
Theoretical Computer Science 336 (2005) 33–56
www.elsevier.com/locate/tcs

Decidable containment of recursive queries

Diego Calvanesea,∗, Giuseppe De Giacomob, MosheY. Vardic
aFaculty of Computer Science, Free University of Bolzano/Bozen, Piazza Domenicani 3, I-39100 Bolzano, Italy
bDipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, 00198 Roma,

Italy
cDepartment of Computer Science, Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA

Abstract

One of the most important reasoning tasks on queries is checking containment, i.e., verifying
whether one query yields necessarily a subset of the result of another one.Query containment is crucial
in several contexts, such as query optimization, query reformulation, knowledge-base verification,
information integration, integrity checking, and cooperative answering. Containment is undecidable
in general for Datalog, the fundamental language for expressing recursive queries. On the other hand,
it is known that containment between monadic Datalog queries and between Datalog queries and
unions of conjunctive queries are decidable. It is also known that containment between unions of
conjunctive two-way regular path queries, which are queries used in the context of semistructured
data models containing a limited form of recursion in the form of transitive closure, is decidable. In
this paper, we combine the automata-theoretic techniques at the base of these two decidability results
to show that containment of Datalog in union of conjunctive two-way regular path queries is decidable
in 2EXPTIME. By sharpening a known lower bound result for containment of Datalog in union of
conjunctive queries we show also a matching lower bound.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Query containment; Semistructured data; Datalog; Regular path queries

∗ Corresponding author. Tel.: +390471016160; fax: +390471016009.
E-mail addresses:calvanese@inf.unibz.it(D. Calvanese),degiacomo@dis.uniroma1.it(G. De Giacomo),

vardi@cs.rice.edu(M.Y. Vardi)
URLs: http://www.inf.unibz.it/∼calvanese/, http://www.dis.uniroma1.it/∼degiacomo/, http://www.cs.rice.

edu/∼vardi/ .

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.031

http://www.elsevier.com/locate/tcs
mailto:calvanese@inf.unibz.it
mailto:degiacomo@dis.uniroma1.it
mailto:vardi@cs.rice.edu
http://www.inf.unibz.it/~calvanese/
http://www.dis.uniroma1.it/~degiacomo/
http://www.cs.rice.edu/~vardi/
http://www.cs.rice.edu/~vardi/


34 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

1. Introduction

Querying is the fundamental mechanism for extracting information from a data base
(DB). The basic reasoning task associated to querying is query answering, which amounts
to computing the information to be returned as result of a query. There are, however, other
reasoning services involving queries that data and knowledge representation systems should
support. One of the most important is checking containment, i.e., verifying whether one
query yields necessarily a subset of the result of another one. Query containment, called
subsumptionin AI [9,7], is crucial in several contexts, such as query optimization, query
reformulation, knowledge-baseverification, information integration, integrity checking, and
cooperative answering; cf. [5,11,14,19,27,30,32,37,38,40,42]. Thus, it is fair to describe
query containment as one of the most fundamental (DB) reasoning tasks.
Needless to say, query containment is undecidable if we do not limit the expressive power

of the query language; it is clearly undecidable for first-order logic. In fact, in knowledge
representation suitable query languages have been designed for retaining decidability. The
same is true in (DBs), where the notion ofconjunctive queryis the basic one in the investi-
gation of reasoning about queries [18]. A conjunctive query (CQ) is simply a conjunction
of atoms, where each atom is built out from relation symbols and (existentially quanti-
fied) variables. Relationally, a CQ is a project-join query. By adding union and recursion
to conjunctive queries, one getsDatalog, the language of logic programs (known also as
Horn-clause programs) without function symbols [3], which is essentially a fragment of
fixpoint logic [17,41]. Datalog consists, in a pure way, only of the most fundamental el-
ements of relational queries: join, projection, union, and recursion. With respect to query
containment, CQs and Datalog span the spectrum in terms of computational complexity.
In [18] it is shown that CQ containment is equivalent to CQ evaluation (NP-complete). (For
some extensions, see [6,35,45,49].) On the other hand, it is shown in [46] that containment
of Datalog queries is undecidable; the proof is by reduction from the containment problem
for context-free grammars.
Themost powerful query-containment results for Datalog are given in [21,22,44]. In [22]

it is pointed out that tree-automata techniques can be used to prove the decidability of query
containment formonadicDatalog, where rule heads use a single variable (which means
that intermediate result of the query, as well as the final one, are sets of data elements). The
other results apply to the relationship between Datalog and non-recursive Datalog (non-
recursive Datalog queries are in essence unions of conjunctive queries). In [44] it is shown
that checking containment of non-recursive Datalog queries in Datalog queries is decidable
in exponential time. In [21] (see also [49]) it is shown, using tree-automata techniques,
that containment of Datalog queries in non-recursive Datalog queries is decidable in triply
exponential time.When the non-recursive query is represented, via unfolding, as a union of
CQs, the complexity is doubly exponential, rather than triple exponential. (These bounds
are known to be optimal, see [20,38] for studies of special cases and some extensions.)
In this paper, we address the problem of query containment in the context of semistruc-

tured datamodels. Our goal is to capture the essential features found inDBs, both traditional
and semistructured, as well as knowledge bases in semantic networks, conceptual graphs,
and description logics. For this purpose, we conceive a DB as an edge-labeled graph, where
nodes represent objects, and a labeled edge between two nodes represents the fact that the



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 35

binary relation denotedby the label holds for the objects.Thismodel captures data expressed
using XML-like languages[12,13] and is accepted as a standard model for semistructured
data [10,28].
In this framework, a basic querying mechanism is the one ofregular path queries

(RPQ) [1,4,10], which ask for all pairs of objects that are connected by a path conforming
to a regular expression. Regular path queries are extremely useful for expressing complex
navigations in a graph. In particular, union and transitive closure are crucial when we do
not have a complete knowledge of the structure of the DB. In our regular path queries, we
include also theinverseoperator, which enables us to navigate edges backwards [10,11],
for example, from a child to its parent.We denote these queries by 2RPQs (two-way regular
path queries). Using 2RPQs as the basic querying mechanism, one can constructcon-
junctive two-way regular path queries(C2RPQs), which enables us to perform joins and
projections over 2RPQs. C2RPQs are the basic building blocks for querying semistruc-
tured data [1,29,40]. The containment problem for C2RPQs (actually for unions of such
C2RPQs) was studied in [15] (see also [29]), where it was shown, using two-way automata,
to be EXPSPACE-complete.
The notable fact about the decidability of containment for C2RPQs is that C2RPQs are

a fragment of recursive Datalog, due to the transitive closure operator. Thus, the result
in [15,29] is the first decidability result for containment of non-monadic recursive Data-
log queries. The fact that automata-theoretic techniques are used both in [21] and in [15]
suggests that perhaps the two decidability results can be combined. We show here that
this is indeed the case by proving the decidability of the containment of Datalog queries
in union of C2RPQs (which, implies the known decidability result for containment of
union of C2RPQs). The automata-theoretic techniques combine tree automata with two-
way automata; we use alternating two-way tree automata [47]. The upper bound is doubly
exponential time, just as in [21], which we show to be optimal.
The rest of the paper is organized as follows. In Section 2, we present the data model and

query languages for semistructured data we adopt in this paper. In Section 3, we provide
somepreliminary results on the characterization of containment ofDatalogqueries in unions
of conjunctive queries. In Section 4, we introduce two-way alternating tree automata, which
are used in Section 5 to establish the upper bound for containment of Datalog in unions of
C2RPQs. In Section 6 we show amatching lower bound. Finally, in Section 7, we conclude
the paper by discussing the impact of our results on view-based query processing.

2. DBs and queries

We consider asemistructuredDB G as an edge-labeled graph(D, E), whereD is the set
of nodes, andE is the set of edges labeled with elements of an alphabet�.A node represents
an object, and an edge between nodesd1 andd2 labelede, denotede(d1, d2), represents the
fact that the binary relatione holds for the pair(d1, d2).
The basic querying mechanism on a DB is that ofregular path queries(RPQs). An RPQ

E is expressed as a regular expression or a finite automaton, and computes the set of pairs
of nodes of the DB connected by a path that conforms to the regular languageL(E) defined
byE. We consider unions of conjunctive two-way regular path queries [15], which extend



36 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

regular path queries with the possibility to traverse edges backward, with conjunctions and
variables, and with union.
Formally, Let� be a set of binary relation symbols, and let�± = � ∪ �−, with �− =

{e−|e ∈ �}. Intuitively, e− denotes the inverse of the binary relatione. If r ∈ �±, then we
user− to mean theinverseof the relationr, i.e., if r is e, thenr− is e−, and ifr is e−, then
r− is e.
Two-way regular path queries(2RPQs) are expressed by means of regular expressions

or finite word automata over�±. Thus, in contrast with RPQs, 2RPQs may use also the
inversee− of e, for eache ∈ �. When evaluated over a DBG, a 2RPQE computes the set
E(G) of pairs of nodes(d0, dq) such thatr1(d0, d1), r2(d1, d2), . . . , rq(dq−1, dq) hold inG
andr1r2 · · · rq is in the regular languageL(E) defined byE. Observe that, whenq = 0, we
have thatr1r2 · · · rq = ε andd0 = dq .
Conjunctive two-way regular path queries(C2RPQs) are conjunctions of atoms, where

each atom specifies that one 2RPQ holds between two variables. More precisely a C2RPQ
� of arity n is a formula of the form

Q(x1, . . . , xn) ← E1(y1, y
′
1), . . . , Em(ym, y

′
m),

wherex1, . . . , xn, y1, y′1, . . . , ym, y′m range over a set{u1, ..., uk} of variables andE1, . . . ,

Em are 2RPQs. The variablesx1, . . . , xn are calleddistinguished variables. Theanswer
set�(G) to a C2RPQ� over a DBG = (D, E) is the set of tuples(d1, . . . , dn) of nodes of
G such that there is a total mapping� from {u1, . . . , uk} to D with �(xi) = di for every
distinguished variablexi of �, and(�(y),�(y′)) ∈ E(G) for every conjunctE(y, y′) in �.
When the arity of� is 0, then it is viewed as a Boolean query; the answer set is either the
empty set (corresponding tofalse) or the set containing the 0-ary tuples (corresponding to
true).
Finally, aunion of conjunctive two-way regular path queriesof arityn has the form∪i�i ,

where each�i is a C2RPQ of arityn. The answer set to a union of C2RPQs� = ∪i�i
over a DBG is simply�(G) = ∪i�i (G). Notice that traditionalconjunctive queries(resp.,
unions of conjunctive queries) (cf.[3]) are just a special case of C2RPQs (resp., unions of
C2RPQs) in which each 2RPQ in an atom is simply a relation symbol.
A Datalog program consists of a set of Horn rules. A(Horn) rule is a first-order material

implication between a body and a head, where the head consists of a single atom, and the
body consists of a conjunction of atoms. Each atom is a formula of the formR(x1, . . . , xn)

whereR is a predicate symbol andx1, . . . , xn are variables. All variables are implicitly
universally quantified outside the rule, and all variables appearing in the head are among
the variables in the body. The predicates that occur in heads of rules are calledintensional
(IDB) predicates. The rest of the predicates are calledextensional(EDB) predicates. Here,
we consider Datalog programs that are evaluated over a semistructured DB. Hence, when
not explicitly noted otherwise, we assume that the EDB predicates are among the predicates
in �, which are all binary. Observe, however, that IDB predicates, which are not in�, may
be of arbitrary arity.
We define now the answer set to aDatalog program�with goal predicateQ over a DBG.

LetD be a collection of facts about the extensional and intensional predicates of�. Then,



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 37

the facts that can be deduced fromD by applying a rule

R(x1, . . . , xn) ← R1(y1), . . . , Rm(ym)

of � are all facts of the formR(d1, . . . , dn) such thatd1, . . . , dn are nodes of� and there
is a substitution of the variables in the body of the rule with nodes of� that substitutesxi
with di and such that, after the substitution, all atoms of the body are among the facts inD.
We denote by��(D) the collection of facts obtained as the union ofD with all facts that
can be deduced fromD by applying one of the rules of�. For a DBG, let

D0 = G,
Di+1 = ��(Di ).

Then, for an IDB predicateQ of �, theanswer setQ∞
� (G) to the Datalog program� with

goal predicateQ over the DBG is the collection of facts aboutQ inDh, whereh is the least
number such thatDh = Dh+1. Note that such anh always exists[3].
We say that a Datalog program� with goal predicateQ is containedin a union of

C2RPQs� if Q∞
� (G) ⊆ �(G) for every DBG.

3. Containment of Datalog in unions of conjunctive queries

A containmentmappingfromaconjunctivequery� to aconjunctivequery� is a renaming
of variables subject to the following constraints: (a) every distinguished variable must map
to itself, and (b) after renaming, every literal in� must be among the literals of�. It
is well known that containment of conjunctive queries can be characterized in terms of
containment mappings (cf. [3]). In fact this characterization has been extended in [45] to
unions of conjunctive queries, and holds also for infinite unions.

Theorem 1(Sagiv andYannakakis[45] ). Let	 = ∪i�i and
 = ∪i�i be (possibly infi-
nite) unions of conjunctive queries. Then	 is contained in
 (i.e.,	(G) ⊆ 
(G) for every
DB G) if and only if for each�i there is a�j such that�i is contained in�j , i.e., there is
a containment mapping from�j to�i .

As for containment of Datalog in (unions) of conjunctive queries, it is known (cf.[39,43])
that the relation defined by an IDB predicateQ in a Datalog program�, i.e.,Q∞

� (G), can be
defined by a possiblyinfiniteunion of conjunctive queries. That is, for each IDB predicate
Q there is an infinite sequence�0,�1, . . ., of conjunctive queries such that, for every DB
G, we haveQ∞

� (G) = ⋃∞
i=0�i (G). The�i ’s are called theexpansionsof Q. In [21],

expansions of a Datalog program� are described in terms of so-calledexpansion trees,
which are finite trees in which each node is labeled with an instance of a rule of�. We call
the head and the body of a node, respectively, the head and the body of the rule labeling the
node. In an expansion tree for an IDB predicateQ, the root is labeled by a rule whose head
is aQ-atom. If a nodeg is labeled by a rule instance

R(t) ← R1(t1), . . . , Rm(tm),



38 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

where the IDB atoms in the body of the rule areRi1(t
i1), . . . , Ri�(t

i� ), theng has children
g1, . . . , g� labeledwith rule instanceswhoseheadsare, respectively, theatomsRi1(t

i1), . . . ,

Ri�(t
i� ). In particular, if all atoms in the body ofg are EDB atoms, theng must be a leaf.

The query corresponding to an expansion tree is the conjunction of all EDB atoms in the
nodes of the tree, with the variables in the head of the root as the distinguished variables.
Thus, we can view an expansion tree� as a conjunctive query, and extend, in the obvious
way, the notion of containment mapping also to mappings from a conjunctive query to an
expansion tree. Lettrees(Q,�) denote the set of expansion trees for an IDB predicateQ

in �. (Note thattrees(Q,�) is, in general, an infinite set.) Then for every DBG, we have

Q∞
� (G) = ⋃

�∈trees(Q,�)

�(G).

It follows that� is contained in a conjunctive query� if there is a containment mapping
from� to each expansion tree� in trees(Q,�).
Unfortunately, the number of variables, and hence the number of node labels in expansion

trees is not bounded, and thus expansion trees are not directly suited for an automata-
theoretic approach to containment. In[21], the notion ofproof treeis introduced, with the
idea of describing expansion trees using a finite number of labels. The number of labels is
bound by bounding the set of variables that can occur in labels of nodes in the tree. Ifr is a
rule of a Datalog program�, then letnum_var(r) be the number of variables occurring in
IDB atoms inr (head or body). Letnum_var(�) be twice the maximum ofnum_var(r) for
all rulesr in �. Let var(�) be the set{x1, . . . , xnum_var(�)}. A proof treefor � is simply
an expansion tree for� all of whose variables are fromvar(�). We denote the set of proof
trees for a predicateQ of a Datalog program� by p_trees(Q,�).
A proof tree represents an expansion tree where variables are re-used. In other words,

the same variable is used to represent a set of distinct variables in the expansion tree.
Intuitively, to reconstruct an expansion tree for a given proof tree, we need to distinguish
among occurrences of variables. Letg1 andg2 be nodes in a proof tree�, with a lowest
common ancestorg0, and letx1 andx2 be occurrences, ing1 andg2, respectively, of a
variablex. We say thatx1 andx2 areconnectedin � if the head of every node, except
perhaps forg0, on the simple path connectingg1 andg2 has an occurrence ofx. (Notice that
this means thatx also occurs in the body ofg0.) We say that an occurrencex of a variable
x in � is adistinguished occurrenceif it is connected to an occurrence ofx in the head of
the root of�.
We want to define containment mappings from conjunctive queries to proof trees such

that there is a containment mapping from a conjunctive query to a proof tree if and only if
there is a containment mapping from the conjunctive query to the expansion corresponding
to the proof tree. To do so, we need to force a variable in the conjunctive query to map to
a unique variable in the expansion corresponding to the proof tree. Astrong containment
mappingfrom a conjunctive query� to a proof tree� is a containment mappingh from�
to � with the following properties:
• h maps distinguished occurrences in� to distinguished occurrences in�, and
• if x1 andx2 are two occurrences of a variablex in �, then the occurrencesh(x1) and
h(x2) in � are connected.



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 39

The following characterization of containment of a union of conjunctive queries in a
Datalog program was shown in[21].

Theorem 2(Chaudhuri and Vardi[21] ). Let� be a Datalog program with goal predicate
Q, and let	 = ∪i�i be a (possibly infinite) union of conjunctive queries over EDB
predicates. Then� is contained in	 if and only if for every proof tree� ∈ p_trees(Q,�)

there is a strong containment mapping from some�i to �.

Theabove theorem is shown in[21] for finiteunionsof conjunctive queries only.However,
it is easy to see that, because of Theorem1, the proof carries through also for infinite unions.
Notice that, together with Theorems 1 and 2 by itself does not provide decidability

of containment of Datalog in (possibly infinite) unions of conjunctive queries, since one
needs a method to check the existence of a strong containment mapping. Undecidability
of containment between Datalog queries [46] shows that such a method will not exist in
general for (infinite) unions that are expansions of Datalog programs. However, in [21] the
above result is exploited to show that containment of a Datalog query in a finite union of
conjunctive queries is in 2EXPTIME (and in fact 2EXPTIME-complete).
To exploit Theorem 2 for containment of Datalog queries in union of C2RPQs, we need

to characterize the problem in terms of containment between Datalog and (infinite) unions
of conjunctive queries. Anexpansionof a C2RPQ

Q(x1, . . . , xn) ← E1(y1, y
′
1), . . . , Em(ym, y

′
m)

is a CQ of the form

Q(x1, . . . , xn) ← r11(y1, z
1
1), r

2
1(z

1
1, z

2
1), . . . , r

n1
1 (z

n1−1
1 , y′1),

...

r1m(ym, z
1
m), r

2
m(z

1
m, z

2
m), . . . , r

nm
m (z

nm−1
m , y′m),

where, for eachi ∈ {1, . . . , m}, we have thatni �0, thatr1i · · · rnii ∈ L(Ei), and that all

variableszji arepairwisedistinct.Observe that,whenni = 0,wehave thatr1i · · · rnii = ε, and

r1i (yi, z
1
i ), r

2
i (z

1
i , z

2
i ), . . . , r

ni
i (z

ni−1
i , y′i ) becomes simplyyi = y′i . Notice that a C2RPQ

has in general many expansions, and that, due to transitive closure, the number of such
expansions may be infinite.
The following lemma is an easy consequence ofTheorem2andof the semantics of unions

of C2RPQs.

Lemma 3. Let � be a Datalog program with goal predicateQ, and let� = ∪i�i be
a finite union of C2RPQs. Then� is contained in� if and only if for every proof tree
� ∈ p_trees(Q,�) there is a C2RPQ�i of� and an expansion� of �i such that there is a
strong containment mapping from� to �.

In the following, we show how to check this condition using tree automata. Unlike[21],
where standard (one-way) non-deterministic tree automata are adopted, we need to resort
to two-way alternating tree automata. This is due to the presence of inverses of relations



40 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

in 2RPQs, and due to the fact that in 2RPQs (and hence in C2RPQs) concatenation and
transitive closure introduce implicit variables that need to be dealt with.

4. Two-way alternating tree automata

We present the basic notions on automata used in the rest of the paper. We assume
familiarity with the standard notions of (one-way) word automata (1NFAs)[34] and (one-
way) non-deterministic treeautomata (1NTAs) [31], and concentrate on two-wayalternating
tree automata (2ATAs).
Trees are represented as prefix closed finite sets of words overN+ (the set of positive

natural numbers). Formally, atreeT is a finite subset ofN+, such that ifg·c ∈ T , where
g ∈ N∗+ andc ∈ N+, then alsog ∈ T and if c > 1 then alsog·(c − 1) ∈ T . The elements
of T are callednodes, and for everyg ∈ T , the nodesg·c ∈ T , with c ∈ N+, are the
successorsof g. By convention we takeg·0 = g, andg·c·(−1) = g. By definition, the
empty sequenceε is a member of every tree, and is called theroot. Note thatε · −1 is
undefined. Thebranching degreed(g) of a nodeg denotes the number of successors of
g. If the branching degree of all nodes of a tree is bounded byk, we say that the tree has
branching degreek. Given a finite alphabet�, a�-labeled tree� is a pair(T , V ), whereT
is a tree andV : T → � maps each node ofT to an element of�.�-labeled trees are often
referred to astrees, and if� = (T , V ) is a (labeled) tree andg is a node ofT , we use�(g)
to denoteV (g).
Two-way alternating tree automata (2ATAs) [22,47], are a generalization of standard non-

deterministic top-down tree automata (1NTAs) [25,48] with both upward moves and with
alternation. LetB(I ) be the set of positive Boolean formulae overI , built inductively by
applying∧ and∨ starting fromtrue, false, and elements ofI . For a setJ ⊆ I and a formula
� ∈ B(I ), we say thatJ satisfies� if and only if, assigningtrue to the elements inJ and
false to those inI \ J , makes� true. For a positive integerk, let [k] = {−1,0,1, . . . , k}.
A two-way alternating tree automaton(2ATA) over a finite alphabet� running over trees
with branching degreek, is a tupleA = (�, S, 
, s0, F ), whereS is a finite set of states,

 : S×� → B([k]×S) is the transition function,s0 ∈ S is the initial state, andF ⊆ S is the
set of final states. The transition function maps a states ∈ S and an input letter� ∈ � to a
positive Boolean formula� over[k]×S. Since� can bewritten in conjunctive normal form,
in the following we view it as a set of conjunctions. Intuitively, when the 2ATA performs
a transition, it non-deterministically chooses one of the conjunctions� in �, and then, for
each pair(c, s′) appearing in� a new copy of the automaton starts in states′ and moves to
the direction suggested byc.
A run � of a 2ATA A over a labeled tree� = (T , V ) is a labeled tree(T�, V�) in which

every node is labeled by an element ofT × S. A nodef of T� labeled by(g, s) describes
a copy ofA that is in the states and reads the nodeg of �. The labels of adjacent nodes
have to satisfy the transition function ofA. Formally, a run(T�, V�) is a (T × S)-labeled
tree satisfying:

(1) ε ∈ T� andV�(ε) = (ε, s0).
(2) Letf ∈ T�, withV�(f ) = (g, s) and
(s, V (g)) = �. Then there is a (possibly empty)



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 41

setC = {(c1, s1), . . . , (cn, sn)} ⊆ [k] × S such that:
• C satisfies� and
• for all i ∈ {1, . . . , n}, wehave thatf ·i ∈ T�,g·ci is defined, andV�(f ·i) = (g·ci, si).

A run � = (T�, Vnu) on a tree� isacceptingif, whenever a leaf ofT� is labeled by(g, s),
then s ∈ F . A acceptsa labeled tree� if it has an accepting run on�. The set of trees
accepted byA is denotedT (A). Thenon-emptinessproblem for tree automata consists in
deciding, given a tree automatonA, whetherT (A) is non-empty.
As shown in[22], 2ATAs can be converted to complementary 1NTAs with only a single

exponential blowup. Moreover, it is straightforward to see that one can construct a 2ATA
of polynomial size accepting the finite union of the languages accepted byn 2ATAs.

Proposition 4 (Cosmadakis et al.[22] ). Given a 2ATAA over an alphabet�, there is a
1NTAA of size exponential in the size ofA such thatA accepts a�-labeled tree� if and
only if � is rejected byA.

Proposition 5. Givenn 2ATAsA1, . . . ,An over an alphabet�, there is a 2ATAA∪ of size
linear in the sum of the sizes ofA1, . . . ,An such thatT (A∪) = T (A1) ∪ · · · ∪ T (An).

We make also use of the following standard results for 1NTAs.

Proposition 6 (Costich and Medvedev[23] ). Given 1NTAsA1 andA2 over an alphabet
�, there is a 1NTAA∩ whose size is the product of the sizes ofA1 and A2 such that
T (A∩) = T (A1) ∩ T (A2).

Proposition 7 (Doner[25] , Thatcher andWright[48] ). The non-emptiness problem for
1NTAs is decidable in polynomial time.

In fact, the non-emptiness problem for 1NTAs is decidable in linear time, see[8,26]

5. Containment of Datalog in unions of C2RPQs

The main feature of proof trees is the fact that the number of possible labels is finite; it
is actually exponential in the size of�. Because the set of labels is finite, the set of proof
treesp_trees(Q,�), for an IDB predicateQ in a program�, can be described by a tree
automaton.

Theorem 8(Chaudhuri and Vardi[21] ). Let� be a Datalog program with a goal predi-
cateQ. Then there is a 1NTAAp_trees

Q,� ,whose size is exponential in the size of�, such that

T (Ap_trees
Q,� ) = p_trees(Q,�).

The automatonAp_trees
Q,� = (�, I ∪ {accept}, IQ, 
, {accept}), analogous to the one de-

fined in[21], is as follows.
The state set is the setI of all IDB atomswith variables amongvar(�), plus an accepting

state.Thestart-state setIQ is theset of all atomsQ(s),where thevariablesofsare invar(�).



42 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

The alphabet� is the setR of instances of rules of� overvar(�). The transition function

 is constructed as follows. Let� be the body of a rule instance inR

R(t) ← R1(t1), . . . , Rm(tm)

• If the IDB atoms in� areRi1(t
i1), . . . , Ri�(t

i� ), then there is a transition1

〈1, Ri1(t
i1)〉 ∧ · · · ∧ 〈�, Ri�(t

i� )〉 ∈ 
(R(t), (R(t)← �))

• If all atoms in� are EDB atoms, then there is a transition

〈0,accept〉 ∈ 
(R(t), (R(t)← �))

It is easy to see that the number of states and transitions inAp_trees
Q,� is exponential in the

size of�.
We now show that strong containment of proof trees in a C2RPQ can be checked by tree

automata as well. Let� be a Datalog program with (binary) EDB predicates in� and with
goal predicateQ, and let� be a C2RPQ over�± of the same arity asQ. We describe the
construction of a 2ATAA�

Q,� that accepts all proof trees� in p_trees(Q,�) such that there
is an expansion� of � and a strong containment mapping from� to �.
We view � as a set of atomsE(x, y), whereE is a 1NFAE = (�±, SE, sE, 
E, FE),

with sE ∈ SE andFE ⊆ SE , and where, w.l.o.g.,
E does not containε-transitions. Also,
w.l.o.g., we assume that for two distinct atomsE1(x1, y1) andE2(x2, y2), E1 andE2 are
distinct automata with disjoint sets of states, i.e.,SE1 ∩ SE2 = ∅. For a 1NFAE, we use
EF
s to denote the 1NFA identical toE, except thats ∈ SE is the initial state ofEF

s , and
F ⊆ SE is the set of final states ofEF

s . WhenF is a singleton, we may omit set brackets.
LetV� be the set of variables appearing in theC2RPQ�, andV +� = {v̄1E, v̄2E |E(x, y) ∈ �},

i.e., for each 1NFAE(x, y) ∈ �, V +� contains two special variablesv̄1E andv̄2E . We denote
with B the collection of all sets� of atoms, where� contains, for each atomE(x, y) ∈ �,
at most one atomEF

s (x
′, y′), for somes ∈ SE andF ⊆ SE , with x′ eitherx or v̄1E and

y′ eithery or v̄2E . Notice that the size ofB is exponential in the size of�. Indeed, letk be
the number of atoms in� and letm be an upper bound on the number of states of each
1NFA in �. All possible variants of a 1NFA obtained by changing the initial state and/or
final states arem · 2m. Hence, the number of possible sets of 1NFAs of at mostk elements
is (m · 2m)k = 2O(m·k).
The automatonA�

Q,� is (�, S ∪ {accept}, SQ, 
, {accept}).
• The alphabet� is again the setR of instances of rules of� overvar(�).
• The state setS is the setI × B × 2V�×var(�) × 2V

+
� ×var(�). Recall thatI is the set

of all IDB atoms with variables amongvar(�). The second component represents the
collection of automata accepting sequences of atoms that have to be mapped to atoms
in the tree� accepted byA�

Q,�, and the third and fourth components contain the set of
partial mappings respectively fromV� andV +� to var(�).

• The start-state setSQ consists of all tuples(Q(s), �,M�,s,∅), where the variables ofs
are invar(�) andM�,s is a mapping of the distinguished variables of� into the variables
of s.

1 For uniformity, we use the notation of 2ATAs to denote the transitions of 1NTAs.



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 43

The transition function
 of A�
Q,� is constructed as follows. Let� be the body of a rule

instance inR
R(t)← R1(t1), . . . , Rm(tm)

(1) There is an “atom mapping” transition

〈0, (R(t),�′,M,M ′+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

if there is an EDB atome(a, b) amongR1(t1), . . . , Rm(tm) and if�
′ coincides with�,

except that one elementEF
s (x, y) in � is replaced in�′ by EF

s′ (x
′, y), and one of the

following holds:
• s′ ∈ 
E(s, e) and
◦ if x ∈ V� (i.e.,x is a variable of�),M mapsx to a, andM+ does not map̄v1E ,
thenx′ = v̄1E andM ′+ = M+ ∪ {(v̄1E, b)};

◦ if x = v̄1E ∈ V +� (i.e., x is the first special variable for the 1NFAE) and

(v̄1E, a) ∈ M+, thenx′ = x = v̄1E , andM
′+ = M+ \ {(v̄1E, a)} ∪ {(v̄1E, b)};• s′ ∈ 
E(I, e−) and

◦ if x ∈ V� (i.e.,x is a variable of�),M mapsx to b, andM+ does not map̄v1E ,
thenx′ = v̄1E andM ′+ = M+ ∪ {(v̄1E, a)};

◦ if x = v̄1E ∈ V +� (i.e., x is the first special variable for the 1NFAE) and

(v̄1E, b) ∈ M+, thenx′ = x = v̄1E , andM
′+ = M+ \ {(v̄1E, b)} ∪ {(v̄1E, a)}.

Intuitively, an “atommapping” transition maps the next atom read by some 1NFA
in � to some EDB atom in�, and modifiesM+ accordingly. Note that the variable
x (either a variable ofV� or the special variablēv1E) must already be mapped
(respectively, byM orM+) to some variable in the current node of�.

(2) There is a “splitting” transition

〈0, (R(t),�′,M,M ′+)〉 ∧ 〈0, (R(t),�′′,M,M ′′+)〉
∈ 
((R(t),�,M,M+), (R(t)← �))

if the following hold:
• M ′+ andM ′′+ coincidewithM+, except for the changes described in the following point;
• � canbepartitioned into�1,�2, and�3;moreover�

′ = �1∪�′3 and�
′′ = �2∪�′′3, where

�′3 and�
′′
3 are sets of elements that consist of one element for each elementEF

s (x, y) in
�3, obtained as follows: for some states

′ ofE and some variablea ∈ var(�) appearing
in R(t)← �, one of the following holds:
◦ �′3 contains the elementEs′

s (x, v̄
2
E), �′′3 contains the elementEF

s′ (v̄
1
E, y), M

′+
(re-)mapsv̄2E to a, andM ′′+ (re-)mapsv̄1E to a;

◦ �′3 contains the elementEF
s′ (v̄

1
E, y), �′′3 contains the elementEs′

s (x, v̄
2
E), M

′+
(re-)mapsv̄1E to a, andM ′′+ (re-)mapsv̄2E to a;

• �′ and�′′ can share a variable inV� only if this variable is in the domain ofM. (Notice
that two occurrences of a special variable inV +� shared by�′ and�′′ are not related to
each other.)

A “splitting” transition partitions the atoms in� into two parts. The goal is to enable the
two parts to be manipulated separately. For example, one part may correspond to those



44 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

atoms that are intended to be “moved” together to an adjacent node in a future transition,
while the other part may correspond to those atoms that are meant to stay together in the
current node for further processing, e.g., by further splitting or by mapping to EDB atoms.
During splitting, some atoms in� may be actually split into two subatoms. The mappings
M andM+ have to “bind” together variables that are in common to the two conjuncts of
the transition.
(3) There is a “downward moving” transition

〈j, (Rij (t
ij ),�,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

if j ∈ {1, . . . , �}, where� is the number of IDB atoms in� andRij (t
ij ) is thej th IDB

atom, and if for all variables that occur in� and that are in the domain of eitherM or
M+, their image is int ij .

A “downward moving” transition moves to a successor node, and is intended to be applied
whenever no next atom can be mapped and no further splitting is possible. Moving is
possible only if variables that are both in atoms still to be mapped (and thus in�) and have
already been mapped (and thus are in the domain of eitherM orM+) can be propagated
through the head of the rule to which the automaton moves.
(4) There is an “upward moving” transition

〈−1, (R′(t ′),�,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

if R′(t ′) is the head of some rule instance and if for all variables that occur in� and
that are in the domain of eitherM orM+, their image is int .

An “upwardmoving” transition is similar to a “downwardmoving” one, except that it moves
to the predecessor node. Notice that, after an “upward moving” transition, the automaton
will be able to perform further moves (and hence to eventually accept) only if the head of
the rule instance in the predecessor node isR′(t ′).
(5) There is an “equality checking” transition

〈0, (R(t),�′,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

if the following hold:
• � can be partitioned into�0 and�′;
• for all atomsEF

s (x, y) ∈ �0 we have that
◦ s ∈ F ,
◦ (x, a) and(y, a) are inM ∪M+, for some variablea in � or t , i.e., bothx and
y are in the domain ofM or ofM+ and they are mapped to the same variablea;

An “equality checking” transition gets rid of those elements in� all of whose atoms have
already beenmapped to atoms in�.While doing so, it checks thatM andM+ are compatible
with the equalities induced by such atoms.
(6) There is a “mapping extending” transition

〈0, (R(t),�,M ′,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

if M ′ is a partial mapping that extendsM.



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 45

A “mapping extending” transition adds some variables to the mappingM. This may be
necessary to be able to apply some other transition that requires certain variables to appear
inM.
(7) There is a “final” transition

〈0,accept〉 ∈ 
((R(t),∅,M,M+), (R(t)← �)).

A “final” transition moves to the accepting state whenever there are no further atoms
in � that have to be processed.

It is easy to see that the number of states and transitions inA�
Q,� is exponential in the

size of� and�. The following two basic lemmas establish the correctness of the above
construction.

Lemma 9. Let � be a proof tree in p_trees(Q,�). If there is an expansion� of � and a
strong containment mappingh from� to �, then� is accepted byA�

Q,�.

Proof. We prove acceptance by showing the existence of an accepting run� of A�
Q,�. We

view the expansion� of � as a set of sequences of atoms; for each atomE(x, y) in the body
of �, � contains one sequence of atoms

�E = r1(z0, z1), r2(z1, z2), . . . , rn(zn−1, zn)

with z0 = x, zn = y, andr1 · · · rn ∈ L(E).
Besides the accepting run� we make use of a treeW , with the same set of nodes as�, in

which each node is labeled by a set of sequences of atoms of�. More precisely, for each
nodef , eachw ∈ W(f ) is a (possibly empty) subsequence of some sequence�E in �,
representing those atoms in�E that, whenA�

Q,� is at nodef of the run, have not already
been mapped to atoms in�. For the rootε we have thatW(ε) = �.
Let f be a node of the run� with �(f ) = (g, (R(t),�,M,M+)), whereg is a node

of � and�(g) = (R(t) ← �). We say thatW(f ) is compatiblewith � if it consists of
sequences of atoms, one sequencew = ru(zu−1, zu), ru+1(zu, zu+1), . . . , rv(zv−1, zv) for
each atomEF

s (x
′, y′) in �, wherew is a contiguous subsequence of the sequence�E =

r1(z0, z1), r2(z1, z2), . . . , rn(zn−1, zn) in � corresponding to the atomE(x, y) in �, and
we have that
• ru · · · rv ∈ L(EF

s );
• u > 1 iff x′ = v̄1E , and ifu > 1 then(v̄1E, h(z

u−1)) ∈ M+;
• v < n iff y′ = v̄2E , and ifv < n then(v̄2E, h(z

v)) ∈ M+;

For each atomEF
s (x, y) in � for which the corresponding sequence of atoms inW(f ) is

ru(zu−1, zu), . . . , rv(zv−1, zv), we useϑ(x) to denotezu−1 andϑ(y) to denotezv. Notice
that, ifx ∈ V�, thenϑ(x) denotesx itself. We say thatf is connected, if for each variablex
appearing both in� and in the domain ofM ∪M+, R(t)← � contains an occurrence of a
variable connected to the occurrenceh(ϑ(x)). We say thatM+ is compatiblewith �, if for
eachEF

s (x, y) in �, if x is in V�, thenM+ does not map̄v1E ; similarly for y. We say that
the pair(g, s), with g a node of� ands a state ofA�

Q,�, is accepting(for A
�
Q,� and�) if

there is an accepting run� of A�
Q,� on � and a nodef of � such that�(f ) = (g, s).



46 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

Weshow that�(f ) = (g, (R(t),�,M,M+)) is accepting forA�
Q,� and�, if the following

conditions hold:

(1) M is consistent withh and maps all distinguished variables of�;
(2) M+ is compatible with�;
(3) f is connected;
(4) W(f ) is compatible with�.

We proceed by induction onS(f ), whereS(f ) is the sum of the lengths of the sequences of
atoms inW(f ).We count an equality atom as having length 1, and a sequence consisting of
n atoms different from equalities as having lengthn+1. Below we consider the case where
conditions (1)–(4) are satisfied for a nodef . If they are not, the property we are proving
trivially holds.
• Base case: S(f ) = 0. ThenW(f ) is empty. So is�, andA�

Q,� can perform a “final”
transition to the accepting state. Hence�(f ) is accepting.

• Inductive case1: Assume there is a non-empty sequencew = ru(zu−1, zu), ru+1(zu,
zu+1), . . . , rv(zv−1, zv) inW(f ) with ru · · · rv ∈ L(EF

s ) for someE
F
s (x, y) in �, such

that the body� of the rule of the nodeg of the proof tree contains an atomru(a, b) and
we have thath(zu−1) = a andh(zu) = b. In other words,h maps the first atom inw to
an atom in�. We consider the case whereru = e, for somee ∈ � and wherex ∈ V�
(i.e.,u = 1 andx = z0 is a variable of�). The other cases can be dealt with analogously.
Sinceru · · · rv ∈ L(EF

s ), there must be somes′ ∈ 
E(s, e) such thatru+1 · · · rv ∈
L(EF

s′ ). SinceM+ is compatible with� it does not map̄v1E .
Assume thatx is in the domain ofM. SinceM is consistent withh it mapsx to a.

ThenA�
Q,� can perform an “atom mapping” transition

〈0, (R(t),�′,M,M ′+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �)),

where�′ coincides with�, except that the elementEF
s (x, y) in � is replaced in�′ by

EF
s′ (v̄

1
E, y), andM

′+ = M+ ∪ {(v̄1E, b)}.
Hence, in the run� there is a unique successorf ·1 off with �(f ·1) = (g, (R(t),�′,M ′,
M ′+)). ForW we have thatW(f ·1) coincides withW(f ), except that the sequencew in
W(f ) is replaced inW(f ·1) by w′ = ru+1(zu, zu+1), . . . , rv(zv−1, zv). Observe that
f ·1 satisfies conditions (1)–(4) and thatS(f ·1) = S(f )−1, since we have mapped one
atom ofW(f ). Thus, by inductive hypothesis,�(f ·1) is accepting, and hence also�(f ).

If x is not in the domain ofM, thenA�
Q,� can first perform a “mapping extending”

transition

〈0, (R(t),�,M ′,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

such thatM ′ = M ∪ {(x, a)}, and then perform the transition above. In this case,M ′ is
still consistent withh and the resulting node in the run is connected, sincex is mapped
to a variable inR(t)← �.

• Inductive case2: Assume there is a sequencew = ru(zu−1, zu), . . . , rv(zv−1, zv) in
W(f ) that collapses to the equalityzu−1 = zv, beingru · · · rv = ε, and such thath
mapszu−1 andzv to occurrences of a variable both connected to the same variablea in
R(t)← �.



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 47

We consider only the case wherezu−1 is a variablex in V� andzv is a variabley in
V�. The other cases are analogous. For eachEF

s (x, y) in � corresponding tow, we have
thats ∈ F .
Assume that bothx andy are in the domain ofM. SinceM is consistent withh, it maps
bothx andy to a. ThusA�

Q,� can perform the “equality checking” transition

〈0, (R(t),�′,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �)).

Hence, in the run� there is a unique successorf ·1 off with �(f ·1) = (g, (R(t),�′,M,

M+)). ForW wehave thatW(f ·1) coincideswithW(f )\{w}. Observe thatf ·1 satisfies
conditions (1) to (4) and thatS(f ·1) = S(f )−1. Thus, by inductive hypothesis,�(f ·1)
is accepting, and hence also�(f ).
If x ory is not in the domain ofM, thenA�

Q,� can first performa “mapping extending”
transition, as in the previous case.

• Inductive case3: Consider somej ∈ {−1,1, . . . , �}, where� is the number of IDB
atoms in�. LetW1 be the subset ofW(f ) consisting of those sequencesw of atoms such
thathmaps both the first and the last atom ofw to atoms in thej th subtree ofg, where
we take the−1th subtree ofg to be� without the tree rooted atg. LetW2 be the subset
ofW(f ) consisting of those sequencesw of atoms such thathmaps neither the first nor
the last atom ofw to atoms in thej th subtree ofg. LetW3 be the remaining sequences
of atoms inW(f ). Finally, let bothW1 andW2 be different fromW(f ).
We have a corresponding partition of� into �1, �2, and�3. For each sequencew =

ru(zu−1, zu), . . . , rv(zv−1, zv) inW3 corresponding to an elementEF
s (x, y) in �3, since

ru(zu−1, zu) is mapped to an atom in thej th subtree ofg, andrv(zv−1, zv) is mapped
elsewhere, there must be some intermediate variablezi in the sequence that is mapped
by h to an occurrence of a variable connected to a variablea in R(t) ← �. (The case
where the last atom is mapped to thej -subtree is analogous.) Hence there must be a
states′ of E such thatru · · · ri ∈ L(Es′

s ) andr
i+1 · · · rv ∈ L(EF

s′ ).

Let �′3 be obtained from�3 by replacing each atomEF
s (x, y) with one ofE

s′
s (x, v̄2)

or EF
s′ (v̄

1
E, y), depending on whether the first or the last atom of the corresponding

sequence inW3 is mapped to thej th subtree. Let�′′3 be defined the other way round.
Finally, let�′ = �1 ∪ �′3 and�′′ = �2 ∪ �′′3.
Assume that all variables ofV� shared by�′ and�′′ are already in the domain ofM.
ThusA�

Q,� can perform the “splitting” transition

〈0, (R(t),�′,M,M ′+)〉 ∧ 〈0, (R(t),�′′,M,M ′′+)〉
∈ 
((R(t),�,M,M+), (R(t)← �))

withM ′+ andM ′′+ defined as required.
Hence, in the run� there are two successorsf ·1 andf ·2 of f with �(f ·1) =

(g, (R(t),�′,M,M ′+)) and �(f ·1) = (g, (R(t),�′′,M,M ′′+)). For W we have that
W(f ·1) consists ofW1 union the set of subsequences ofW3 corresponding to the ele-
ments in�′3. Analogously forW(f ·2).
Observe thatf ·1 andf ·2 satisfy conditions (1) to (4) above, and that bothS(f ·1) and

S(f ·2) are strictly smaller thanS(f ), sinceW1 andW2 are by assumption both different



48 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

fromW(f ). Thus, by inductive hypothesis,�(f ·1) and�(f ·2) are both accepting, and
hence also�(f ).
If some variablex in V� is shared by�

′ and�′′ but is not already in the domain ofM,
thenA�

Q,� can first perform a “mapping extending” transition, by adding(x, h(x)) to

M. Observe that, sincex in is shared by�′ and�′′, one occurrence ofx must be mapped
byh in thej th subtree, and one somewhere else. Hence, sinceh is a strong containment
mapping, the two occurrences ofh(x) must be connected, and so alsoR(t) ← � must
contain a connected occurrence ofh(x). Thus, the node in the run resulting from the
“mapping extending” transition is also connected.

• Inductive case4: When the conditions for the application of the base case and the
inductive cases 1–3 do not hold, thenW(f ) is still not empty but we cannot progress
with the mapping on the current nodeg. Since none of the above cases apply it must be
that for all variablesx in �, ϑ(x) is mapped byh to a variable in thej th subtree ofg,
for somej . Sincef is connected, all variables that appear both in� and in the domain
ofM ∪M+ must be mapped byh to occurrence of variables connected to a variable in
R(t)← �. Sinceh is a strong containment mapping and all these variables are mapped
in thej th subtree, if follows that they are connected through variables of thej th IDB
atom in� (respectively, the headR(t), if j = −1).
ThusA�

Q,� can perform either a “downward moving” transition

〈j, (Rij (t
ij ),�,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

or an “upward moving” transition

〈−1, (R′(t ′),�,M,M+)〉 ∈ 
((R(t),�,M,M+), (R(t)← �))

Hence, in the run� there is a unique successorf ·1 off with �(f ·1) = (g·j, (Rij (t
ij ),�,

M,M+)) (resp.,�(f ·1) = (g·(−1), (R′(t ′),�,M,M+))). ForW we have thatW(f ·1)
coincides withW(f ). f ·1 satisfies conditions (1)–(4). Moreover, it is easy to see that
one can perform transitions only a finite number of times since it is not possible thath

requires to pass twice through the same nodeg of �. After such transitions, one of the
cases above applies. Hence, by inductive hypothesis,�(f ) is accepting.
Finally, we observe that conditions (1)–(4) are trivially satisfied at the rootε of � andW .

The claim follows. �

Lemma 10. Let� be a proof tree in p_trees(Q,�). If � is accepted byA�
Q,�, then there is

an expansion� of � and a strong containment mapping from� to �.

Proof. Weconstruct from an accepting run� ofA�
Q,� an expansion� and a strong contain-

ment mapping from� to �.We proceed by bottom-up induction on the run, making use of a
treeW analogous to the one used in the proof of Lemma9, and a treehwith the same set of
nodes as� andW , and such thath(f ) is a strong containment mapping from the atoms in
W(f ) to atoms in�. In the following, letf beanodeof�with �(f ) = (g, (R(t),�,M,M+))
and�(g) = (R(t)← �).
We recall the definition ofϑ(x), of connected node of a run, and of accepting pair(g, s).

For each atomEF
s (x, y) in � for which the corresponding sequence of atoms inW(f )



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 49

is ru(zu−1, zu), . . . , rv(zv−1, zv), we useϑ(x) to denotezu−1 andϑ(y) to denotezv. We
say thatf is connected, if for each variablex appearing both in� and in the domain of
M ∪ M+, R(t) ← � contains an occurrence of a variable connected to the occurrence
h(ϑ(x)). We say that the pair(g, s), with g a node of� ands a state ofA�

Q,�, is accepting

(for A�
Q,� and�) if there is an accepting run� of A�

Q,� on � and a nodef of � such that
�(f ) = (g, s).
We further say thatM+ is consistentwith h(f ), if for each variablēviE in the domain of

M+ we have thatM+ mapsv̄iE to h(f )(ϑ(v̄iE)).
We will inductively constructW andh such that, for each nodef of � (and hence ofh,

andW ), such that�(f ) is accepting, we have thatM andM+ are consistent withh(f ) and
thatf is connected.
• Base case(“final” transition ): If there is a “final” transition from a nodef to a node
f ·1 of � that is a leaf of the run labeled with the accepting state, then� = ∅. ThenW(f )

is empty and so ish(f ). Hence, trivially,h(f ) is a strong containment mapping from
W(f ) to �,M andM+ are consistent withh(f ), andf is connected.

• Inductive case1 (“atom mapping” transition): If there is an “atom mapping” transition
from a nodef to a nodef ·1 of�, with �(f ·1) = (g, (R(t),�′,M,M ′+)) accepting, then,
by inductive hypothesis,W(f ·1) consists of one sequence of atoms for each element
EF
s (x, y) of �

′, h(f ·1) is a strong containment mapping fromW(f ·1) to atoms in�,M
andM ′+ are consistent withh(f ·1), andf is connected.

We have that� coincides with�′, except that one elementEf
s (x, y) in � is replaced in

�′ byEF
s′ (x

′, y).Weconsider only the casewhere there is anEDBatome(a, b)among the
atoms in� such thats′ ∈ 
E(s, e), andx ∈ V�. The other cases are similar. ThenW(f )

is equal toW(f ·1), except that the sequencer1(ϑ(x′), x1) · · · rn(xn−1,ϑ(y)) of atoms
corresponding toEF

s′ (x
′, y) is replaced inW(f ) by e(ϑ(x),ϑ(x′)), r1(ϑ(x′), x1) · · · rn

(xn−1,ϑ(y)) corresponding toEF
s (x, y).

We extendh(f ·1) to h(f ) by mapping the current occurrence ofϑ(x) to a. Observe
that, if there are other occurrences ofϑ(x) in h(f ·1) they are mapped toa as well since
M is consistent withh(f ·1) andf ·1 is connected. Moreover,M+ = M ′+ \ {(v̄1E, b)}.
Hence,h(f ) is a strong containment mapping fromW(f ) to atoms in� andM andM+
are consistent withh(f ). Moreover since the transition stays in the same node andϑ(x)
is mapped to a variable in�, we have thatf is connected.

• Inductive case2 (“splitting” transition ): If there is a “splitting” transition from a node
f to nodesf ·1 andf ·2 of � with �(f ·1) = (g, (R(t),�′,M,M ′+)) and �(f ·2) =
(g, (R(t),�′′,M,M ′′+)) accepting, then, by inductive hypothesis,W(f ·1) consists of
one sequence of atoms for each elementEF

s (x, y) of �
′, h(f ·1) is a strong containment

mapping fromW(f ·1) to atoms in�,M andM ′+ are consistent withh(f ·1), andf ·1 is
connected; similarly forf ·2.
We have that� coincides with�′ ∪ �′′, except for elementsEf

s (x, y) in � that are
replaced in�′ byEs′

s (x, v̄
2
E) and in�′′ byEF

s′ (v̄
1
E, y). (The case whereE

s′
s (x, v̄

2
E) is in

�′′ andEF
s′ (v̄

1
E, y) is in �′′ is analogous.) ThenW(f ) is equal toW(f ·1) ∪ W(f ·2),

except that, for each suchEf
s (x, y) we have a sequencew(zu−1, zi−1), w(zi−1, zv),

wherew(zu−1, zi−1) = ru(zu−1, zu), . . . , ri−1(zi−2, zi−1) is the sequence of atoms in



50 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

W(f ·1) corresponding toEs′
s (x, v̄

2
E) andw(z

i−1, zv) = ri(zi−1, zi), . . . , rv(zv−1, zv)
is the sequence inW(f ·2) corresponding toEF

s′ (varv
1
E, y).

We takeh(f ) = h(f ·1) ∪ h(f ·2). Observe that, sinceh(f ·1) andh(f ·2) are both
compatible withM and respectively compatible withM ′+ andM ′′+, both occurrences of
zi−1 in w(zu−1, zi−1) and inw(zi−1, zv) are mapped to the same variable of�. Hence,
h(f ) is a strong containment mapping fromW(f ) to atoms in� andM andM+ are
consistent withh(f ). Moreover, since both conjuncts of the transition stay in the same
node andzi−1 is mapped to a variable in�, f is connected.

• Inductive case3 (“moving” transition): If there is a “downwardmoving” (resp., “upward
moving”) transition fromanodef toanodef ·1of�,with�(f ·1) = (g·j, (Rij (t

ij ),�,M,

M+)) (resp.,�(f ·1) = (g·(−1), (R′(t ′),�,M,M+))) accepting, then, by inductive hy-
pothesis,W(f ·1) consists of one sequence of atoms for each elementEF

s (x, y) of �,
h(f ·1) is a strong containment mapping fromW(f ·1) to atoms in�, M andM+ are
consistent withh(f ·1), andf ·1 is connected.
We takeW(f ) = W(f ·1) andh(f ) = h(f ·1). Trivially h(f ·1) is a strong containment
mapping fromW(f ) to atoms in� andM andM+ are consistent withh(f ). Moreover,
since all variables that occur in� and that are in the domain ofM ∪M+ have their image
in t ij (resp.,p′), f is connected.

• Inductive case4 (“equality checking” transition): If there is an “equality checking”
transition from a nodef to a nodef ·1 of �, with �(f ·1) = (g, (R(t),�′,M,M+))
accepting, then, by inductive hypothesis,W(f ·1) consists of one sequence of atoms for
each elementEF

s (x, y) of �, h(f ·1) is a strong containment mapping fromW(f ·1) to
atoms in�,M andM+ are consistent withh(f ·1), andf ·1 is connected.
For each atomEF

s (x, y) in �0 we have thats ∈ F and(x, a) and(y, a) are inM ∪M+,
for some variablea in R(t) ← �. ThenW(f ) extendsW(f ·1) by adding an equality
atomϑ(x) = ϑ(y), andh(f ) extendsh(f ·1) by mapping the occurrence ofϑ(x) and of
ϑ(y) toa. Hence,h(f ) is a strong containmentmapping fromW(f ) to atoms in� andM
andM+ are consistent withh(f ). Moreover since the transition stays in the same node
andϑ(x) andϑ(y) are mapped to a variable inR(t)← �, we have thatf is connected.

• Inductive case5 (“mapping extending” transition): If there is a “mapping extending”
transition from a nodef to a nodef ·1 of �, with �(f ·1) = (g, (R(t),�,M ′,M+))
accepting, then, by inductive hypothesis,W(f ·1) consists of one sequence of atoms for
each elementEF

s (x, y) of �, h(f ·1) is a strong containment mapping fromW(f ·1) to
atoms in�,M andM+ are consistent withh(f ·1), andf ·1 is connected.
We takeW(f ) = W(f ·1) andh(f ) = h(f ·1). Trivially h(f ·1) is a strong containment
mapping fromW(f ) to atoms in� andM andM+ are consistent withh(f ). Moreover,
f is trivially connected since the transition stays in the same node,� remains the same,
andM is smaller thanM ′.
Since in the initial state ofA�

Q,� we have that� = �, we have� = W(ε) is an expansion
of �, andh = h(ε) is a strong containment mapping from� to �. The claim follows. �
Theorem 11. Let� be a Datalog program with binary EDB predicates in� and with goal
predicateQ,and let� = ∪i�i be a finite union of C2RPQs�i over�±.Then� is contained
in � if and only if

T (Ap_trees
Q,� ) ⊆ ⋃

i T (A�i
Q,�)



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 51

Proof. By Lemma3,� is contained in� if and only if for every proof tree� ∈ p_trees(Q,

�) there is a�i and an expansion� of �i such that there is a strong containment mapping
from � to �. By Theorem 8 and Lemmas 9 and 10, the latter conditions is equivalent to
T (Ap_trees

Q,� ) ⊆ ⋃
i T (A�i

Q,�). �

This allows us to establish the main result of the paper.

Theorem 12. Containment of a(recursive) Datalog program in a union of C2RPQs is in
2EXPTIME.

Proof. By Proposition5, we can construct a 2ATAA�
Q,�, whose size is exponential in the

size of� and�, such thatT (A�
Q,�) =

⋃
i T (A�i

Q,�). By Proposition 4, we can construct a

1NTA A¬�
Q,�, whose size is doubly exponential in the size of� and�, such that a�-labeled

tree is accepted byA¬�
Q,� if and only if it is not accepted byA�

Q,�. By Proposition 6, we can
construct a 1NTAAcont, whose size is still doubly exponential in the size of� and�, such
thatAcont accepts a�-labeled tree if and only if it is accepted byA

p_trees
Q,� but not accepted

by any of theA�i
Q,�. By Theorem 11,Acont is non-empty if and only if� is not contained

in �. By Proposition 7, non-emptiness ofAcont can be checked in time polynomial in its
size, and hence doubly exponential in the size of� and�. The claim follows. �

6. Lower bound

Nextwe turn to the lower bound for containment ofDatalog in unions ofC2RPQs. In [21],
it is shown that containment ofDatalog in unions of conjunctive queries is 2EXPTIME-hard,
by a reduction from acceptance of an alternating EXPTIME Turing machine. The encoding
in that proof uses EDB predicates of arity different from 2, and hence does not directly
apply to containment of Datalog in unions of C2RPQs, where all EDB predicates are binary.
Nevertheless, the problem of containment of a Datalog program in a union of conjunctive
queries over arbitrary EDB predicates can be reduced to the problem of containment of a
Datalog problem in a union of conjunctive queries over binary EDB predicates, as shown
below.
Let � be a Datalog program with goal predicateQ over EDB predicates of arbitrary

arity, and	 a union of conjunctive queries over the EDB predicates of�. We construct
a Datalog program�′ with goal predicateQ over binary EDB predicates and a union of
conjunctive queries	′ over binary EDB predicates as follows:
• For each EDB predicateR of arity n > 2 appearing in� or	 we considerR in �′ as
an IDB predicate, and we introducen fresh binary EDB predicatesRi , for i ∈ 1, . . . , n,
which represent the components of tuples ofR. Also, the following rule is added to�′:

R(x1, . . . , xn) ← R1(y, x1), . . . , Rn(y, xn),

wherey is an existential variable that represents the tuple(x1, . . . , xn).
• For each unary EDB predicateR appearing in� or	, we considerR in �′ as an IDB
predicate, and we introduce a fresh binary EDB predicateRu. Also, the following rule



52 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

is added to�′:

R(x) ← Ru(x, x).

• For each 0-ary EDB predicateR appearing in� or	, we considerR in �′ as an IDB
predicate, and we introduce a fresh binary EDB predicateR0. Also, the following rule
is added to�′:

R ← R0(x, x).

• �′ additionally contains all rules of�.

In the following, we call the binary EDB predicatesRi (resp.,Ru orR0) newly introduced
in �′ freshEDB predicates. The union of conjunctive queries	′ is obtained from	 by
• replacing each atomR(z1, . . . , zn) over ann-ary (with n > 2) predicateR with the
conjunction of atomsR1(w, z1), . . . , Rn(w, zn), wherew is a fresh variable;

• replacing each unary atomR(z) with the binary atomRu(z, z);
• replacing each 0-ary atomR with the binary atomR0(w,w), wherew is a fresh variable.

Lemma 13. Let� be a Datalog programwith goal predicateQ and	 a union of conjunc-
tive queries, both over arbitrary EDB predicates. Let�′ and	′ be the Datalog program
and the union of conjunctive queries, both over binary EDB predicates, defined from� and
	 as above. Then� is contained in	 if and only if�′ is contained in	′.

Proof. “⇒” Assume that for each expansion tree� in trees(Q,�) there is a containment
mapping from some conjunctive query in	 to �. We show that for each expansion tree�′
in trees(Q,�′) there is a containment mapping from some conjunctive query in	′ to �′.
Since each fresh EDB predicate appears in�′ only in the body of rules whose head is an
EDB predicate of arityn "= 2 of � or �, and such rules contain in their body only fresh
EDB predicates, we have that each node in�′ containing a fresh EDB predicate is a leaf
node. Moreover, there is an expansion tree� in trees(Q,�) such that�′ is obtained from�
by adding for each nodeg of �:
• for eachEDBatomR(x1, . . . , xn), withn > 2, appearing in (the bodyof the rule instance
labeling)g, a child ofg labeled by a rule instanceR(x1, . . . , xn)← R1(y, x1), . . . , Rn

(y, xn);
• for each unary EDB atomR(x) appearing ing, a child ofg labeled by a rule instance
R(x)← Ru(x, x);

• for each 0-ary EDB atomR appearing ing, a child of g labeled by a rule instance
R ← R0(x, x).

Let � be an expansion tree intrees(Q,�). By hypothesis, there exists a containment
mappingh from some conjunctive query� in 	 to �. Let �′ be the conjunctive query in
	′ obtained from�. Consider an atomR(z1, . . . , zn), with n > 2, in �, and leth map
such an atom to an atomR(x1, . . . , xn) in a nodeg of �. Let R1(w, z1), . . . , Rn(w, zn)

be the conjunction of atoms in�′ corresponding toR(z1, . . . , zn), where, by construction,
w is a variable not appearing in any other atom of�′. Consider the childg′ of g in �′
corresponding to the expansion ofR(x1, . . . , xn), and letg′ be labeled by the rule instance
R(x1, . . . , xn) ← R1(y, x1), . . . , Rn(y, xn). Then, we can extendh so that it mapsw to



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 53

y and the atoms containingw to the atoms in the body of the rule instance labelingg′.
Similarly, consider a unary atomR(z) in �, and lethmap such an atom to an atomR(x) in
a nodeg of �. LetRu(z, z) be the atom in�′ corresponding toR(z). Consider the childg′
of g in �′ corresponding to the expansion ofR(x), and letg′ be labeled by the rule instance
R(x)← Ru(x, x). Then, sinceh mapsz to x, it also maps the atomRu(z, z) to Ru(x, x),
which is the only atom in the body of the rule instance labelingg′. We can proceed in a
similar way for 0-ary atoms. It is immediate to verify that, by proceeding in the same way
for all non-binary atoms of�, we have thath is a containment mapping from�′ to �′.
“⇐” Assume that for each expansion tree�′ in trees(Q,�′) there is a containment map-

ping from some conjunctive query in	′ to �′, and let� be an expansion tree intrees(Q,�).
We show that there is a containment mapping from some conjunctive query in	 to �. Let�′
be an expansion tree intrees(Q,�′) obtained from� by adding for each nodeg of � and each
EDB atomR(x1, . . . , xn), with n > 2, appearing in (the body of the rule instance labeling)
g, a child ofg labeled by a rule instanceR(x1, . . . , xn)← R1(y, x1), . . . , Rn(y, xn), where
y is a different fresh variable for each atom. Similarly for each unary and 0-ary EDB atom
appearing in a node of�. By hypothesis, there is a conjunctive query�′ in 	′ such that
there exists a containment mappingh from �′ to �′. Let � be the conjunctive query in	
from which�′ is derived. Consider a conjunction of atomsR1(w, z1), . . . , Rn(w, zn) in �′
corresponding to an atomR(z1, . . . , zn) in �, where, by construction,w is a variable not
appearing in any other atom of�′. Letg′ be the node of�′ containing (in the body of the rule
instance labelingg′) the atomR1(y, x1) to whichhmapsR1(w, z1). By construction of�′
the variabley appears only in atoms ofg′. Hence, the rule instance labelingg′ will be of
the formR(x1, . . . , xn)← R1(y, x1), . . . , Rn(y, xn), whereR1(y, x1), . . . , Rn(y, xn) are
the atoms to whichh mapsR1(w, z1), . . . , Rn(w, zn), respectively. It follows that we can
map the atomR(z1, . . . , zn) in � to the atom in the headR(x1, . . . , xn) of the rule instance
labelingg′, or, equivalently, to the atomR(x1, . . . , xn) in the predecessor nodeg of g′ in �′
and hence also in�. We can reason in a similar way for binary atoms in�′ corresponding
to unary and 0-ary atoms of�. It is immediate to verify that, by proceeding as above for all
conjunctions of atoms in�′ corresponding to atoms of� of arity greater than 2, and for all
atoms in�′ corresponding to unary and 0-ary atoms of�, we have thath is a containment
mapping from� to �. �

Considering that the construction above is linear in� and�, from 2EXPTIME-hardness
of containment of Datalog in unions of conjunctive queries over arbitrary EDB predi-
cates[21], we obtain the following result.

Theorem 14. Containment of a Datalog program in a union of conjunctive queries, both
over binary EDB predicates, is 2EXPTIME-hard.

By Theorem12, we get the following computational complexity characterization.

Theorem 15. Containment of a(recursive) Datalog program in a union of C2RPQs is
2EXPTIME-complete.



54 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

7. Conclusions

We have established decidability of containment of Datalog queries in unions of con-
junctive two-way regular path queries, and characterized the complexity of the problem as
2EXPTIME-complete. This is the most general known decidability result for containment
of recursive queries, apart from the result in[22] for monadic Datalog. The class of union
of C2RPQs has several features that are typical of modern query languages, in particular of
those for semistructured data. Unions of C2RPQs constitute the largest fragment of query
languages for XML data [24] for which containment is known to be decidable [15].
The 2EXPTIME upper-bound result shows that adding transitive closure to conjunctive

queries does not increase the complexity of query containment with respect to Datalog
queries, as it matches the bound obtained in [21] for containment of Datalog queries in
union of conjunctive queries. Observe that containment in the converse direction, as well
as equivalence, is undecidable already for RPQs. Indeed, universality of context-free gram-
mars can be reduced to containment of RPQs in Datalog, by following the line of the
undecidability proof of containment between Datalog queries in [46].
Query containment is typically the first step in addressing various problems of query

processing, such as view-based query processing. One of the most important view-based
query processing tasks isview-based query answering[33,36], where one is interested in
computing the answer to a query over a global virtual schema, based on the data stored in a
set of materialized views, defined also over the virtual schema. In such a setting, the typical
assumption is that views aresound, i.e., the data available in the views are a subset of the
data satisfying the corresponding view definition [36]. There is a well-known connection
between query containment and view-based query answering (under sound views) [2,16],
that is based on using the data in the views to construct the body of the query on the left-hand
side of containment. By exploiting such a connection,2 the results in this paper already
show that view-based query answering is decidable and 2EXPTIME-complete when the
views are Datalog and the query is a union of C2RPQs. This is the most general known
decidability result for view-based query answering in the presence of recursion.

References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: from Relations to Semistructured Data and XML,
Morgan Kaufmann, Los Altos, 2000.

[2] S. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proc. 17th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), 1998, pp. 254–265.

[3] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley Publishing Co., Reading, MA,
1995.

[4] S. Abiteboul, V. Vianu, Regular path queries with constraints, J. Comput. System Sci. 58 (3) (1999)
428–452.

[5] S. Adali, K.S. Candan, Y. Papakonstantinou, V.S. Subrahmanian, Query caching and optimization in
distributed mediator systems, in: Proc. ACM SIGMOD Internat. Conf. on Management of Data, 1996,
pp. 137–148.

2 The reductions between query containment and view-based query answering in[2] make use of constants in
the query built from the views. However, it is easy to see that, since we do not allow for inequalities in queries,
the reductions can be rephrased without making use of constants.



D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56 55

[6] A.V. Aho, Y. Sagiv, J.D. Ullman, Equivalence among relational expressions, SIAM J. Comput. 8 (1979)
218–246.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press, Cambridge, 2003.

[8] C. Beeri, P.A. Bernstein, Computational problems related to the design of normal form relational schemas,
ACM Trans. Database Systems 4 (1) (1979) 30–59.

[9] M. Buchheit, M.A. Jeusfeld,W. Nutt, M. Staudt, Subsumption between queries to object-oriented databases,
Inform. Systems 19 (1) (1994) 33–54 (special issue on Extending Database Technology, EDBT’94).

[10] P. Buneman, Semistructured data, in: Proc. 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’97), 1997, pp. 117–121.

[11] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query language and optimization technique for
unstructured data, in: Proc. ACM SIGMOD Internat. Conf. on Management of Data, 1996, pp. 505–516.

[12] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible Markup Language (XML) 1.0—W3C re-
commendation, Technical report, 1998; World Wide Web Consortium available at
http://www.w3.org/TR/1998/REC-xml-19980210.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, Representing and reasoning on XML documents: a description
logic approach, J. Logic Comput. 9 (3) (1999) 295–318.

[14] D.Calvanese,G.DeGiacomo,M.Lenzerini,D.Nardi,R.Rosati,Description logic framework for information
integration, in: Proc. 6th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
1998, pp. 2–13.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Containment of conjunctive regular path queries
with inverse, in: Proc. 7th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR
2000), 2000, pp. 176–185.

[16] D.Calvanese,G.DeGiacomo,M. Lenzerini,M.Y.Vardi,View-based query answering and query containment
over semistructured data, in: G. Ghelli, G. Grahne (Eds.), Revised Papers of the 8th Internat. Workshop on
Database Programming Languages (DBPL 2001), Lecture Notes in Computer Science, Vol. 2397, Springer,
Berlin, 2002, pp. 40–61.

[17] A.K. Chandra, D. Harel, Horn clause queries and generalizations, J. Logic Comput. 2 (1985) 1–15.
[18] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proc.

9th ACM Symp. on Theory of Computing (STOC’77), 1977, pp. 77–90.
[19] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, K. Shim, Optimizing queries with materialized views, in:

Proc. 11th IEEE Internat. Conf. on Data Engineering (ICDE’95), 1995, pp. 190–200.
[20] S. Chaudhuri, M.Y. Vardi, On the complexity of equivalence between recursive and nonrecursive Datalog

programs, in: Proc. 13th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’94), 1994, pp. 107–116.

[21] S. Chaudhuri, M.Y. Vardi, On the equivalence of recursive and nonrecursive datalog programs, J. Comput.
System Sci. 54 (1) (1997) 61–78.

[22] S.S. Cosmadakis, H. Gaifman, P.C. Kanellakis, M.Y. Vardi, Decidable optimization problems for database
logic programs, in: Proc. 20th ACM SIGACT Symp. on Theory of Computing (STOC’88), 1988,
pp. 477–490.

[23] O.L. Costich,AMedvedev characterization of sets recognized by generalized finite automata, Math. Systems
Theory 6 (1972) 263–267.

[24] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, D. Maier, D. Suciu, Querying XML data, Bull. IEEE
Comput. Soc. Tech. Committee Data Eng. 22 (3) (1999) 10–18.

[25] J.E. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (5) (1970) 406–451.
[26] W.F.Dowling, J.H.Gallier, Linear-timealgorithms for testing the satisfiability of propositional horn formulae,

J. Logic Programming 1 (3) (1984) 267–284.
[27] M.F. Fernandez, D. Florescu, A. Levy, D. Suciu, Verifying integrity constraints on web-sites, in: Proc. 16th

Internat. Joint Conf. on Artificial Intelligence (IJCAI’99), 1999, pp. 614–619.
[28] D. Florescu,A. Levy,A.Mendelzon,Database techniques for theworld-wideweb: a survey, SIGMODRecord

27 (3) (1998) 59–74.
[29] D. Florescu, A. Levy, D. Suciu, Query containment for conjunctive queries with regular expressions, in:

Proc. 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), 1998,
pp. 139–148.

http://www.w3.org/TR/1998/REC-xml-19980210


56 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33–56

[30] M. Friedman, A. Levy, T. Millstein, Navigational plans for data integration, in: Proc. 16th Natl. Conf. on
Artificial Intelligence (AAAI’99), AAAI Press/The MIT Press, MA, 1999, pp. 67–73.

[31] F. Gecseg, M. Steinby, Tree Automata, Akademiai Kiado, Budapest, Hungary, 1984.
[32] A. Gupta, J.D. Ullman, Generalizing conjunctive query containment for view maintenance and integrity

constraint verification (abstract), in: Workshop on Deductive Databases (in conjunction with JICSLP),
Washington DC, USA, 1992, p. 195.

[33] A.Y. Halevy, Answering queries using views: a survey, Very Large Database J. 10 (4) (2001) 270–294.
[34] J.E. Hopcroft, J.D. Ullman, Introduction toAutomataTheory, Languages, andComputation,Addison-Wesley

Publishing Co., Reading, MA, 1979.
[35] A.C. Klug, On conjunctive queries containing inequalities, J. Assoc. Comput. Mach. 35 (1) (1988) 146–160.
[36] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. 21st ACM SIGACT SIGMOD SIGART

Symp. on Principles of Database Systems (PODS 2002), 2002, pp. 233–246.
[37] A.Y. Levy, M.-C. Rousset, Verification of knowledge bases: a unifying logical view, in: Proc. 4th Europ.

Symp. on the Validation and Verification of Knowledge Based Systems, Leuven, Belgium, 1997.
[38] A.Y.Levy,Y.Sagiv,Semanticqueryoptimization inDatalogprograms, in:Proc. 14thACMSIGACTSIGMOD

SIGART Symp. on Principles of Database Systems (PODS’95), 1995, pp. 163–173.
[39] D. Maier, J.D. Ullman, M.Y.Vardi, On the foundations of the universal relation model,ACMTrans. Database

Systems 9 (1984) 283–308.
[40] T. Milo, D. Suciu, Index structures for path expressions, Proc. 7th Internat. Conf. on Database Theory

(ICDT’99), Lecture Notes in Computer Science, Vol. 1540, Springer, Berlin, 1999, pp. 277–295.
[41] Y.N. Moschovakis, Elementary Induction onAbstract Structures, North-Holland Publishing Co.,Amsterdam,

1974.
[42] A. Motro, Panorama: a database system that annotates its answers to queries with their properties, J. Intell.

Inform. Systems 7(1).
[43] J.F. Naughton, Data independent recursion in deductive databases, J. Comput. System Sci. 38 (2) (1989)

259–289.
[44] Y. Sagiv, Optimizing Datalog programs, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic

Programming, Morgan Kaufmann, Los Altos, 1988, pp. 659–698.
[45] Y. Sagiv, M.Yannakakis, Equivalences among relational expressions with the union and difference operators,

J. Assoc. Comput. Mach. 27 (4) (1980) 633–655.
[46] O. Shmueli, Equivalence of Datalog queries is undecidable, J. Logic Programming 15 (3) (1993) 231–241.
[47] G. Slutzki, Alternating tree automata, Theoret. Comput. Sci. 41 (1985) 305–318.
[48] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of

second order logic, Math. Systems Theory 2 (1) (1968) 57–81.
[49] R. van der Meyden, The complexity of querying indefinite information, Ph.D. Thesis, Rutgers University,

1992.


