA(d, ¢)
we require that, independently of the choices made, the
program terminates in a state satisfying ¢, while in the
case of afterA(d,¢) only one such choice has to do so.
That is, afterA(d, @) is especially meaningful if the robot
has no control on the choice points of the program, so
we require that the program “does the right thing” in-
dependently of the choices made.2 We also observe that
typical total correctness conditions, usually written as
[¢1]0]p=], are expressible by ¢; D afterA(d, ¢2). Instead,
partial correctness conditions (correctness for terminat-
ing executions only), usually written as {¢;}6{¢=}, are
expressible by ¢; D afterAw(d, ¢2), where afterAw (6, ¢)
is the formula obtained from afterA(d, ¢) replacing (a)¢

!Observe that (a)¢ = (a)ktt A [a]¢, since actions are as-
sumed to be deterministic.

*Notice that afterS(d,$) is expressible in PDL (leaving
aside the k operator), while afterA(d, ¢) is not.

in the first equation by [a]¢, and the least fixpoint u in
the last equation by the greatest fixpoint v.

6 Conclusions

In this paper we have shown a way to combine model
checking for a very expressive logic of programs with
propositional inference, in order to exploit model check-
ing techniques and systems for sophisticated forms of
reasoning about actions, including planning and reason-
ing about program executions. In particular, we have
applied such techniques in a framework which enables
for both representing rich dynamic systems (it allows
for dealing with sensing actions and incomplete infor-
mation) and efficiently verifying complex properties of
such systems (expressed in the language of the modal
mu-calculus).

The work presented is related to several proposals
in reasoning about actions. We already mentioned the
connection with GoLogG [16]. Moreover, in [15] a “va-
lidity /provability based GOLOG” has been developed,
which shares, in fact, some of the ideas behind our tran-
sition graph construction.

There are also some similarities with 4-like action lan-
guages (see e.g. [1; 10]; indeed, the semantics of A lan-
guages is based on a single transition function, and this
allows for building a single transition graph. States in
such graph are characterized by the formulae that are
true (vs. valid), while the initial state is replaced by a
set of possible initial states. Notably, model checking
techniques could be adopted in that setting as well [5].

Model checking is the basic reasoning technique used
in [4], where a process algebra is introduced to spec-
ify the behavior of the dynamic system, and a suitable
variant of modal mu-calculus is adopted as verification
formalism. Interestingly, programs (processes) in that
work have a somewhat different role, since they are used
for specifying basic behavior of the robot and are not
considered in the verification formalism.

References

[1] C. Baral and M. Gelfond. Representing concurrent
actions in extended logic programming. In Proc. of
IJCAI’93, pages 866—871, 1993.

[2] C. Baral and T. Son. Approximate reasoning about
actions in presence of sensing and incomplete infor-
mation. In Proc. of ILPS-97, 1997.

3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, and L. J. Hwang. Symbolic model checking:
10?° states and beyond. Information and Compu-
tation, 98:142-170, 1992.

[4] X. J. Chen and G. De Giacomo. Reasoning about
nondeterministic and concurrent actions: A process
algebra approach. Artif. Intell., 107:63-98, 1999.

[5] A. Cimatti, M. Roveri, and P. Traverso. Automatic
OBDD-based generation of universal plans in non-
deterministic domains. In Proc. of AAAI’98, pages
875-881, 1998.

6] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati.
Moving a robot: the KR&R approach at work. In
Proc. of KR’96, pages 198-209, 1996.

[7] G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati.
Planning with sensing for a mobile robot. In
Proceedings of the Fourth European Conference on
Planning (ECP’97), 1997.

[8] F. M. Donini, D. Nardi, and R. Rosati. Autoepis-
temic description logics. In Proc. of IJCAI’97, pages
136-141, 1997.

[9] E. A. Emerson. Automated temporal reasoning
about reactive systems. In Logics for Concurrency:
Structure versus Automata, number 1043 in Lecture
Notes in Computer Science, pages 41-101. Springer-
Verlag, 1996.

[10] E. Giunchiglia and V. Lifschitz. An action language
based on causal explanations: preliminary report.
In Proc. of AAAI’98, 1998.

[11] K. Golden and D. Weld. Representing sensing ac-
tions: the middle ground revisited. In Proc. of
KR’96, pages 174-185, 1996.

[12] C. Hoare. Communicating Sequential Processes.
Prentice Hall Int., London, 1985.

[13] D. Kozen and J. Tiuryn. Logics of programs.
In J. V. Leeuwen, editor, Handbook of Theoretical
Computer Science — Formal Models and Semantics,
pages 789-840. Elsevier, 1990.

[14] G. Lakemeyer and H. J. Levesque. AOL: a logic
of acting, sensing, knowing, and only knowing. In
Proc. of KR’98, pages 316-327. Morgan Kaufmann,
Los Altos, 1998.

[15] Y. Lesperance and D. Tremaine. A procedural
approach to belief update for agent programming.
Unpublished Manuscript, Department of Computer
Science York University, 1998.

[16] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and
R. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Program-
ming, 31:59-84, 1997.

[17] H. J. Levesque. What is planning in presence of

sensing? In Proc. of AAAI’96, pages 1139-1149.
AAAT Press/The MIT Press, 1996.

[18] J. Lobo, G. Mendez, and S. R. Taylor. Adding
knowledge to the action description language A. In
Proc. of AAAI’97, pages 454-459, 1997.

[19] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[20] M. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[21] H. R. Nielson and F. Nielson. Semantics with Ap-
plications. Wiley, 1992.

[22] R. Reiter. Knowledge in Action: Logical Foundation
for Describing and Implementing Dynamical Sys-
tems. 1998. In preparation.

[23] M. Shanahan. Solving the Frame Problem: A Math-
ematical Investigation of the Common Sense Law of
Inertia. The MIT Press, 1997.

[24] C. Stirling. Modal and temporal logics for processes.
In Logics for Concurrency: Structure versus Au-
tomata, number 1043 in Lecture Notes in Computer
Science, pages 149-237. Springer-Verlag, 1996.

