Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 336 (2005) 33—-56
www.elsevier.com/locate/tcs

Decidable containment of recursive queries
Diego Calvanese®, Giuseppe De GiacofipMoshe Y. Vardi

8Faculty of Computer Science, Free University of Bolzano/Bozen, Piazza Domenicani 3, 1-39100 Bolzano, Italy
bpipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”, Via Salaria 113, 00198 Roma,
Italy
CDepartment of Computer Science, Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA

Abstract

One of the most important reasoning tasks on queries is checking containment, i.e., verifying
whether one query yields necessarily a subset of the result of another one. Query containmentis crucial
in several contexts, such as query optimization, query reformulation, knowledge-base verification,
information integration, integrity checking, and cooperative answering. Containment is undecidable
in general for Datalog, the fundamental language for expressing recursive queries. On the other hand,
it is known that containment between monadic Datalog queries and between Datalog queries and
unions of conjunctive queries are decidable. It is also known that containment between unions of
conjunctive two-way regular path queries, which are queries used in the context of semistructured
data models containing a limited form of recursion in the form of transitive closure, is decidable. In
this paper, we combine the automata-theoretic techniques at the base of these two decidability results
to show that containment of Datalog in union of conjunctive two-way regular path queries is decidable
in 2EXPTIME. By sharpening a known lower bound result for containment of Datalog in union of
conjunctive queries we show also a matching lower bound.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Query containment; Semistructured data; Datalog; Regular path queries

* Corresponding author. Tel.: +390471016160; fax: +39 0471 0160009.
E-mail addressescalvanese@inf.unibz.ifD. Calvanese)degiacomo@dis.uniromal{G. De Giacomo),
vardi@cs.rice.ed(M.Y. Vardi)
URLSs: http://www.inf.unibz.it~calvanese/ http://www.dis.uniromal.ittdegiacoma/ http://www.cs.rice.
eduf~vardi/ .

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.031

http://www.elsevier.com/locate/tcs
mailto:calvanese@inf.unibz.it
mailto:degiacomo@dis.uniroma1.it
mailto:vardi@cs.rice.edu
http://www.inf.unibz.it/~calvanese/
http://www.dis.uniroma1.it/~degiacomo/
http://www.cs.rice.edu/~vardi/
http://www.cs.rice.edu/~vardi/

34 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56
1. Introduction

Querying is the fundamental mechanism for extracting information from a data base
(DB). The basic reasoning task associated to querying is query answering, which amounts
to computing the information to be returned as result of a query. There are, however, other
reasoning services involving queries that data and knowledge representation systems should
support. One of the most important is checking containment, i.e., verifying whether one
query yields necessarily a subset of the result of another one. Query containment, called
subsumptionn Al [9,7], is crucial in several contexts, such as query optimization, query
reformulation, knowledge-base verification, information integration, integrity checking, and
cooperative answering; cf. [5,11,14,19,27,30,32,37,38,40,42]. Thus, it is fair to describe
guery containment as one of the most fundamental (DB) reasoning tasks.

Needless to say, query containment is undecidable if we do not limit the expressive power
of the query language; it is clearly undecidable for first-order logic. In fact, in knowledge
representation suitable query languages have been designed for retaining decidability. The
same is true in (DBs), where the notionaajunctive querys the basic one in the investi-
gation of reasoning about queries [18]. A conjunctive query (CQ) is simply a conjunction
of atoms, where each atom is built out from relation symbols and (existentially quanti-
fied) variables. Relationally, a CQ is a project-join query. By adding union and recursion
to conjunctive queries, one gdimtalog, the language of logic programs (known also as
Horn-clause programs) without function symbols [3], which is essentially a fragment of
fixpoint logic [17,41]. Datalog consists, in a pure way, only of the most fundamental el-
ements of relational queries: join, projection, union, and recursion. With respect to query
containment, CQs and Datalog span the spectrum in terms of computational complexity.
In[18] itis shown that CQ containment is equivalent to CQ evaluation (NP-complete). (For
some extensions, see [6,35,45,49].) On the other hand, it is shown in [46] that containment
of Datalog queries is undecidable; the proof is by reduction from the containment problem
for context-free grammars.

The most powerful query-containment results for Datalog are given in [21,22,44]. In [22]
it is pointed out that tree-automata techniques can be used to prove the decidability of query
containment fomonadicDatalog, where rule heads use a single variable (which means
that intermediate result of the query, as well as the final one, are sets of data elements). The
other results apply to the relationship between Datalog and non-recursive Datalog (non-
recursive Datalog queries are in essence unions of conjunctive queries). In [44] it is shown
that checking containment of non-recursive Datalog queries in Datalog queries is decidable
in exponential time. In [21] (see also [49]) it is shown, using tree-automata techniques,
that containment of Datalog queries in non-recursive Datalog queries is decidable in triply
exponential time. When the non-recursive query is represented, via unfolding, as a union of
CQs, the complexity is doubly exponential, rather than triple exponential. (These bounds
are known to be optimal, see [20,38] for studies of special cases and some extensions.)

In this paper, we address the problem of query containment in the context of semistruc-
tured data models. Our goal is to capture the essential features found in DBs, both traditional
and semistructured, as well as knowledge bases in semantic networks, conceptual graphs,
and description logics. For this purpose, we conceive a DB as an edge-labeled graph, where
nodes represent objects, and a labeled edge between two nodes represents the fact that the

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 35

binary relation denoted by the label holds for the objects. This model captures data expressed
using XML-like language§12,13] and is accepted as a standard model for semistructured
data [10,28].

In this framework, a basic querying mechanism is the oneegfilar path queries
(RPQ) [1,4,10], which ask for all pairs of objects that are connected by a path conforming
to a regular expression. Regular path queries are extremely useful for expressing complex
navigations in a graph. In particular, union and transitive closure are crucial when we do
not have a complete knowledge of the structure of the DB. In our regular path queries, we
include also thénverseoperator, which enables us to navigate edges backwards [10,11],
for example, from a child to its parent. We denote these queries by 2RPQs (two-way regular
path queries). Using 2RPQs as the basic querying mechanism, one can cormtruct
junctive two-way regular path querid€2RPQs), which enables us to perform joins and
projections over 2RPQs. C2RPQs are the basic building blocks for querying semistruc-
tured data [1,29,40]. The containment problem for C2RPQs (actually for unions of such
C2RPQs) was studied in [15] (see also [29]), where it was shown, using two-way automata,
to be EXPSPACE-complete.

The notable fact about the decidability of containment for C2RPQs is that C2RPQs are
a fragment of recursive Datalog, due to the transitive closure operator. Thus, the result
in [15,29] is the first decidability result for containment of non-monadic recursive Data-
log queries. The fact that automata-theoretic techniques are used both in [21] and in [15]
suggests that perhaps the two decidability results can be combined. We show here that
this is indeed the case by proving the decidability of the containment of Datalog queries
in union of C2RPQs (which, implies the known decidability result for containment of
union of C2RPQs). The automata-theoretic techniques combine tree automata with two-
way automata; we use alternating two-way tree automata [47]. The upper bound is doubly
exponential time, just as in [21], which we show to be optimal.

The rest of the paper is organized as follows. In Section 2, we present the data model and
query languages for semistructured data we adopt in this paper. In Section 3, we provide
some preliminary results on the characterization of containment of Datalog queries in unions
of conjunctive queries. In Section 4, we introduce two-way alternating tree automata, which
are used in Section 5 to establish the upper bound for containment of Datalog in unions of
C2RPQs. In Section 6 we show a matching lower bound. Finally, in Section 7, we conclude
the paper by discussing the impact of our results on view-based query processing.

2. DBs and queries

We consider aemistructured®B G as an edge-labeled gragh, £), whereD is the set
of nodes, and is the set of edges labeled with elements of an alphab&node represents
an object, and an edge between nadieandd, labelede, denoted:(d1, d2), represents the
fact that the binary relatioa holds for the paildy, d2).
The basic querying mechanism on a DB is thategjular path querie$RPQs). An RPQ
E is expressed as a regular expression or a finite automaton, and computes the set of pairs
of nodes of the DB connected by a path that conforms to the regular langyagelefined
by E. We consider unions of conjunctive two-way regular path queries [15], which extend

36 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

regular path queries with the possibility to traverse edges backward, with conjunctions and
variables, and with union.

Formally, Let4 be a set of binary relation symbols, and A6t = AU 4~, with 4~ =
{e~|e € A}. Intuitively, e~ denotes the inverse of the binary relatiorif » € A%, then we
user~ to mean thenverseof the relatiorr, i.e., ifr ise, thenr~ ise™, and ifr ise™, then
r—ISe.

Two-way regular path querie@RPQs) are expressed by means of regular expressions
or finite word automata oved®. Thus, in contrast with RPQs, 2RPQs may use also the
inversee™ of e, for eache € 4. When evaluated over a D8, a 2RPQE computes the set
E(G) of pairs of nodegdo, d,) such thaki(do, d1), r2(di, d2), . . ., r4(dy—1, dy) hold inG
andryrz - - - ry isin the regular language(E) defined byE. Observe that, whep = 0, we
have thatyro---r, = ¢ anddp = d;.

Conjunctive two-way regular path queriéS2RPQs) are conjunctions of atoms, where
each atom specifies that one 2RPQ holds between two variables. More precisely a C2RPQ
y of arity n is a formula of the form

O(x1,...,xp) < El())l»y/l)a e Em(ym,y,/n),

wherexy, ..., X,, ¥1, Y1, - - - Ym, ¥, fANQe over a sgiuy, ..., ux} of variables andey, . . .,

E,, are 2RPQs. The variables, ..., x,, are calleddistinguished variablesThe answer
sety(G) to a C2RPQ over a DBG = (D, €) is the set of tuplegds, . .., d,) of nodes of

G such that there is a total mappiagfrom {u1, ..., uz} to D with o(x;) = d; for every
distinguished variable; of y, and(a(y), a(y")) € E(G) for every conjunctE(y, y’) in .
When the arity ofy is 0, then it is viewed as a Boolean query; the answer set is either the
empty set (corresponding falsée) or the set containing the O0-ary tuples (corresponding to
true).

Finally, aunion of conjunctive two-way regular path quer@sarity n has the formy;y;,
where eacly; is a C2RPQ of arityz. The answer set to a union of C2RPQs= U;7;
over a DBG is simply I'(G) = U;7,(G). Notice that traditionatonjunctive queriegresp.,
unions of conjunctive queries) (dB]) are just a special case of C2RPQs (resp., unions of
C2RPQs) in which each 2RPQ in an atom is simply a relation symbol.

A Datalog program consists of a set of Horn rulegHorn) ruleis a first-order material
implication between a body and a head, where the head consists of a single atom, and the
body consists of a conjunction of atoms. Each atom is a formula of theRgsm . . ., x,,)
whereR is a predicate symbol antt, ..., x, are variables. All variables are implicitly
universally quantified outside the rule, and all variables appearing in the head are among
the variables in the body. The predicates that occur in heads of rules areictdiesional
(IDB) predicates. The rest of the predicates are cadiddnsiona{EDB) predicates. Here,
we consider Datalog programs that are evaluated over a semistructured DB. Hence, when
not explicitly noted otherwise, we assume that the EDB predicates are among the predicates
in 4, which are all binary. Observe, however, that IDB predicates, which are ntriray
be of arbitrary arity.

We define now the answer set to a Datalog progfawmith goal predicate) over a DBG.

Let D be a collection of facts about the extensional and intensional predicatésTdfen,

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 37

the facts that can be deduced fr@rby applying a rule

R(X1, ..., X)) < Ri(YY), ..., Ru(y™)

of IT are all facts of the fornR(dx, ..., d,) such thatls, ..., d, are nodes of and there

is a substitution of the variables in the body of the rule with nodes thfat substitutes;
with d; and such that, after the substitution, all atoms of the body are among the faxts in
We denote by® (D) the collection of facts obtained as the uniorfdfvith all facts that
can be deduced frof®® by applying one of the rules dfi. For a DBG, let

Do = G,
Diy1 = O(D)).

Then, for an IDB predicat@ of 11, theanswer seQD 7} (G) to the Datalog prograni with
goal predicat&) over the DBG is the collection of facts abo@® in Dy, whereh is the least
number such thab;, = D;,.1. Note that such ah always exist$3].

We say that a Datalog prografd with goal predicateQ is containedin a union of
C2RPQSIif Q%7 (G) € I'(G) for every DBG.

3. Containment of Datalog in unions of conjunctive queries

A containment mappinigom a conjunctive querny to a conjunctive queny is arenaming
of variables subject to the following constraints: (a) every distinguished variable must map
to itself, and (b) after renaming, every literal yn must be among the literals af. It
is well known that containment of conjunctive queries can be characterized in terms of
containment mappings (cf. [3]). In fact this characterization has been extended in [45] to
unions of conjunctive queries, and holds also for infinite unions.

Theorem 1(Sagiv and Yannakak[d5]). Let® = U;p; and ¥ = U;y; be(possibly infi-
nite) unions of conjunctive queries. Théris contained in? (i.e., ®(G) C Y(G) for every
DB G) if and only if for eachy; there is ay; such thatp; is contained inj;, i.e,, there is
a containment mapping fromj to ;.

As for containment of Datalog in (unions) of conjunctive queries, itis knowri3ef43])
that the relation defined by an IDB predicgén a Datalog progranfi, i.e., Q%7 (G), can be
defined by a possiblinfinite union of conjunctive queries. That is, for each IDB predicate
Q there is an infinite sequengg), ¢4, . . ., of conjunctive queries such that, for every DB
G, we haveQ¥(G) = U2 ¢;(G). The ¢;'s are called theexpansionsf Q. In [21],
expansions of a Datalog prografh are described in terms of so-callegpansion tregs
which are finite trees in which each node is labeled with an instance of a rideWwe call
the head and the body of a node, respectively, the head and the body of the rule labeling the
node. In an expansion tree for an IDB predic@tethe root is labeled by a rule whose head
is aQ-atom. If a node; is labeled by a rule instance

R(t) < Ri(tYH,..., Rut™),

38 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

where the IDB atoms in the body of the rule @g(t'), ..., R;, (t'), theng has children

g1, ..., gtlabeled with rule instances whose heads are, respectively, the Rtpitis), . . .,

R;, (t'¢). In particular, if all atoms in the body ¢f are EDB atoms, thep must be a leaf.

The query corresponding to an expansion tree is the conjunction of all EDB atoms in the
nodes of the tree, with the variables in the head of the root as the distinguished variables.
Thus, we can view an expansion treas a conjunctive query, and extend, in the obvious
way, the notion of containment mapping also to mappings from a conjunctive query to an
expansion tree. Ldteeg Q, IT) denote the set of expansion trees for an IDB predi¢ate

in I1. (Note thatreeg Q, II) is, in general, an infinite set.) Then for every [OBwe have

07 G = U 9.

tetreeq Q,I1)

It follows thatIT is contained in a conjunctive quegyif there is a containment mapping
from ¢ to each expansion treein treeg Q, I1).

Unfortunately, the number of variables, and hence the number of node labels in expansion
trees is not bounded, and thus expansion trees are not directly suited for an automata-
theoretic approach to containment.[R1], the notion ofproof treeis introduced, with the
idea of describing expansion trees using a finite number of labels. The number of labels is
bound by bounding the set of variables that can occur in labels of nodes in the treealf
rule of a Datalog programi, then lethum var(r) be the number of variables occurring in
IDB atoms inr (head or body). Letum var(IT) be twice the maximum afum var(r) for
all rulesr in I1. Letvar(IT) be the sefxq, ..., xnum varan}- A proof treefor II is simply
an expansion tree fdt all of whose variables are fromar(IT). We denote the set of proof
trees for a predicat@ of a Datalog progranil by p treegQ, IT).

A proof tree represents an expansion tree where variables are re-used. In other words,
the same variable is used to represent a set of distinct variables in the expansion tree.
Intuitively, to reconstruct an expansion tree for a given proof tree, we need to distinguish
among occurrences of variables. lggtand g, be nodes in a proof treg with a lowest
common ancestogg, and letx; andx, be occurrences, ig; and g2, respectively, of a
variablex. We say thatx; andx, are connectedn 7 if the head of every node, except
perhaps fogo, on the simple path connectigg andg, has an occurrence of (Notice that
this means that also occurs in the body @f.) We say that an occurrengeof a variable
x in 7 is adistinguished occurrencéit is connected to an occurrence ofin the head of
the root ofr.

We want to define containment mappings from conjunctive queries to proof trees such
that there is a containment mapping from a conjunctive query to a proof tree if and only if
there is a containment mapping from the conjunctive query to the expansion corresponding
to the proof tree. To do so, we need to force a variable in the conjunctive query to map to
a unique variable in the expansion corresponding to the proof treoAg containment
mappingfrom a conjunctive query to a proof treer is a containment mappingfrom ¢
to T with the following properties:

e /1 maps distinguished occurrencesjro distinguished occurrencesinand
e if x; andxo are two occurrences of a variabten ¢, then the occurrencésgx;) and
h(x2) in T are connected.

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 39

The following characterization of containment of a union of conjunctive queries in a
Datalog program was shown j&1].

Theorem 2(Chaudhuri and Vard[21]). LetII be a Datalog program with goal predicate
0, and let® = U, p; be a(possibly infinit¢ union of conjunctive queries over EDB
predicates. Theil is contained in® if and only if for every proof tree € p_treeg Q, II)
there is a strong containment mapping from sapneo t.

The above theorem is showr[#1] for finiteunions of conjunctive queries only. However,
itis easy to see that, because of Theorem 1, the proof carries through also for infinite unions.

Notice that, together with Theorems 1 and 2 by itself does not provide decidability
of containment of Datalog in (possibly infinite) unions of conjunctive queries, since one
needs a method to check the existence of a strong containment mapping. Undecidability
of containment between Datalog queries [46] shows that such a method will not exist in
general for (infinite) unions that are expansions of Datalog programs. However, in [21] the
above result is exploited to show that containment of a Datalog query in a finite union of
conjunctive queries is in 2EXPTIME (and in fact 2EXPTIME-complete).

To exploit Theorem 2 for containment of Datalog queries in union of C2RPQs, we need
to characterize the problem in terms of containment between Datalog and (infinite) unions
of conjunctive queries. Aexpansiorof a C2RPQ

Q(-xlv"'axn) < El()’l» y_‘/L)ﬂ MR} Em(ynh y;n)
is a CQ of the form

ny,_ni—1
Q(-x].? MR xn) <~ V%()’la Z%)a r]?(Z%a Z%)a MR rll(zll ’ yi)a

nm—

1 1 2.1 .2 n 1
rm(ym» Zm)v rm(st Zm)v cee rmm(zm »y;/n)s

where, for eacli € {1, ..., m}, we have that; >0, thatr!--. " e L(E;), and that all
variableg! are pairwise distinct. Observe that, when= 0, we havethat! - - - /" = ¢, and
i, 2b), r2L 22, ..., M) becomes simply; = y/. Notice that a C2RPQ
has in general many expansions, and that, due to transitive closure, the number of such
expansions may be infinite.

The following lemma is an easy consequence of The@and of the semantics of unions
of C2RPQs.

Lemma 3. Let I1 be a Datalog program with goal predicat@, and letI" = U;y; be
a finite union of C2RPQs. Thefi is contained inI" if and only if for every proof tree
T € p_treegQ, II) there is a C2RPQ; of I" and an expansiom of y; such that there is a
strong containment mapping fromto .

In the following, we show how to check this condition using tree automata. Ufaide
where standard (one-way) non-deterministic tree automata are adopted, we need to resort
to two-way alternating tree automata. This is due to the presence of inverses of relations

40 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

in 2RPQs, and due to the fact that in 2RPQs (and hence in C2RPQs) concatenation and
transitive closure introduce implicit variables that need to be dealt with.

4. Two-way alternating tree automata

We present the basic notions on automata used in the rest of the paper. We assume
familiarity with the standard notions of (one-way) word automata (1NF34) and (one-
way) hon-deterministic tree automata (1NTAs) [31], and concentrate on two-way alternating
tree automata (2ATAS).

Trees are represented as prefix closed finite sets of wordN\oydthe set of positive
natural numbers). Formally,teee T is a finite subset oN_, such that ifg-c € T, where
g € N7 andc € Ny, thenalsg € 7 and ifc > 1 then alsg-(c — 1) € T. The elements
of T are callednodes and for everyg € T, the nodeg-c € T, with c € N, are the
successorsf g. By convention we takg-0 = g, andg-c-(—1) = g. By definition, the
empty sequence is a member of every tree, and is called thet. Note thate - —1 is
undefined. Théranching degreel(g) of a nodeg denotes the number of successors of
g. If the branching degree of all nodes of a tree is bounde#, ye say that the tree has
branching degrek. Given a finite alphabeX, a >-labeled treer is a pair(T, V), whereT
isatree and/ : T — X maps each node @f to an element of. 2-labeled trees are often
referred to asrees and ift = (7, V) is a (labeled) tree anglis a node ofl’, we user(g)
to denoteV (g).

Two-way alternating tree automata (2ATAS) [22,47], are a generalization of standard non-
deterministic top-down tree automata (1NTAS) [25,48] with both upward moves and with
alternation. Let3(7) be the set of positive Boolean formulae ovetbuilt inductively by
applyingA andv starting fromtrue, false, and elements af. Foraset/ C I and a formula
¢ € B(I), we say thav satisfiesp if and only if, assignindrue to the elements i and
falseto those inf \ J, makesyp true. For a positive integd, let[k] = {—1,0,1,..., k}.

A two-way alternating tree automatq@ATA) over a finite alphabel running over trees
with branching degreg, is a tupleA = (2, S, 0, so, F), whereS is a finite set of states,
0:8Sx2 — B([k]xS)isthe transition functiong € S is the initial state, and’ C Sis the

set of final states. The transition function maps a stateS and an input lettes € 2 to a
positive Boolean formula over[k] x S. Sincep can be written in conjunctive normal form,
in the following we view it as a set of conjunctions. Intuitively, when the 2ATA performs
a transition, it non-deterministically chooses one of the conjunctidnsy, and then, for
each pair(c, s’) appearing inc a new copy of the automaton starts in stdtand moves to
the direction suggested lay

A runv of a 2ATA A over a labeled tree = (T, V) is a labeled tre€T,, V,) in which
every node is labeled by an elementfoi S. A node f of T, labeled by(g, s) describes
a copy ofA that is in the state and reads the nodg of 7. The labels of adjacent nodes
have to satisfy the transition function Af Formally, a run(7,, V,) is a(T x S)-labeled
tree satisfying:

(1) ¢ € Ty andV,(e) = (&, s0).
(2) Letf e Ty, with Vy,(f) = (g, s) ando(s, V(g)) = ¢. Then there is a (possibly empty)

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 41

setC = {(c1, $1), ..., (cn, sn)} € [k] x S such that:
e C satisfiesp and
e foralli € {1,...,n},wehavethaf-i € T,, g-c; isdefined, and, (f-i) = (g-c;, si).
Arunv = (T, V,u) on atreer is acceptingf, whenever a leaf of, is labeled by(g,),
thens € F. A acceptsa labeled tree if it has an accepting run on The set of trees
accepted bW is denoted/ (A). Thenon-emptinesproblem for tree automata consists in
deciding, given a tree automatén whether7 (A) is non-empty.
As shown in[22], 2ATAs can be converted to complementary 1NTAs with only a single
exponential blowup. Moreover, it is straightforward to see that one can construct a 2ATA
of polynomial size accepting the finite union of the languages accepte@ByAs.

Proposition 4 (Cosmadakis et a[22]). Given a 2ATAA over an alphabet, there is a
1INTAA of size exponential in the size Afsuch thatA accepts a*-labeled treer if and
only if 7 is rejected byA.

Proposition 5. Givenn 2ATASA1, ..., A, over an alphabet, there is a 2ATAA of size
linear in the sum of the sizes Afi, ..., A, suchthatT (Ay) =T (A U---UT (Ay).

We make also use of the following standard results for INTAs.

Proposition 6 (Costich and Medvedd23]). Given INTAsA; and A, over an alphabet
2, there is a INTAA whose size is the product of the sizesAafand A, such that
T (AR =T A)NT(A2).

Proposition 7 (Doner[25], Thatcher and Wrigh48]). The non-emptiness problem for
1INTAs is decidable in polynomial time.

In fact, the non-emptiness problem for 1INTAs is decidable in linear timg8s2@]

5. Containment of Datalog in unions of C2RPQs

The main feature of proof trees is the fact that the number of possible labels is finite; it
is actually exponential in the size &f. Because the set of labels is finite, the set of proof
treesp_treeg Q, II), for an IDB predicateQ in a programll, can be described by a tree
automaton.

Theorem 8(Chaudhuri and Vard[21]). Let I be a Datalog program with a goal predi-

cateQ. Then there is a 1NTApQ—tIryee‘°‘, whose size is exponential in the sizdhfsuch that

T (A% = p_treeq Q. IN).

The automato?-7%° = (2, T U {accep}, Z, d, {accep}), analogous to the one de-
fined in[21], is as follows.

The state set is the sEof all IDB atoms with variables amongr(I1), plus an accepting
state. The start-state $gj is the set of all atom@ (s), where the variables sfre invar (I1).

42 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

The alphabel is the setR of instances of rules dff overvar(II). The transition function
d is constructed as follows. Letbe the body of a rule instance

R(t) < RithH,..., R,(t™
o Ifthe IDB atoms ing areR;, (t'1), ..., R;, (t'¢), then there is a transitioh
(L Riy) A== A (6 Ry, (1)) € S(R(), (R(t) < 0))
e If all atoms ing are EDB atoms, then there is a transition
(0, accepp € d(R(1), (R(t) < @)

It is easy to see that the number of states and transition%ﬁ'-ifes is exponential in the
size ofI1.
We now show that strong containment of proof trees in a C2RPQ can be checked by tree
automata as well. Ldl be a Datalog program with (binary) EDB predicatesliand with
goal predicateD, and lety be a C2RPQ oved™ of the same arity ag. We describe the
construction of a 2ATAA” 7 that accepts all proof treesn p_treeg Q, IT) such that there
is an expansiop of y ang’a strong containment mapping frgno z.
We viewy as a set of atomg& (x, y), whereE is a INFAE = (4%, Sg, s, O, FE),
with sg € Sp andFg C Sk, and where, w.l.o.gdr does not contaia-transitions. Also,
w.l.0.g., we assume that for two distinct atofis(x1, y1) and E2(x2, y2), E1 and E» are
distinct automata with disjoint sets of states, i%:, N Sg, = . For a INFAE, we use
Ef to denote the 1NFA identical t&, except thak € Sg is the initial state ofEf, and
F C S is the set of final states df/". WhenF is a singleton, we may omit set brackets.
Let V, be the set of variables appearing in the C2RP&dV," = {if, 02| E(x, y) € 7},
i.e., for each INFAE (x, y) € 7, V' contains two special variabl&g. andiZ. We denote
with BB the collection of all setg of atoms, whergs contains, for each atorfi(x, y) € v,
at most one atonEf(x’, y'), for somes € Sg andF C Sg, with x” eitherx or 1‘;}5 and
y’ eithery or 6125. Notice that the size dB is exponential in the size of Indeed, lek be
the number of atoms ip and letm be an upper bound on the number of states of each
INFA in y. All possible variants of a 1NFA obtained by changing the initial state and/or
final states are: - 2. Hence, the number of possible sets of INFAs of at rh@dements
is (m - 2myk = 200mk)
The automatoM\VQﬂ is (2, S U {accept, Sg, J, {accept).
e The alphabet is again the seR of instances of rules affl overvar(II).
e The state sef is the setZ x B x 2Yxvaril) 5 2V;">xvardD pecall that is the set
of all IDB atoms with variables amonear(IT). The second component represents the
collection of automata accepting sequences of atoms that have to be mapped to atoms
in the treer accepted by\”’Q, 7 @nd the third and fourth components contain the set of

partial mappings respectively froi and V},+ tovar(Il).

e The start-state seffp consists of all tuplesQ(s), y, M, s, ¥), where the variables of
are invar(I1) andM, s is a mapping of the distinguished variableg drfto the variables
of s.

1For uniformity, we use the notation of 2ATAs to denote the transitions of 1INTAs.

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 43

The transition functiord of A’Q 7 is constructed as follows. Let be the body of a rule
instance ik

R(t) < Ri(th, ..., R, (™)
(1) There is an “atom mapping” transition
(0, (R(t), B’ M, M) € d((R(), f, M, M), (R(t) < 0))

if there is an EDB atora(a, b) amongR1(t1), ..., R, (t") and if ' coincides withp,
except that one elemedit” (x, y) in f is replaced ing’ by ESF,(x’, y), and one of the
following holds:
e s’ € 0g(s,e)and
o if x € V, (i.e.,x is a variable ofy), M mapsx to a, andM, does not mapi,l;,
thenx’ = o} andM’, = M, U {0}, b)};
oif x = 1‘)}5 € V.;f (i.e., x is the first special variable for the 1NFA) and
(U3, a) € My, thenx’ = x = v}, andM/, = My \ {(¥}, @)} U {0}, b)};
e s’ €dp(l,e”)and
o if x € V, (i.e.,x is a variable ofy), M mapsx to b, andM, does not mapﬁ%,
thenx’ = o} andM/, = M, U {(v}, a)};
oif x = 1‘)}? € V.;f (i.e., x is the first special variable for the 1NFA) and
(U3, b) € M, thenx’ = x = v}, andM/, = M, \ {(V}, b)} U {(0}, a)}.
Intuitively, an “atom mapping” transition maps the next atom read by some 1NFA
in f to some EDB atom ip, and modifies\/, accordingly. Note that the variable
x (either a variable of, or the special variablé}g) must already be mapped
(respectively, byM or M) to some variable in the current nodewf
(2) There is a “splitting” transition

(0, (R(V), ', M, M) A (0, (R(V), B", M, M)
€ O((R(V), B, M, M), (R() < 0))

if the following hold:

e M/ andM’/ coincide withM ,, except for the changes described in the following point;

e fcanbe partitioned intf;, 5, andfs; moreovei’ = B,UpzandB” = B,U B3, where
B3 andpy are sets of elements that consist of one element for each eléifient y) in
f3, obtained as follows: for some statef E and some variable € var(IT) appearing
in R(t) < g, one of the following holds:

o B contains the elemenk’ (x, %), B3 contains the element” (v}, y), M/,
(re-)mapsi2 to a, andM/] (re-)mapsit toa;

o ff3 contains the elemenk’ (i1, y), B4 contains the elemenE? (x, v2), M/,
(re—)mapsﬁ,li toa, andM’/ (re—)maps{;fE toa;

e " andp” can share a variable i, only if this variable is in the domain dff. (Notice
that two occurrences of a special variabIeVI,r'T shared by3’ andp” are not related to
each other.)

A “splitting” transition partitions the atoms ifi into two parts. The goal is to enable the
two parts to be manipulated separately. For example, one part may correspond to those

44 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

atoms that are intended to be “moved” together to an adjacent node in a future transition,
while the other part may correspond to those atoms that are meant to stay together in the
current node for further processing, e.g., by further splitting or by mapping to EDB atoms.
During splitting, some atoms ifi may be actually split into two subatoms. The mappings

M and M have to “bind” together variables that are in common to the two conjuncts of
the transition.

(3) There is a “downward moving” transition

(o (Ri, (E), B M. ML) € S((R(V), B. M. ML), (R() < 0))

if j € {1,.... £}, wheret is the number of IDB atoms inandR;; (t'/) is the jth IDB

atom, and if for all variables that occur jhand that are in the domain of eith&f or

M, , their image is irt’;.
A “downward moving” transition moves to a successor node, and is intended to be applied
whenever no next atom can be mapped and no further splitting is possible. Moving is
possible only if variables that are both in atoms still to be mapped (and tif)simd have
already been mapped (and thus are in the domain of elther M) can be propagated
through the head of the rule to which the automaton moves.
(4) There is an “upward moving” transition

<_19 (R/(t/)r ﬁ? M? M+)> € 5((R(t)9 ﬂv M7 M+)’ (R(t) <~ Q))

if R’(t") is the head of some rule instance and if for all variables that occfirand

that are in the domain of eithéf or M, theirimage is irt.
An “upward moving” transition is similar to a “downward moving” one, except that it moves
to the predecessor node. Notice that, after an “upward moving” transition, the automaton
will be able to perform further moves (and hence to eventually accept) only if the head of
the rule instance in the predecessor node'{$).
(5) There is an “equality checking” transition

<O’ (R(t)’ ﬁ/v M’ M+)> € 5((R(t)v ﬁa M’ M-‘r)’ (R(t) <~ Q))

if the following hold:
e f can be partitioned intf, andf’;
o for allatomsEf (x, y) € , we have that
oseF,
o (x,a)and(y,a) areinM U M, for some variable in ¢ ort, i.e., bothx and
y are in the domain o#/ or of M and they are mapped to the same variable
An “equality checking” transition gets rid of those elementg iall of whose atoms have
already been mapped to atomgivhile doing so, it checks thaf andM_. are compatible
with the equalities induced by such atoms.
(6) There is a “mapping extending” transition

<O’ (R(t)’ ﬁ9 Ml? M+)) € 5((R(t)’ ﬂr M! M+)7 (R(t) < Q))

if M’ is a partial mapping that extends.

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 45

A “mapping extending” transition adds some variables to the mappinghis may be
necessary to be able to apply some other transition that requires certain variables to appear
in M.

(7) There is a “final” transition

(0, accepi € S((R(t),d, M, M), (R(t) < @)).

A “final” transition moves to the accepting state whenever there are no further atoms
in p that have to be processed.
It is easy to see that the number of states and transitioAs iy is exponential in the
size of I andy. The following two basic lemmas establish the correctness of the above
construction.

Lemma 9. Lett be a proof tree in ptreeg Q, II). If there is an expansiop of y and a
strong containment mappirigfrom ¢ to 7, thent is accepted bWQ’H.

Proof. We prove acceptance by showing the existence of an acceptingoful’ - We
view the expansion of y as a set of sequences of atoms; for each &a@m y) in t%e body
of y, ¢ contains one sequence of atoms

op = r'@% N, rPEh A, T

with 20 = x, " = v, andrl...r" e L(E).

Besides the accepting rurwe make use of a tre®, with the same set of nodesasn
which each node is labeled by a set of sequences of atomsMbre precisely, for each
node f, eachw € W(f) is a (possibly empty) subsequence of some sequenca ¢,
representing those atomsr, that, whenA’ N is at nodef of the run, have not already
been mapped to atoms-inFor the root we have thatV () = ¢.

Let f be a node of the rum with v(f) = (g, (R(1), f, M, M)), whereg is a node
of Tt andt(g) = (R(t) <). We say thatW (f) is compatiblewith f if it consists of
sequences of atoms, one sequence ("1, z%), r (g, 2+, L V(2L 20) for
each atomE! (x/, y') in 8, wherew is a contiguous subsequence of the sequence=
r1(Z0 zY, r2(zL, 23, ..., r(2" 1, 2") in ¢ corresponding to the atodi(x, y) in 7, and
we have that
o r...rV e L(ED);

o u> 1iff x' = o}, andifu > 1 then(vk, h(z*~1) e My;

o v <niff yy =12, andifv < n then(¥2, h(z")) € My;

For each atonE[(x, y) in B for which the corresponding sequence of atom#iqy) is
F L 2, L e (z0 L V), we used(x) to denotez 1 andd(y) to denotez”. Notice
that, ifx € V,, thend(x) denotes itself. We say thayf is connectedlif for each variabler
appearing both iff and in the domain oM U M, R(t) < ¢ contains an occurrence of a
variable connected to the occurrena@(x)). We say that\, is compatiblewith p, if for
eachEf (x, y) in B, if x isin V,, thenM_,. does not maw}g; similarly for y. We say that

the pair(g, s), with g a node oft ands a state oW’Q’H, is accepting(for A’Q’H andr) if

there is an accepting runof AVQ!H ont and a nodef of v such thav(f) = (g, s).

46 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

We showthat(f) = (g, (R(t), f, M, M.)) is accepting foAVQ‘H andr, if the following
conditions hold:

(1) M is consistent witth and maps all distinguished variablesyof
(2) M is compatible withg;

(3) f isconnected;

(4) W(f) is compatible withg.

We proceed by induction af\ /), whereS(f) is the sum of the lengths of the sequences of
atoms inW (f). We count an equality atom as having length 1, and a sequence consisting of
n atoms different from equalities as having length 1. Below we consider the case where
conditions (1)—(4) are satisfied for a nodelf they are not, the property we are proving
trivially holds.

e Base caseS(f) = 0. ThenW () is empty. So i, andA“”Q’H can perform a “final”
transition to the accepting state. Heng¢) is accepting.

e Inductive casel: Assume there is a non-empty sequence= r*(z*~ 1, z%), r*+1(z,
2N L@ 20 in W) with 74 - -1V e L(EF) for someEF (x, y) in f, such
that the body of the rule of the nodg of the proof tree contains an atorti(a,) and
we have thati(z*~1) = a andh(z*) = b. In other wordsh maps the first atom i to
an atom ing. We consider the case wheré = ¢, for somee € 4 and wherex € V,
(i.e.,u = 1andx = z%is a variable ofy). The other cases can be dealt with analogously.
Sincer*-..r¥ e L(EF), there must be som€ e 6 (s, e) such that“*+1...rv ¢
L(Eﬁ). SinceM, is compatible withg it does not map‘)}g.

Assume thatr is in the domain of\/. SinceM is consistent with: it mapsx to a.
ThenAVQ’H can perform an “atom mapping” transition

(0, (R(V), B’ M, M) € S((R(V), B, M, My), (R(1) < 0)),

wheref’ coincides with, except that the elemett! (x, y) in f is replaced ing’ by
Ef (L, y), andM = M, U {(v}, b)}.
Hence, in the rum there is a unique successoi of £ with v(f-1) = (g, (R(t), f/, M,
M!)). ForW we have thaW (f-1) coincides withW (f), except that the sequeneein
W(f) is replaced inW (f-1) by w’ = r*+1(z%, z4t1), ..., r¥(z"7L, V). Observe that
f-1 satisfies conditions (1)—(4) and th&tf-1) = S(f) — 1, since we have mapped one
atom of W(f). Thus, by inductive hypothesis(f-1) is accepting, and hence alsof).

If x is not in the domain oM, thenA”’é’H can first perform a “mapping extending”
transition

<O’ (R(t)’ ﬁ9 Ml? M+)) € 5((R(t)’ ﬁr M! M+)’ (R(t) <~ Q))

such thatM’ = M U {(x, @)}, and then perform the transition above. In this cageis
still consistent withi and the resulting node in the run is connected, sincemapped
to a variable inR(t) < o.

e Inductive case: Assume there is a sequenoe= r*(z*1,z%),...,r’(z""%, z%) in
W (f) that collapses to the equality 1 = zV, beingr” ---r’ = &, and such thak
mapsz*~! andz¥ to occurrences of a variable both connected to the same vauiale
R(t) < 0.

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 47

We consider only the case where is a variablex in V, andz" is a variabley in
V,. The other cases are analogous. For €&thx, y) in f corresponding ta, we have
thats € F.

Assume that botlv andy are in the domain o#/. SinceM is consistent wittk, it maps
bothx andy toa. ThusAVQ,H can perform the “equality checking” transition

(Ov (R(t)’ ﬁ/’ M’ M+)> € 5((R(t)v ﬁ’ M’ M+)1 (R(t) <~ Q))

Hence, in the rum there is a unique successpil of £ with v(f-1) = (g, (R(t), ', M,
M_)). ForW we have thatV (f-1) coincides withW (/) \ {w}. Observe thaf -1 satisfies
conditions (1) to (4) and that(f-1) = S(f) — 1. Thus, by inductive hypothesis;f-1)
is accepting, and hence als@f).

If x oryisnotinthe domain o#/, thenAVQ’H can first perform a “mapping extending”
transition, as in the previous case.

Inductive case8: Consider somg € {—1,1,..., ¢}, wheret is the number of IDB
atoms ing. Let W1 be the subset d¥ (/) consisting of those sequenae®f atoms such
thath maps both the first and the last atomuofo atoms in thejth subtree of, where
we take the-1th subtree of to bet without the tree rooted at. Let W» be the subset
of W(f) consisting of those sequenae®f atoms such thdt maps neither the first nor
the last atom ofv to atoms in thejth subtree of. Let W3 be the remaining sequences
of atoms inW (f). Finally, let bothW; and W> be different fromw (f).

We have a corresponding partition finto f8,, ,, andfs. For each sequence =
4 2, L, rY (2P 2Y) in Wa corresponding to an eIemeEf(x, y)in f3, since
r(z"~1, z*) is mapped to an atom in thith subtree of, andr¥(zV~1, z¥) is mapped
elsewhere, there must be some intermediate varidbtethe sequence that is mapped
by A to an occurrence of a variable connected to a variabie R(t) < ¢. (The case
where the last atom is mapped to thisubtree is analogous.) Hence there must be a
states’ of E such thav* ---r' € L(E}) andri*t...rV e L(ED).

Let 5 be obtained fronf, by replacing each atori” (x, y) with one of ES'(x, #2)
or Ej(z‘)}g, v), depending on whether the first or the last atom of the corresponding
sequence W3 is mapped to thgth subtree. Lep3 be defined the other way round.
Finally, letp' = B, U 3 andf” = B, U 5.

Assume that all variables df, shared by’ and 8" are already in the domain af.
ThusAVQ 7 can perform the “splitting” transition

(0, (R(M), B’y M, M) A (O, (R(t), B", M, M)
€0((R(M), B. M, My), (R(t) < 0))

with M/ andM// defined as required.

Hence, in the rurv there are two successorsl and f-2 of f with v(f-1) =
(8. (RM), f'. M, M) andv(f-1) = (g, (R(t), ", M, M/)). For W we have that
W (f-1) consists ofi; union the set of subsequencesVf corresponding to the ele-
ments inf5. Analogously forw (f-2).

Observe thay-1 andf -2 satisfy conditions (1) to (4) above, and that b8ilf-1) and
S(f-2) are strictly smaller thas(f), sinceW1 andW> are by assumption both different

48 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

from W (). Thus, by inductive hypothesis(f-1) andv(f-2) are both accepting, and
hence also(f).

If some variablex in V;, is shared bys" and” but is not already in the domain &f,
thenA”’éJ7 can first perform a “mapping extending” transition, by addingi(x)) to
M. Observe that, sincein is shared by’ andB”, one occurrence of must be mapped
by & in the jth subtree, and one somewhere else. Hence, siixa strong containment
mapping, the two occurrences lofx) must be connected, and so alB@) < ¢ must
contain a connected occurrencehdf). Thus, the node in the run resulting from the
“mapping extending” transition is also connected.

e Inductive caset: When the conditions for the application of the base case and the
inductive cases 1-3 do not hold, th8f(f) is still not empty but we cannot progress
with the mapping on the current nogdeSince none of the above cases apply it must be
that for all variablesc in 8, ¥(x) is mapped by: to a variable in thejth subtree of,
for somej. Since is connected, all variables that appear botff end in the domain
of M U M must be mapped by to occurrence of variables connected to a variable in
R(t) < . Sincenh is a strong containment mapping and all these variables are mapped
in the jth subtree, if follows that they are connected through variables of tthéDB
atom ing (respectively, the heal(t), if j = —1).

ThusA’Q’ ;7 ¢an perform either a “downward moving” transition

<j’ (Rij(tij)’ ﬁv M7 M+)) € 5((R(t)’ ,B’ M7 M+)7(R(t) <_Q))
or an “upward moving” transition
<_19 (R/(t/)7 ﬁ? M? M+)> € 5((R(t)9 ﬂv M7 M+)’ (R(t) (_Q))

Hence, inthe rumthere is a unique successoa of f withv(f-1) = (g-/, (R;; (', B,
M, M,)) (resp.v(f-1) = (g-(=1), (R'(t), B, M, M))). For W we have thaW (f-1)
coincides withw (f). f-1 satisfies conditions (1)—(4). Moreover, it is easy to see that
one can perform transitions only a finite number of times since it is not possiblé that
requires to pass twice through the same ngaé 7. After such transitions, one of the
cases above applies. Hence, by inductive hypothesty,is accepting.
Finally, we observe that conditions (1)—(4) are trivially satisfied at thesoéy andW .

The claim follows. [

Lemma 10. Lett be a proof tree in ptreeg Q, I1). If 7 is accepted bWQ - then there is
an expansiorp of y and a strong containment mapping fraprto .

Proof. We construct from an accepting rulofAzu7 an expansiog and a strong contain-
ment mapping fronyp to t. We proceed by bottom-up induction on the run, making use of a
treeW analogous to the one used in the proof of Len@mand a treé with the same set of
nodes as andW, and such thak(f) is a strong containment mapping from the atoms in
W (f)toatomsir. Inthe following, letf be anode of with v(f) = (g, (R(t), , M, M))
and(g) = (R(t) < o).

We recall the definition ofl(x), of connected node of a run, and of accepting pais).
For each atomE[(x, y) in B for which the corresponding sequence of atoms¥iay)

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 49

isrt(z" 1 2, ..., rY(zV7 L, zY), we used(x) to denotez~1 andd(y) to denotez?. We

say thatf is connectedif for each variablex appearing both irf and in the domain of

M U My, R(t) < o contains an occurrence of a variable connected to the occurrence
h(¥(x)). We say that the paifg, s), with ¢ a node oft ands a state OWQH, is accepting

(for A”"Q’n andr) if there is an accepting rumof A“”Q’n ont and a nodef of v such that

v(f) = (g,). .

We further say thad , is consistenwith i (f), if for each variabley; in the domain of
M. we have that/,. mapsv’, to h(f) (0 (0%)).

We will inductively constructW andi such that, for each nodg of v (and hence of,
andW), such thaw(f) is accepting, we have thaf andM . are consistent with(f) and
that f is connected.

e Base casé“final” transition): If there is a “final” transition from a nod¢ to a node
f-Llofvthatis aleaf of the run labeled with the accepting state, thend. ThenW (f)
is empty and so i&(f). Hence, trivially,a(f) is a strong containment mapping from
W(f)tot, M andM are consistent with (), and f is connected.

e Inductive casd (“atom mapping” transition: If there is an “atom mapping” transition
from a nodef to anodef-1 of v, withv(f-1) = (g, (R(t), B, M, M!.)) accepting, then,
by inductive hypothesisiV (f-1) consists of one sequence of atoms for each element
Ef (x, y) of B/, h(f-1) is a strong containment mapping fram(f-1) to atoms inc, M
andM’, are consistent with(f-1), and f is connected.

We have thap coincides with3’, except that one elemeﬁtf (x, y)in Bisreplacedin
B by Ef (x’, y). We consider only the case where there is an EDB af@yb) among the
atoms‘ing such that’ € o (s, e), andx € V,. The other cases are similar. Th&n(f)
is equal toW (f-1), except that the sequene&¥(x), x1) - - - r*(x"~1, ¥(y)) of atoms
corresponding t& (x', y) is replaced in () by e(d(x), 9(x)), r*(@(x"), x1) - - "
(x"~1,9(y)) corresponding t& [(x, y).

We extend:(f-1) to h(f) by mapping the current occurrencei(fr) to a. Observe
that, if there are other occurrencesiak) in 2 (f-1) they are mapped o as well since
M is consistent withz(f-1) and f-1 is connected. Moreoved/ | = M/, \ {(6,15, b)}.
Hencei(f) is a strong containment mapping frain(/) to atoms inc andM andM ;.
are consistent with (/). Moreover since the transition stays in the same node)ang
is mapped to a variable i we have thayf is connected.

e Inductive case (“splitting” transition): If there is a “splitting” transition from a node
f to nodesf-1 and f-2 of v with v(f-1) = (g, (R(t), ', M, M) andv(f-2) =
(8. (R(t), p’, M, M?))) accepting, then, by inductive hypothesi(f-1) consists of
one sequence of atoms for each elenehtx, y) of f/, h(f-1) is a strong containment
mapping fromW (f-1) to atoms int, M and M/, are consistent with(f-1), andf-1is
connected; similarly foyf-2.

We have that§ coincides withf' U B, except for element&/ (x, y) in 8 that are

replaced ing’ by E¥'(x, 92) and inp” by E (v%, y). (The case wher&?' (x, v2) is in
B" and EF (v}, y) is in B is analogous.) The# (f) is equal toWw (f-1) U W(f-2),
except that, for each such? (x, y) we have a sequenae(z*~1, z7~1), w(zi~1, z%),
wherew(z4~1, 271 = rt (%1, %), ..., rim1(Z' 2, 7i7Y) is the sequence of atoms in

50

of

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

W (f-1) corresponding t&? (x, 92) andw(z' %, z¥) = ri(z' "%, 2), ..., PP (2" L, 2Y)
is the sequence iW (f-2) corresponding tdzj (varv,li, y).

We takeh(f) = h(f-1) U h(f-2). Observe that, since(f-1) andhi(f-2) are both
compatible withM and respectively compatible witlt/ and M/, both occurrences of
Z 7 inw(z* L,z and inw(z' 71, z¥) are mapped to the same variableooHence,
h(f) is a strong containment mapping frowi(/) to atoms int and M and M are
consistent withz(/). Moreover, since both conjuncts of the transition stay in the same
node and;’~! is mapped to a variable igy f is connected.

Inductive cas@ (“moving” transition): If there is a “downward moving” (resp., “upward
moving”) transition from anodg to anodef -1 ofv, withv(f-1) = (g-j, (R;; (i), B, M,
M) (resp.v(f-1) = (g-(=1), (R'(t), §, M, M))) accepting, then, by inductive hy-
pothesis,W (f-1) consists of one sequence of atoms for each elemgrik, y) of B,
h(f-1) is a strong containment mapping from(f-1) to atoms int, M and M, are
consistent withiz(f-1), and -1 is connected.

We takeW (f) = W(f-1) andh(f) = h(f-1). Trivially h(f-1) is a strong containment
mapping fromW (f) to atoms inc and M and M. are consistent with (/). Moreover,
since all variables that occur fhand that are in the domain &f U M have their image
inti (resp.,p’), f is connected.

Inductive cased (“equality checking” transition): If there is an “equality checking”
transition from a nodef to a nodef-1 of v, with v(f-1) = (g, (R(t), f’, M, M,))
accepting, then, by inductive hypothesig(f-1) consists of one sequence of atoms for
each elemenk’ (x, y) of §, h(f-1) is a strong containment mapping frof(f-1) to
atoms int, M andM_ are consistent with (f-1), and f-1 is connected.

For each atonEf(x, y) in o we have that € F and(x, a) and(y, a) are inM U M,
for some variable: in R(t) < ¢. ThenW (f) extendsW(f-1) by adding an equality
atomd(x) = J(y), andh(f) extendsi(f-1) by mapping the occurrence 6fx) and of
¥(y) toa. Hencefi(f) is a strong containment mapping frdif() to atoms inc andM
andM_. are consistent with (/). Moreover since the transition stays in the same node
andd(x) andd(y) are mapped to a variable R(t) < o, we have thaff is connected.
Inductive casé (“mapping extending” transitiojt If there is a “mapping extending”
transition from a nodef to a nodef-1 of v, with v(f-1) = (g, (R(t), B, M, M))
accepting, then, by inductive hypothesig(f-1) consists of one sequence of atoms for
each elemenk’ (x, y) of B, h(f-1) is a strong containment mapping fro(f-1) to
atoms int, M and M are consistent with(f-1), and f-1 is connected.

We takeW (f) = W(f-1) andh(f) = h(f-1). Trivially 2(f-1) is a strong containment
mapping fromW () to atoms int andM and M are consistent with(/). Moreover,
[is trivially connected since the transition stays in the same npdemnains the same,
andM is smaller than\/’.

Since in the initial state oﬂQﬂ we have thap = 7, we havep = W (¢) is an expansion
v, andh = h(g) is a strong containment mapping frapno z. The claim follows. [J

Theorem 11. LetII be a Datalog program with binary EDB predicatesArand with goal

predicateQ, and letI” = U;y; be a finite union of C2RPQs over4®. Thenl is contained

in

I’ if and only if
TAYTS < U TAL

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 51

Proof. By Lemma3, IT is contained irl" if and only if for every proof tree € p_treegQ,

II) there is a; and an expansiop of y; such that there is a strong containment mapping
from ¢ to 7. By Theorem 8 and Lemmas 9 and 10, the latter conditions is equivalent to
T (A% T < U TAL . O

This allows us to establish the main result of the paper.

Theorem 12. Containment of grecursivg Datalog program in a union of C2RPQs is in
2EXPTIME.

Proof. By Propositiors, we can construct a 2ATAQ 7» Whose size is exponential in the
size ofIT andI’, such thatT(AQﬂ =, T(A'Q’)n). By Proposition 4, we can construct a
INTA Aérn, whose size is doubly exponential in the sizélb&dndI’, such that &-labeled

tree is accepted bs(“ if and only if it is not accepted b&\r . By Proposition 6, we can
construct a 1NTAAc0m, whose size is still doubly exponentlal in the sizdbandI’, such
thatAcont accepts &-labeled tree if and only if it is accepted "ees but not accepted

by any of theN’ . By Theorem 11Aont is non-empty if and only il is not contained
in I'. By Proposmon 7, non-emptiness Aton: can be checked in time polynomial in its
size, and hence doubly exponential in the sizélatndI". The claim follows. [J

6. Lower bound

Next we turn to the lower bound for containment of Datalog in unions of C2RPQs. In [21],
itis shown that containment of Datalog in unions of conjunctive queriesis 2EXPTIME-hard,
by a reduction from acceptance of an alternating EXPTIME Turing machine. The encoding
in that proof uses EDB predicates of arity different from 2, and hence does not directly
apply to containment of Datalog in unions of C2RPQs, where all EDB predicates are binary.
Nevertheless, the problem of containment of a Datalog program in a union of conjunctive
gueries over arbitrary EDB predicates can be reduced to the problem of containment of a
Datalog problem in a union of conjunctive queries over binary EDB predicates, as shown
below.

Let IT be a Datalog program with goal predicafeover EDB predicates of arbitrary
arity, and® a union of conjunctive queries over the EDB predicateglofVe construct
a Datalog progranil’ with goal predicateQ over binary EDB predicates and a union of
conjunctive querie®’ over binary EDB predicates as follows:

e For each EDB predicat® of arity n > 2 appearing inI or ® we considerR in II’ as

an IDB predicate, and we introduedresh binary EDB predicate®;, fori € 1,...,n

which represent the components of tuplesoflso, the following rule is added ti':

R(-xlv "‘7-xn) <~ Rl(%xl), AIR] Rn(y’xn)a

wherey is an existential variable that represents the typle. . ., x,).
e For each unary EDB predicafe appearing inll or @, we considerR in I’ as an IDB
predicate, and we introduce a fresh binary EDB predi@gteAlso, the following rule

52 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

is added tdT’:
R(x) < R,(x,x).

e For each 0-ary EDB predicate appearing inll or @, we considerR in IT' as an IDB
predicate, and we introduce a fresh binary EDB prediégateAlso, the following rule
is added tdT’:

R <« Ro(x, x).
o I1’ additionally contains all rules dfl.

In the following, we call the binary EDB predicat®s (resp.,R,, or Rg) hewly introduced

in IT’ freshEDB predicates. The union of conjunctive queriss obtained from® by

e replacing each atom®(z1, ..., z,) over ann-ary (withn > 2) predicateR with the
conjunction of atom®R1(w, z1), ..., R,(w, z,), wherew is a fresh variable;

e replacing each unary ato®\(z) with the binary atonR,, (z, z);

e replacing each O-ary atoRwith the binary atonRy(w, w), wherew is a fresh variable.

Lemma 13. Let!I be a Datalog program with goal predica@ and @ a union of conjunc-
tive queriesboth over arbitrary EDB predicates. Lél’ and @’ be the Datalog program
and the union of conjunctive queridmth over binary EDB predicatedefined from’I and
@ as above. Theffl is contained ind if and only if IT' is contained ind’.

Proof. “=" Assume that for each expansion trem treeg Q, IT) there is a containment
mapping from some conjunctive querydnto t. We show that for each expansion trée
in treeg Q, IT') there is a containment mapping from some conjunctive que it t’.
Since each fresh EDB predicate appear&lironly in the body of rules whose head is an
EDB predicate of aritys # 2 of I1 or ¢, and such rules contain in their body only fresh
EDB predicates, we have that each node’ioontaining a fresh EDB predicate is a leaf
node. Moreover, there is an expansion trée treeg Q, IT) such that’ is obtained front
by adding for each nodg of t:
e foreachEDB atonR(x1, ..., x,), withn > 2, appearingin (the body of the rule instance
labeling)g, a child ofg labeled by a rule instancR(x1, ..., x,) < R1(y,x1), ..., Ry
(v, xn);
e for each unary EDB atonk (x) appearing irg, a child ofg labeled by a rule instance
R(x) < R,(x, x);
o for each 0-ary EDB atonR appearing ing, a child of g labeled by a rule instance
R < Ro(x, x).

Let T be an expansion tree tneegQ, I1). By hypothesis, there exists a containment
mappingh from some conjunctive query in @ to 7. Let ¢’ be the conjunctive query in
@' obtained fromg. Consider an atonR(zs, ..., z,), With n > 2, in ¢, and leth map
such an atom to an ato(xy, ..., x,) in a nodeg of 7. Let R1(w, z1), ..., R, (w, 2,)
be the conjunction of atoms i corresponding t®R(z1, .. ., z,), Where, by construction,
w Is a variable not appearing in any other atomgof Consider the chilgy’ of g in 7’
corresponding to the expansion®€x1, . .., x,), and letg’ be labeled by the rule instance
R(x1,...,x,) < Ri(y,x1),..., R,(y, x,). Then, we can extend so that it mapsw to

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 53

y and the atoms containing to the atoms in the body of the rule instance labelhg
Similarly, consider a unary atomR(z) in ¢, and leth map such an atom to an ataRdx) in
a nodeg of 1. Let R,(z, z) be the atom inp’ corresponding tR(z). Consider the chilg’
of g in 7’ corresponding to the expansion®{x), and letg’ be labeled by the rule instance
R(x) < R,(x, x). Then, sincér mapsz to x, it also maps the atorR,, (z, z) to R, (x, x),
which is the only atom in the body of the rule instance labefihg/Ne can proceed in a
similar way for 0-ary atoms. It is immediate to verify that, by proceeding in the same way
for all non-binary atoms of, we have that is a containment mapping frogf to 7’.

“«<" Assume that for each expansion tréén tree Q, I1') there is a containment map-
ping from some conjunctive query i to 7/, and letr be an expansion tree freeg Q, II).
We show that there is a containment mapping from some conjunctive quérpin. Let t’
be an expansion treefreeg Q, IT') obtained front by adding for each nodeof r and each
EDB atomR(x1, ..., x,,), Withn > 2, appearing in (the body of the rule instance labeling)
g,achild ofg labeled by arule instand®(x1, ..., x,) < R1(y, x1), ..., R, (v, x,,), where
y is a different fresh variable for each atom. Similarly for each unary and 0-ary EDB atom
appearing in a node af By hypothesis, there is a conjunctive queryin @ such that
there exists a containment mappilndrom ¢’ to 7’. Let ¢ be the conjunctive query i®
from which ¢’ is derived. Consider a conjunction of atoRgw, z1), ..., R,(w, z,) in ¢’
corresponding to an atom(z1, ..., z,) in ¢, where, by constructiony is a variable not
appearing in any other atom ¢f. Letg’ be the node of’ containing (in the body of the rule
instance labeling’) the atomR1(y, x1) to whichz mapsR1(w, z1). By construction of’
the variabley appears only in atoms @f. Hence, the rule instance labeliggwill be of
the formR(x1, ..., x,) < R1(y, x1), ..., R,(y, x,), whereR1(y, x1), ..., R,(y, x,,) are
the atoms to whicth mapsR1(w, z1), ..., R,(w, z,,), respectively. It follows that we can
map the atonR(z1, ..., z,) in ¢ to the atom in the heall (x4, .. ., x,) of the rule instance
labelingg’, or, equivalently, to the atorR(xy, . . ., x,,) in the predecessor nogeof g’ in 7/
and hence also in. We can reason in a similar way for binary atomspincorresponding
to unary and O-ary atoms of. It is immediate to verify that, by proceeding as above for all
conjunctions of atoms ip’ corresponding to atoms of of arity greater than 2, and for all
atoms ing’ corresponding to unary and 0-ary atomspofve have thak is a containment
mapping fromp toz. [

Considering that the construction above is linealliand¢, from 2EXPTIME-hardness
of containment of Datalog in unions of conjunctive queries over arbitrary EDB predi-
categ21], we obtain the following result.

Theorem 14. Containment of a Datalog program in a union of conjunctive quetiesh
over binary EDB predicatess 2EXPTIME-hard.

By Theorem12, we get the following computational complexity characterization.

Theorem 15. Containment of grecursivg Datalog program in a union of C2RPQs is
2EXPTIME-complete.

54 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56
7. Conclusions

We have established decidability of containment of Datalog queries in unions of con-
junctive two-way regular path queries, and characterized the complexity of the problem as
2EXPTIME-complete. This is the most general known decidability result for containment
of recursive queries, apart from the resul{22] for monadic Datalog. The class of union
of C2RPQs has several features that are typical of modern query languages, in particular of
those for semistructured data. Unions of C2RPQs constitute the largest fragment of query
languages for XML data [24] for which containment is known to be decidable [15].

The 2EXPTIME upper-bound result shows that adding transitive closure to conjunctive
queries does not increase the complexity of query containment with respect to Datalog
gueries, as it matches the bound obtained in [21] for containment of Datalog queries in
union of conjunctive queries. Observe that containment in the converse direction, as well
as equivalence, is undecidable already for RPQs. Indeed, universality of context-free gram-
mars can be reduced to containment of RPQs in Datalog, by following the line of the
undecidability proof of containment between Datalog queries in [46].

Query containment is typically the first step in addressing various problems of query
processing, such as view-based query processing. One of the most important view-based
guery processing tasks view-based query answeritj§3,36], where one is interested in
computing the answer to a query over a global virtual schema, based on the data stored in a
set of materialized views, defined also over the virtual schema. In such a setting, the typical
assumption is that views aseund i.e., the data available in the views are a subset of the
data satisfying the corresponding view definition [36]. There is a well-known connection
between query containment and view-based query answering (under sound views) [2,16],
thatis based on using the data in the views to construct the body of the query on the left-hand
side of containment. By exploiting such a connectfotthe results in this paper already
show that view-based query answering is decidable and 2EXPTIME-complete when the
views are Datalog and the query is a union of C2RPQs. This is the most general known
decidability result for view-based query answering in the presence of recursion.

References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: from Relations to Semistructured Data and XML,
Morgan Kaufmann, Los Altos, 2000.

[2] S. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proc. 17th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), 1998, pp. 254—265.

[3] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley Publishing Co., Reading, MA,
1995.

[4] S. Abiteboul, V. Vianu, Regular path queries with constraints, J. Comput. System Sci. 58 (3) (1999)
428-452.

[5] S. Adali, K.S. Candan, Y. Papakonstantinou, V.S. Subrahmanian, Query caching and optimization in
distributed mediator systems, in: Proc. ACM SIGMOD Internat. Conf. on Management of Data, 1996,
pp. 137-148.

2The reductions between guery containment and view-based query answd@hgniake use of constants in
the query built from the views. However, it is easy to see that, since we do not allow for inequalities in queries,
the reductions can be rephrased without making use of constants.

D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56 55

[6] A.V. Aho, Y. Sagiv, J.D. Ullman, Equivalence among relational expressions, SIAM J. Comput. 8 (1979)
218-246.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press, Cambridge, 2003.

[8] C. Beeri, P.A. Bernstein, Computational problems related to the design of normal form relational schemas,
ACM Trans. Database Systems 4 (1) (1979) 30-59.

[9] M. Buchheit, M.A. Jeusfeld, W. Nutt, M. Staudt, Subsumption between queries to object-oriented databases,
Inform. Systems 19 (1) (1994) 33-54 (special issue on Extending Database Technology, EDBT'94).

[10] P. Buneman, Semistructured data, in: Proc. 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS'97), 1997, pp. 117-121.

[11] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, A query language and optimization technique for
unstructured data, in: Proc. ACM SIGMOD Internat. Conf. on Management of Data, 1996, pp. 505-516.

[12] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible Markup Language (XML) 1.0—W3C re-
commendation, Technical report, 1998; World Wide Web Consortium available at
http://www.w3.0rg/TR/1998/REC-xmI-19980210

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, Representing and reasoning on XML documents: a description
logic approach, J. Logic Comput. 9 (3) (1999) 295-318.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Description logic framework for information
integration, in: Proc. 6th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR'98),
1998, pp. 2-13.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, Containment of conjunctive regular path queries
with inverse, in: Proc. 7th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR
2000), 2000, pp. 176-185.

[16] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi, View-based query answering and query containment
over semistructured data, in: G. Ghelli, G. Grahne (Eds.), Revised Papers of the 8th Internat. Workshop on
Database Programming Languages (DBPL 2001), Lecture Notes in Computer Science, Vol. 2397, Springer,
Berlin, 2002, pp. 40-61.

[17] A.K. Chandra, D. Harel, Horn clause queries and generalizations, J. Logic Comput. 2 (1985) 1-15.

[18] A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in: Proc.
9th ACM Symp. on Theory of Computing (STOC'77), 1977, pp. 77-90.

[19] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, K. Shim, Optimizing queries with materialized views, in:
Proc. 11th IEEE Internat. Conf. on Data Engineering (ICDE95), 1995, pp. 190-200.

[20] S. Chaudhuri, M.Y. Vardi, On the complexity of equivalence between recursive and nonrecursive Datalog
programs, in: Proc. 13th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS'94), 1994, pp. 107-116.

[21] S. Chaudhuri, M.Y. Vardi, On the equivalence of recursive and nonrecursive datalog programs, J. Comput.
System Sci. 54 (1) (1997) 61-78.

[22] S.S. Cosmadakis, H. Gaifman, P.C. Kanellakis, M.Y. Vardi, Decidable optimization problems for database
logic programs, in: Proc. 20th ACM SIGACT Symp. on Theory of Computing (STOC'88), 1988,
pp. 477-490.

[23] O.L. Costich, A Medvedev characterization of sets recognized by generalized finite automata, Math. Systems
Theory 6 (1972) 263-267.

[24] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, D. Maier, D. Suciu, Querying XML data, Bull. IEEE
Comput. Soc. Tech. Committee Data Eng. 22 (3) (1999) 10-18.

[25] J.E. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (5) (1970) 406—451.

[26] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional horn formulae,

J. Logic Programming 1 (3) (1984) 267—-284.

[27] M.F. Fernandez, D. Florescu, A. Levy, D. Suciu, Verifying integrity constraints on web-sites, in: Proc. 16th
Internat. Joint Conf. on Artificial Intelligence (IJCAI'99), 1999, pp. 614—-619.

[28] D. Florescu, A. Levy, A. Mendelzon, Database techniques for the world-wide web: a survey, SIGMOD Record
27 (3) (1998) 59-74.

[29] D. Florescu, A. Levy, D. Suciu, Query containment for conjunctive queries with regular expressions, in:
Proc. 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), 1998,
pp. 139-148.

http://www.w3.org/TR/1998/REC-xml-19980210

56 D. Calvanese et al. / Theoretical Computer Science 336 (2005) 33-56

[30] M. Friedman, A. Levy, T. Millstein, Navigational plans for data integration, in: Proc. 16th Natl. Conf. on
Artificial Intelligence (AAAI'99), AAAI Press/The MIT Press, MA, 1999, pp. 67—73.

[31] F. Gecseg, M. Steinby, Tree Automata, Akademiai Kiado, Budapest, Hungary, 1984.

[32] A. Gupta, J.D. Ullman, Generalizing conjunctive query containment for view maintenance and integrity
constraint verification (abstract), in: Workshop on Deductive Databases (in conjunction with JICSLP),
Washington DC, USA, 1992, p. 195.

[33] A.Y. Halevy, Answering queries using views: a survey, Very Large Database J. 10 (4) (2001) 270-294.

[34] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley
Publishing Co., Reading, MA, 1979.

[35] A.C. Klug, On conjunctive queries containing inequalities, J. Assoc. Comput. Mach. 35 (1) (1988) 146—-160.

[36] M. Lenzerini, Data integration: A theoretical perspective, in: Proc. 21st ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS 2002), 2002, pp. 233—-246.

[37] A.Y. Levy, M.-C. Rousset, Verification of knowledge bases: a unifying logical view, in: Proc. 4th Europ.
Symp. on the Validation and Verification of Knowledge Based Systems, Leuven, Belgium, 1997.

[38] A.Y. Levy, Y. Sagiv, Semantic query optimization in Datalog programs, in: Proc. 14thACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS'95), 1995, pp. 163-173.

[39] D. Maier, J.D. Ullman, M.Y. Vardi, On the foundations of the universal relation model, ACM Trans. Database
Systems 9 (1984) 283-308.

[40] T. Milo, D. Suciu, Index structures for path expressions, Proc. 7th Internat. Conf. on Database Theory
(ICDT99), Lecture Notes in Computer Science, Vol. 1540, Springer, Berlin, 1999, pp. 277-295.

[41] Y.N. Moschovakis, Elementary Induction on Abstract Structures, North-Holland Publishing Co., Amsterdam,
1974.

[42] A. Motro, Panorama: a database system that annotates its answers to queries with their properties, J. Intell.
Inform. Systems 7(1).

[43] J.F. Naughton, Data independent recursion in deductive databases, J. Comput. System Sci. 38 (2) (1989)
259-289.

[44] Y. Sagiv, Optimizing Datalog programs, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann, Los Altos, 1988, pp. 659—698.

[45] Y. Sagiv, M. Yannakakis, Equivalences among relational expressions with the union and difference operators,
J. Assoc. Comput. Mach. 27 (4) (1980) 633—655.

[46] O. Shmueli, Equivalence of Datalog queries is undecidable, J. Logic Programming 15 (3) (1993) 231-241.

[47] G. Slutzki, Alternating tree automata, Theoret. Comput. Sci. 41 (1985) 305—318.

[48] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of
second order logic, Math. Systems Theory 2 (1) (1968) 57-81.

[49] R. van der Meyden, The complexity of querying indefinite information, Ph.D. Thesis, Rutgers University,
1992.

