
Composition of Stochastic Services
for LTLf Goal Specifications

Giuseppe De Giacomo1,2 , Marco Favorito3 , and Luciana Silo2,4(B)

1 University of Oxford, Oxford, UK
2 Sapienza University of Rome, Rome, Italy

{degiacomo,silo}@diag.uniroma1.it
3 Banca d’Italia, Rome, Italy

marco.favorito@bancaditalia.it
4 Camera dei Deputati, Rome, Italy

Abstract. Service composition à la Roman model consists of realiz-
ing a virtual service by orchestrating suitably a set of already available
services. In this paper, we consider a variant where available services
are stochastic systems, and the target specification is goal-oriented and
specified in Linear Temporal Logic on finite traces (ltlf). In this set-
ting, we are interested in synthesizing a controller (policy) that max-
imizes the probability of satisfaction with the goal, while minimizing
the expected cost of the utilization of the available services. To do so, we
combine techniques from ltlf synthesis, service composition à la Roman
Model, reactive synthesis, and bi-objective lexicographic optimization on
Markov Decision Processes (MDPs). This framework has several inter-
esting applications, including Smart Manufacturing and Digital Twins.

Keywords: Service Composition · Linear Temporal Logic on finite
traces · Markov Decision Process · Lexicographic Multi-Objective
Optimization

1 Introduction

The service-oriented computing (SOC) paradigm uses services to support
the development of rapid, low-cost, interoperable, evolvable, and mas-
sively distributed applications. Services are considered autonomous, platform-
independent entities that can be described, published, discovered, and loosely
coupled in novel ways [29]. Service composition, i.e., the ability to generate new,
more useful services from existing ones, is an active field of research in the SOC
area and has been actively investigated for over two decades.

Particularly interesting in this context is the so-called Roman Model [2,3,16]
where services are conversational, i.e., have an internal state and are procedurally
described as finite transition systems (TS), where at each state the service offers
a certain set of actions, and each action changes the state of the service in some
way. The designer is interested in generating a new service, called target, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Meier and M. Ortiz (Eds.): FoIKS 2024, LNCS 14589, pp. 298–316, 2024.
https://doi.org/10.1007/978-3-031-56940-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56940-1_17&domain=pdf
http://orcid.org/0000-0001-9680-7658
http://orcid.org/0000-0001-9566-3576
http://orcid.org/0000-0001-7250-8979
https://doi.org/10.1007/978-3-031-56940-1_17

Composition of Stochastic Services for LTLf Goal Specifications 299

is described as the other service; however, it is virtual in the sense that no code
is associated with its actions. So, for executing the target, one has to delegate
each of its actions to some of the available services by suitably orchestrating the
services, considering the current state of the target and the current states of the
available services. Service composition amounts to synthesizing a controller that
can suitably orchestrate the executions of the available services to guarantee
that the target actions are always delegated to some service that can actually
execute them in its current state. The original paper on the Roman Model [2]
was awarded as the most influential paper of the decade at ICSOC 2013 and is,
to date, the most cited paper in the ICSOC conference series.

Recently a renewed interest in service composition à la Roman Model is
stemming out of applications in smart manufacturing, where, through digital
twins technology, manufacturing devices can export their behaviour as transition
systems and hence being orchestrated very much in the same way as service did
back in the early 2000s, see e.g., [15,26,27].

Interestingly, these new applications are also pointing out several variations
that are not typically considered in earlier literature on services. First, they
advocate for considering a stochastic behaviour of services, such as those studied
in [4,37]. Unlike the classical model, in which the target specification can either
be satisfied or not with no middle ground, in the stochastic setting, it is possible
to define a notion of “approximate solution” in case an exact one does not exist.

Second, the notion of goal-oriented target specification is increasingly cham-
pioned [25–27]. That is, instead of having the target specified as a transition sys-
tem, it is specified as a (possibly temporally extended) goal that the composition
has to fulfill. Of particular interest are specifications in Linear Temporal Logic
on finite traces (ltlf) [18], which are at the base of declarative process specifi-
cation in Business Process Management (BPM) through the so-called declare
paradigm [19,20,30].

Third, apart from satisfying the target, it is of interest to also minimize
cost coming from the service utilization [12–14]. This concern, together with the
satisfaction of the target, calls for resorting to Multi-Objective Optimization for
computing a solution.

In this paper, we address the three above requirements and study goal-
oriented stochastic service composition where as goals we adopt arbitrary ltlf

specifications, under the declare assumption of a single action executed at the
time (see later). Specifically, we are given a goal specification, and we want to
synthesize an orchestrator that, on the one hand, proactively chooses actions to
form a sequence that satisfies the goal and, on the other hand, delegates each
action to an available service in such a way that at the end of the sequence, all
services are in their final states. The composition problem consists of maximiz-
ing the satisfaction probability of the ltlf objective, and conditioned on this,
minimizing the expected cost of utilization of the services.

A first attempt to do so may resort to Multi-objective MDPs (MOMDPs)
[8]. One common solution is to reduce the multi-objective reward/cost optimiza-
tion to a single reward optimization via a linear weighting of different sources of

300 G. De Giacomo et al.

rewards/costs. However, this means that the two objectives, namely the maxi-
mization of target rewards and the minimization of cost uses, are blurred into one
scalar value, which hides precious information from the agent. Instead, the max-
imization of the target objective has the highest priority. Among those strategies
that maximize the first objective, we aim to find those strategies that achieve the
minimum utilization cost. In the literature of multi-objective optimization, the
setting in which there is a strict preference order among objectives is called lexi-
cographic multi-objective optimization [7,22,34,36]. It is known that, in general,
single Markovian rewards cannot capture certain multi-objective tasks, such as
ones with lexicographic preferences [33]; hence, such problem cannot be easily
reduced to standard techniques on MDPs [31].

Among related works, one of the earliest attempts at combining stochas-
tic planning models with service composition is [21]. There are works based
on Markov-HTN Planning [9], multi-objective optimization [10,28], and lexico-
graphic optimization [32], helpful to model the stochastic behaviour as well as
complex QoS preferences. However, in all cases, either there are no stateful ser-
vices, no high-level declarative specification of the desired solution, or no strict
preference among objectives.

Our solution technique relies on solving a bi-objective lexicographic opti-
mization [6] over a special MDP, allowing to minimize the services’ utilization
costs while guaranteeing maximum probability of goal satisfaction. We point out
that although this paper has mainly a foundational nature, it also has a signifi-
cant applicative interest since it gives the foundations and solution techniques of
goal-oriented compositions, which are indeed envisioned in the current literature
on smart manufacturing where the notion of goal-oriented target specification is
increasingly championed [15,25–27].

The rest of the paper is structured as follows. Section 2 explains the theo-
retical concepts on which the paper is based. Section 3 introduces the service
composition framework in stochastic settings that we model, showing the for-
malization of the problem in terms of bi-objective lexicographic optimization on
MDPs and proposes a solution technique able to find an optimal orchestrator.
Section 4 shows the application of the formal framework to an industrial case
study of an electric motor assembly process, describing in detail the manufac-
turing goal and the manufacturing actors. Finally, Sect. 5 concludes the paper
with final remarks and future works.

2 Preliminaries

LTLf is a variant of Linear Temporal Logic (ltl) interpreted over finite traces,
instead of infinite ones [18]. Given a set P of atomic propositions, ltlf formulas
ϕ are defined by ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ◦ϕ | ϕU ϕ, where a denotes an
atomic proposition in P, ◦ is the next operator, and U is the until operator.
We use abbreviations for other Boolean connectives, as well as the following:
eventually as ♦ϕ ≡ trueU ϕ; always as �ϕ ≡ ¬♦¬ϕ; weak next as •ϕ ≡ ¬◦¬ϕ
(note that, on finite traces, ¬◦ϕ is not equivalent to ◦¬ϕ); and weak until
as ϕ1 W ϕ2 ≡ (ϕ1 U ϕ2 ∨ �ϕ1) (ϕ1 holds until ϕ2 or forever). ltlf formulas are

Composition of Stochastic Services for LTLf Goal Specifications 301

interpreted on finite traces a = a0 . . . al−1 where ai at instant i is a propositional
interpretation over the alphabet 2P , and l is the length of the trace. An ltlf

formula can be transformed into equivalent nondeteministic automata (nfa) in
at most EXPTIME and into an equivalent and deterministic finite automata
(dfa) in at most 2EXPTIME [18]. A dfa is a tuple Aϕ = 〈2P , Q, q0, F, δ〉 where:
(i) 2P is the alphabet, (ii) Q is a finite set of states, (iii) q0 is the initial state,
(iv) F ⊆ Q is the set of accepting states and (v) δ : Q × 2P → Q is a total
transition function. Note that the dfa alphabet is the same as the set of traces
that satisfies the formula ϕ. An nfa is defined similarly to dfa except that
δ is defined as a relation, i.e. δ ⊆ Q × 2P × Q. In particular, ltlf is used in
declarative process specification in BPM, for example in the system DECLARE
[30]. In this specific case, it is assumed that only one proposition (corresponding
to an action) is true at every time point. We call this the declare assumption,
and we do adopt it in this paper.

Markov Decision Process. A Markov Decision Process (MDP) is a tuple
M = (S,A, P, s0), where: (i) S is a finite set of states, (ii) s0 is the ini-
tial state, (iii) A is a finite set of actions, and (iv) P : (S × A) → Δ(S)
is the transition probability function, i.e. a mapping from state-action pairs
to probability distributions over S. With Supp(d), we denote the support of
a probability distribution d. An infinite path ρ ∈ (S × A)ω is a sequence
ρ = s0a1s1a2 . . . , where si ∈ S, ai+1 ∈ A, and si+1 ∈ Supp(P (si, ai+1)),
for all i ∈ N. Similarly, a finite path ρ ∈ (S × A)∗ × S is a finite sequence
ρ = s0a1s1a2 . . . amsm. For any path ρ of length at least j and any i ≤ j, we
let ρ[i : j] denote the subsequence siai+1si+1ai+2 . . . ajsj . We use PathsωM =
(S × A)ω and PathsM = (S × A)∗ × S to denote the set of infinite and finite
paths, respectively. A policy π : PathsM → A maps a finite path ρ ∈ PathsM
to an action a ∈ A. We denote with PathsMπ

the set of finite paths over M
whose actions are compatible with π. Given a finite path ρ = s0a1 . . . amsm,
the cylinder of ρ, denoted by PathsωM(ρ), is the set of all infinite paths start-
ing with prefix ρ. The σ-algebra associated with MDP M and a fixed policy
π is the smallest σ-algebra that contains the cylinder sets PathsωMπ

(ρ) for all
ρ ∈ PathsMπ

. For a state s in S, a measure is defined for the cylinder sets as
PMπ,s(PathsωMπ

(s0a1s1 . . . amsm)) =
∏m−1

k=0 P (sk+1|sk, ak+1) if s0 = s and for
all k, ak+1 = π(ρ[0 : k]), otherwise 0. We also have PMπ,s(PathsωMπ,s(s)) = 1
and PMπ,s(PathsωMπ,s(s

′)) = 0 for s′ �= s. This can be extended to a unique
probability measure PMπ,s on the aforementioned σ-algebra. In particular, if
R ⊆ PathsMπ

is a set of finite paths forming pairwise disjoint cylinder sets,
then PMπ,s(

⋃
ρ∈R PathsωMπ

(ρ)) =
∑

ρ∈R PMπ,s(PathsωMπ
(ρ)). We denote with

EMπ,s(X) the expected value of a random variable X with respect to the dis-
tribution PMπ,s.

3 Composition of Stochastic Services for ltlf Tasks

In this section, we present our service composition framework in stochastic set-
tings. We aim to realize an ltlf goal specification with the available services

302 G. De Giacomo et al.

by modeling nondeterminism using probability distributions over the services’
successor states. Moreover, we allow the specification to be approximately sat-
isfied, by considering the objective of maximizing the satisfaction probability of
the specification.

3.1 Stochastic Services Framework

A stochastic service is a tuple S̃ = 〈Σ,A, σ0, F, P,C〉, where: (i) Σ is the
finite set of service states, (ii) A is the finite set of services’ actions, (iii)
σ0 ∈ Σ is the initial state, (iv) F ⊆ Σ is the set of final states (i.e., states
in which the computation may stop but does not necessarily have to), (v)
P : Σ × A → Δ(Σ) is the transition function that returns for every state
σ and action a a distribution over next states, and (vi) C : Σ × A → R

+

is the cost function that assigns a (strictly positive) cost to each state-action
pair. A (stochastic) service community is a collection of stochastic services
C̃ = {S̃1, . . . , S̃n}. A (stochastic) trace of C̃ is a finite alternating sequence of
the form t̃ = (σ10 . . . σn0), (a1, o1), . . . , (am, om), (σ1m . . . σnm), where σi0 is the
initial state of every service Si and, for every 1 ≤ k ≤ m, we have (i) σik ∈ Σi

for all i ∈ {1, . . . , n}, (ii) ok ∈ {1, . . . , n} is the service index chosen by the
orchestrator at step k, (iii) ak ∈ A, and (iv) for all i, σik ∈ Supp(Pi(σi,k−1, aik))
if ok = i, and σik = σi,k−1 otherwise. A history of C is a finite prefix of a trace of
C. With |h| = m, we denote the length of such history, and with last(h) we denote
the service state configuration at the last step: (σ1m . . . σnm). Given a trace t, we
call states(t) sequence of states of t, i.e. states(t) = (σ10 . . . σn0), (σ11 . . . σn1), · · · .
The choices of a trace t, denoted with choices(t), is the sequence of actions in t,
i.e. choices(t) = (a1, o1), (am, om), Note that, due to nondeterminism, there
might be many traces of C associated with the same run. Moreover, we define
the action run of a trace t, denoted with actions(t), the projection of choices(t)
only to the components in A. states, choices and actions are defined also on his-
tory h, in a similar way. Note that both choices(h) and actions(h) are empty if
h = (σ10 . . . σn0).

An orchestrator is a function γ : (Σ1 ×· · ·×Σn)∗ → A×{1 . . . n} that, given
a sequence of states (σ10 . . . σn0) . . . (σ1m . . . σnm), returns the action to perform
a ∈ A, and the service (actually the service index) that will perform it. Next,
we define when an orchestrator is a composition that satisfies ϕ. Given a trace
t, with histories(t), we denote the set of prefixes of the trace t that ends with a
services state configuration. A trace t is an execution of an orchestrator γ over
C if for all k ≥ 0, we have (ak+1, ok+1) = γ((σ10 . . . σn0) . . . (σ1k . . . σnk)). Let
Tγ,C̃ be the set of such executions. Note that due to the nondeterminism of the
services, we can have many executions for the same orchestrator, despite the
orchestrator being a deterministic function. If h ∈ histories(t) for some (infinite)
execution t ∈ Tγ,C̃ , we call h a finite execution of γ over C.

Consider a goal specification ϕ expressed in ltlf over the set of actions A,
and consider a community of n services C = {S1, . . . ,Sn}, where each set of
actions Ai ⊆ A. We say that some finite execution h is successful, denoted with
successful(h), if the following two conditions hold: (1) actions(h) |= ϕ, and (2)

Composition of Stochastic Services for LTLf Goal Specifications 303

Fig. 1. The garden bot systems and the dfa of the ltlf goal.

all service states σi ∈ last(states(h)) are such that σi ∈ Fi. If for execution
t ∈ Tγ,C̃ there exist a finite prefix history h ∈ histories(t) such that successful(h),
we say that t is successful. Finally, we say that an orchestrator γ realizes the
ltlf specification ϕ with C if, for all traces t ∈ Tγ,C̃ , t is successful.

We are interested in orchestrators that maximize the probability of satis-
faction of the goal specification, even when the specification cannot be surely
satisfied (e.g. due to a stochastic misbehaviour of some service). Moreover, while
guaranteeing the optimal probability of satisfaction, we aim to find those orches-
trators that minimize the expected utilization cost of the services, conditioned
on the achievement of the task.

Example 1. This example is inspired by the “garden bots system” scenario [37].
The goal is to clean the garden by picking fallen leaves and removing dirt, water
the plants, and pluck the ripe fruits and flowers. The action clean must be
performed at least once, followed by water and pluck in any order. In declare
ltlf , the goal can be expressed as ϕ = clean ∧ ◦(clean U((water ∧ ◦pluck) ∨
(pluck ∧◦water))). We assume there are three available garden bots, B1,B2,B3,
each with different capabilities and action rewards. In Fig. 1 the three services
specifications and the dfa of the ltlf goal are shown. Transitions labels are of
the form 〈action, prob, reward〉. We are interested in a composition of the bots to
maximize the probability of the satisfaction of the goal ϕ, which also considers
rewards/costs. The clean action can only be delegated to B1, and the optimal
solution must take into account its stochastic behaviour in order to correctly
compute the expected cost. Regarding the pluck action, both B2 and B3 can
perform it; however, the optimal orchestrator will not dispatch it to B3 because,
despite the cost being smaller than the one in B2, choosing B3 will lead to a
probability of 0.1 of not reaching the final state configuration since the state c2
is a failure state while choosing B3 does not compromise the optimal probability
of goal satisfaction.

Before proceeding with a formalization of the optimization problem, we intro-
duce additional auxiliary notions. Analogously to what has been done for MDPs,
for a finite execution h of γ over C̃, we use Tγ,C̃(h) to denote the set of all (infinite)

304 G. De Giacomo et al.

executions t ∈ Tγ,C̃ such that h ∈ histories(t). Moreover, the σ-algebra associated
with the stochastic behaviour of the orchestrator γ over the stochastic commu-
nity C̃ is the smallest σ-algebra that contains the trace sets Tγ,C̃(h), for all finite
executions h, with the unique probability measure over it defined as:

Pγ,C̃(h) =
|h|∏

k=1

Pok
(σok,k | σok,k−1, ak) (1)

In particular, note that Pγ,C̃(Tγ,C̃(〈(σ10 . . . σn0)〉)) = 1. Let Hϕ

γ,C̃ be the set of

finite executions h of γ on C̃ that start from σ10 . . . σn0 such that (i) they are
successful, and (ii) there is no prefix history h that is successful. Intuitively,
such a set only contains the executions that are successful for the first time. The
satisfaction probability of ϕ under orchestrator γ and community C̃ is given by:

P C̃
ϕ(γ) = Pγ,C̃

(⋃

h∈Hϕ

γ,C̃

Tγ,C̃(h)
)

(2)

It is crucial to observe that since by definition there is no pair h′, h′′ ∈ Hϕ

γ,C̃(h)
such that h′ ∈ prefixes(h′′), all trace sets Tγ,C̃(h) for h ∈ Hϕ

γ,C̃ are pairwise

disjoint sets, which means that P C̃
γ is a well-defined probability.

Moreover, we define the (conditioned) expected utilization cost of services as
the expected cost an orchestrator incurs in its successful executions, i.e.:

J C̃
ϕ (γ) = Eh∼Pγ,C̃

[|h|∑

k=1

Cok
(σok,k−1, ak)

∣
∣
∣
∣ successful(h)

]

(3)

Let Γ (C̃) be the set of orchestrators for the community C̃. Let f : Γ (C̃) → R be
an objective function. We say an orchestrator γ ∈ Γ (C̃) is f-optimal if f(γ) =
supτ∈Γ (C̃) f(τ), and write Γf for the set of f -optimal orchestrators.

Finally, we define our optimization problem. We want to compute an orches-
trator γ such that the following holds:

γ ∈ ΓP C̃
ϕ

and J C̃
ϕ (γ) = inf

γ′∈ΓPC̃
ϕ

J C̃
ϕ (γ′) (4)

Intuitively, we fix a lexicographic order on the objective functions P C̃
ϕ and J C̃

ϕ ,
meaning that we aim to minimize the expected utilization cost to satisfy the
specification, conditioned to the satisfaction of the specification, while guaran-
teeing the optimal probability of satisfying it. Interestingly, in case the specifi-
cation is exactly realizable, the notion of optimal orchestrator according to Eq.
(4) coincides with the notion of realizability, as shown in the following results.

Lemma 1. If γ realizes the specification ϕ over C̃, then
⋃

h∈Hϕ

γ,C̃
Tγ,C̃(h) =

Tγ,C̃(〈(σ10 . . . σn0)〉).

Composition of Stochastic Services for LTLf Goal Specifications 305

Proof. We prove (i)
⋃

h∈Hϕ

γ,C̃
Tγ,C̃(h) ⊆ Tγ,C̃(〈(σ10 . . . σn0)〉) and (ii)

⋃
h∈Hϕ

γ,C̃
Tγ,C̃(h) ⊇ Tγ,C̃(〈(σ10 . . . σn0)〉) separately. Proposition (i) is immediate: every
execution belongs to the set of executions starting from σ10 . . . σn0. To prove
proposition (ii), we start by observing that for all t ∈ Tγ,C̃(〈(σ10 . . . σn0)〉), by
definition of realizing orchestrator, they have a prefix h′ ∈ prefixes(h) that is
successful. In particular, if h′′ is the shortest prefix of h that is successful, then
h′′ ∈ Hϕ

γ,C̃ and t ∈ Tγ,C̃(h′′). This implies that t ∈
⋃

h′′∈Hϕ

γ,C̃
Tγ,C̃(h′′).

Theorem 1. Let C̃ be a community of stochastic services, and ϕ be a goal spec-
ification. The orchestrator γ realizes ϕ with community C̃ iff P C̃

ϕ(γ) = 1.

Proof. (⇒) If an orchestrator γ realizes ϕ, then all infinite executions t ∈ Tγ,C̃
have a prefix h′ ∈ histories(t) that is successful. Let h′′ be the shortest of such
prefixes. This implies that t ∈

⋃
h′′∈Hϕ

γ,C̃
Tγ,C̃(h′′). By Lemma 1, this set is equal

to Tγ,C̃(〈(σ10 . . . σn0)〉). Since by definition Supp(Pγ,C̃) ⊆ Tγ,C̃(〈(σ10 . . . σn0)〉), we

have that P C̃
ϕ(γ) = Pγ,C̃(

⋃
h∈Hϕ

γ,C̃
Tγ,C̃(h)) = Pγ,C̃(Tγ,C̃(〈(σ10 . . . σn0)〉)) = 1.

(⇐) Assume an orchestrator γ is such that P C̃
ϕ(γ) = 1. This implies that for

all orchestrator infinite executions t ∈ Supp(Pγ,C̃) ⊆ Tγ,C̃(〈(σ10 . . . σn0)〉), there
is a prefix h ∈ histories(t) such that h ∈ Hϕ

γ,C̃ and t ∈ Tγ,C̃(h). This means t

is successful, and therefore, all executions are successful, i.e. the definition of
realizability.

Theorem 2. Assume ϕ is realizable. If an orchestrator γ satisfies Eq. (4), then
it realizes the specification ϕ.

Proof. Since by assumption ϕ is realizable, then there exists an orchestrator γ′

that realizes it. By Theorem 1, we can deduce that the optimal value of P C̃
ϕ(γ′)

is 1. Moreover, by assumption and by Eq. (4)), it follows that γ ∈ ΓP C̃
ϕ
, i.e.

P C̃
ϕ(γ) = 1, by the arguments above. Finally, again by Theorem 1, we get that γ

realizes ϕ.

Finally, we formally state the stochastic version of our problem:

Problem 1 (Stochastic Composition for ltlfSpecifications). Given the pair
(C̃, ϕ), where ϕ is an ltlf goal specification over the set of actions A, and C̃
is a community of n stochastic services C̃ = {S̃1, . . . , S̃n}, compute, if it exists,
an orchestrator that is optimal according to Eq. (4).

Interestingly, Theorem 1 and Theorem 2 show that one can find an orchestrator
even in a non-stochastic setting by considering arbitrary services’ probability
distributions for Pi(σi, a), for any pair σi and a, whose support is compatible
with δi, and then check whether maxγ P C̃

ϕ(γ) = 1.

306 G. De Giacomo et al.

3.2 Stochastic Services Solution Technique

Our solution technique is based on finding an optimal policy for a bi-objective
lexicographic optimization on a specifically built MDP. In particular, we consider
a variant of the framework introduced in [6]: while as the second objective,
they considered the expected number of steps to a target, here we consider the
expected cost. Our technique breaks down into the following steps: (1) first, we
compute the equivalent nfa of an ltlf formula, Aϕ, and (2) we consider the
dfa Aact, as in the non-stochastic setting; then (3) we compute a product of Aact

with the stochastic services in C̃, obtaining a new MDP, M′, that we call the
“composition MDP”; (4) we find a policy π for M′ that is optimal w.r.t. the bi-
objective lexicographic function, as in [6], and then (5) we derive an orchestrator
γ from π that is optimal w.r.t. Eq. 4. We now detail each step.

Step 1. The nfa of an ltlf formula can be computed by exploiting a well-
known correspondence between ltlf formulas and automata on finite words [17].
In particular, using the ltlf2nfa algorithm [5], we can compute an nfa Aϕ =
(A,Q, q0, F, δ) that is equivalent to the specification ϕ which can be exponentially
larger than the size of the formula. Note that the alphabet of the nfa is A since
we assume the specification satisfies the DECLARE assumption: only one action
is executed at each time instant.

Step 2. From the nfa of the formula ϕ, Aϕ, which is on the alphabet A, we define
a controllable dfa on the alphabet A × Q, Aact = (A × Q,Q, a0, F, δact), where
everything is as in Aϕ except δact that is defined as follows: δact(q, (a, q′)) = q′

iff (q, a, q′) ∈ δ. Notice that if a sequence of actions is accepted by the nfa Aϕ

as witnessed by the run r = q0, a1, . . . , qn, then the run itself is accepted by
Aact. Intuitively, with the dfa Aact, we are giving to the controller not only the
choice of actions but also the choice of transitions of the original nfa Aϕ, so that
those chosen transitions lead to the satisfaction of the formula. In other words,
for every sequence of actions a1, . . . , an accepted by the nfa Aϕ, i.e. satisfying
the formula ϕ, there exists a corresponding alternating sequence q0, a1, . . . , qn

accepted by the dfa Aact, and viceversa. This means that when we project out
the Q-component from the accepted sequences of Aact, we get a sequence of
actions satisfying ϕ. It can be shown that:

Proposition 1. a1 . . . am ∈ L(Aϕ) iff (a1, q1) . . . (am, qm) ∈ L(Aact), for some
q1 . . . qm.

Proof. By definition, a1 . . . am ∈ L(Aϕ) iff there exist a run r = q1 . . . qm

s.t. for 1 ≤ k ≤ m, δ(qk−1, ak) = qk and qm ∈ F . Consider the word
w′ = (a1, q1) . . . (am, qm). By construction of Aact, w′ induces a run rd = r.
Since qm ∈ F by assumption, rd is an accepting run for Aact, and therefore
w′ ∈ L(Aact) is accepted. The other direction follows by construction because, if
(a1, q1) . . . (am, qm) ∈ L(Aact), then by construction q1 . . . qm is a run of Aϕ over
word a1 . . . am, and since qm ∈ F by assumption a1 . . . am ∈ L(Aϕ).

Step 3. Consider a goal specification ϕ and a community of stochastic ser-
vices C̃. Let Aact = (A × Q,Q, q0, F, δact) be the controllable dfa associated

Composition of Stochastic Services for LTLf Goal Specifications 307

to the nfa Aϕ. We define the Composition MDP M = (S′, A′, P ′, s′
0) as fol-

lows: S′ = Q × Σ1 × · · · × Σn; A′ = A × Q × {1 . . . n}; s′
0 = (q0, σ10 . . . σn0);

P ′(q′, σ′
1 . . . σ′

i . . . σ′
n|q, σ1 . . . σ′

i . . . σn, (a, q, i)) = Pi(σ′
i|σi, a) if δact(q, (a, q′)) =

q′. Moreover, let the composition cost function C ′ : S′ × A′ → R
+ be defined as

C ′((q, σ1 . . . σi . . . σn), (a, q, i)) = Ci(σi, a).
We are interested in computing optimal policies for M, where the optimality

is defined as follows. Consider the target states T = F × F1 × · · · × Fn. We
consider the bi-objective lexicographic optimization over M′, similarly to what
has been done in [6]. In particular, we first consider the probability of reaching
a set of target states T from s ∈ S′, following a policy π over the MDP M′,
denoted with PM′

π,s(♦T); with ΠM′,s(♦T), we denote the set of policies with the
maximum probability of reaching T , i.e. arg maxπ PM′

π,s(♦T). Then, we consider
the cost of the shortest prefix of ρ that reaches one of the target states in T , i.e.
costT (ρ) =

∑i
k=0 C ′(s′

k, a′
k) if ρ[i] ∈ T and for all j < i, ρ[j] �∈ T . An optimal

solution for M′ is a policy π that minimizes the conditional expected cost of
reaching a target state EM′

π,s′
0
[costT (ρ)|♦T] among the policies in ΠM,s′

0
(♦T),

that is, the policies which maximize PMπ,s′
0
(♦T), i.e.:

π ∈ ΠM′,s0(♦T) and π ∈ arg min
π′

Eρ∼M′
π,s′

0

[
costT (ρ)|♦T

]
(5)

Step 4. The solution technique we will use is based on the work [6], where
the authors propose a two-stage technique to find an optimal policy for a bi-
objective lexicographic function in the form of Eq. (5). First, we compute the set
of policies (in the form of a set of optimal actions for each state) that maximize
the probability of reaching the target states; however, this set of policies also
contains the “deferral” policies, i.e. policies that defer the actual reaching of the
target states indefinitely, but in such a way that the target can still be reached
with maximum probability at any moment. Then, we consider a “pruned MDP”
in which (i) only optimal action can be taken, and (ii) only states from which
the target can be reached are kept. The new MDP is used to find policies that
minimize the expected cost of reaching the target. By construction, the optimal
policy of the pruned MDP guarantees the target is always reached since any
deferral policy will incur an infinite cost. The difference between our scenario and
[6] is that they consider the length of the path, rather than its cost, as the second
objective function. Nevertheless, it is easy to see that their approach works if,
instead of considering the expected length of successful paths, we consider their
expected total costs (i.e. minimizing path length can be seen as minimizing
costs with each transition having unitary cost). Note that the techniques used
to find the solutions are standard: the first stage requires solving the maximal
reachability probability problem [1] on the composition MDP with the accepting
end components as the set of states T . The second stage requires solving a
stochastic shortest path problem [31] on the pruned MDP. The two subproblems
can be solved efficiently using standard planning algorithms, e.g., Value Iteration
or Linear Programming.

308 G. De Giacomo et al.

Step 5. Once an optimal policy is found, we can obtain its equivalent γ as
follows: for any finite prefix of a run ρ = (q0, σ10 . . . σn0), (a1, q1, o1), . . . (am,
qm, om), (qm, σ1m . . . σnm), . . . , we set γ((σ10 . . . σn0) . . . (σ1m . . . σnm)) = (am+1,
om+1), where π(ρ) = (am+1, qm+1, om+1).

Now we aim to establish a relationship between optimal orchestrators accord-
ing to Eq. (4), and optimal policies for M′ according to Eq. (5). Given an infi-
nite run ρ = (q0, σ10 . . . σn0), (a1, q1, o1) . . . , we define the trace t = τ̃ϕ,C̃(ρ) =
(σ10 . . . σn0), (a1, o1), The definition easily applies to finite prefixes of ρ but
this time mapping into histories of t.

Now, we are going to prove a sequence of lemmata.
Lemma 2 shows that, once fixed a policy π over M′, there is a one-to-one

correspondence (modulo choices of q0 . . . qm in ρ) between paths ρ in M′ follow-
ing π and the executions t ∈ Tγ,C of the equivalent orchestrator of π, γ; Lemma
3 shows that the probabilities of finite paths and histories are the same; Lemma
4 shows that paths that end with states in T correspond to successful histories;
and Lemma 5 shows a correspondence between paths in PathsT,M′

π
and Hϕ

γ,C̃ .

Lemma 2. Let π be a policy for M′ and let γ be its equivalent orchestrator.
Moreover, let ρ ∈ PathsωM′

π
and t be a trace such that t = τ̃ϕ,C̃(ρ). Then, ρ ∈

PathsωM′
π
(〈s′

0〉) iff t ∈ Tγ,C̃(〈(σ10 . . . σn0)〉).

Proof. Let the infinite path ρ ∈ PathsωM′
π
(〈s′

0〉), and the infinite trace t =
τ̃ϕ,C̃(ρ)). We prove the claim by induction on the position of the run/trace.

Base case: we have the claim holds for position 0 because ρ[0] = (q0, σ10 . . . σn0),
and h[0] = σ10 . . . σn0. Therefore, 〈h[0]〉 satisfies the conditions of the definitions
of history and execution of γ iff s′

0 ∈ S′.

Inductive case: assume the claim holds up to position k ≥ 0. Consider the
(k + 1)-th action according to π, i.e. π(ρ[0:k]) = (ak+1, qk+1, ok+1), and
its successor state ρ[k + 1] = (qk+1, σ1,k+1, . . . , σn,k+1). By construction of
M′, we have that (i) σi,k+1 ∈ Σi for all services, (ii) ok+1 ∈ {1 . . . n},
(iii) ak+1 ∈ A, and (iv) σk+1 ∈ Supp(Pok+1(σok+1,k, ak+1)). Moreover, by
construction of γ, (ak+1, ok+1) = γ(states(t[0 : k])), hence h′ = t[0 :
k], (ak+1, ok+1), (σ1,k+1 . . . σn,k+1) is a proper (finite) execution. The same argu-
ments can be applied in the other direction by extending the actions of the
trace with the next state qk+1 ∈ Q, where qk+1 is determined by the policy π
(see above). By induction the claim also holds for any arbitrary position, and
therefore ρ ∈ PathsωM′

π
(〈s′

0〉) iff t ∈ Tγ,C̃(〈(σ10 . . . σn0)〉).

Lemma 3. Let π a policy on M′, γ be its equivalent orchestrator, ρ =
s′
0a1 . . . s′

m ∈ PathsM′
π
(s′

0) be a finite path on M′, and h̃ = τ̃ϕ,C̃(ρ) be its associ-
ated history. Then, PMπ,s′

0
(PathsωMπ

(ρ)) = Pγ,C̃(Tγ,C̃(h)).

Composition of Stochastic Services for LTLf Goal Specifications 309

Proof.

PM′
π,s′

0
(Pathsω

ϕ,C̃(ρ)) =
m∏

k=1

P ′(s′
k | s′

k−1, (ak, qk, ok)) (6)

=
m∏

k=1

Pok
(σok,k | σok,k−1, (ak, ok)) (7)

= Pγ,C̃(Tγ,C̃(h)) (8)

where step 6 is by definition of the probability of a cylinder set, step 7 by
definition of P ′ in M′, and step 8 by Eq. (1).

Lemma 4. Let ρ = s0a1 . . . sm ∈ PathsM′
π

be a finite path on M′, and let
h = τ̃ϕ,C̃(ρ) be its associated history. Then, sm ∈ T iff successful(h).

Proof. By induction on the length of the run/history.
Base case: ρ0 = 〈s′

0〉 = 〈(q0, σ10 . . . σn0)〉. Let h0 = τ̃ϕ,C̃(ρ0) = 〈(σ10 . . . σn0)〉.
We have that ρ0[0] ∈ T iff (i.a) q0 ∈ F and (i.b) σi0 ∈ Fi for all 1 ≤ i ≤ n. On
the other hand, h is successful iff (ii.a) actions(h0) = ε |= ϕ and (ii.b) σi0 ∈ Fi.
The claim holds because (i.b) is precisely (ii.b), and (i.a) holds iff (ii.a) holds
by the correctness of the construction of Aact.
Inductive case: assume the claim holds for ρk−1 = (q0, σ10 . . . σn0), (a1, q1, o1),
. . . , (ak−1, qk−1, ok−1), (qk−1, σ1,k−1 . . . σn,k−1) and hk−1 = τ̃ϕ,C̃(ρ). Let a′

k =
(ak, qk, ok) be any valid next action taken from sk−1, and let sk =
(qk, σ1k . . . σnk) ∈ Supp(Pok

(sk−1, ak)) the next possible state. Consider the
sequence r = q0 . . . qk. By construction of M′, and correctness of Ad, we have
that r is a run over Ad, and that qk ∈ F iff a1 . . . ak |= ϕ. By definition of
hk = τ̃ϕ,C̃(ρk), we also have that actions(hk) = a1 . . . ak. Finally, we have that
sk ∈ F iff (i) qk ∈ F and (ii) for all i σik ∈ Fi by construction of M′; (i) holds
iff (iii) actions(hk) |= ϕ by the arguments above; finally, (ii) and (iii) hold iff
successful(h).

Let PathsT,M′
π
(s′

0) be the set of finite paths following π on M′ such that they
start with s′

0 and enter in a state in T only at the end of the path and for the
first time, i.e. PathsT,M′

π
(s′

0) = ((S′ \ T) × A)∗T ∩ PathsM′
π
(s′

0).

Lemma 5. ρ ∈ PathsT,M′
π
(s′

0) iff τ̃γ,C̃(ρ) ∈ Hϕ

γ,C̃

Proof. By Lemma 4, ρ ∈ PathsT,M′
π

iff h = τ̃γ,C̃(ρ) is successful. Moreover, by
Lemma 2, ρ ∈ PathsT,M′

π
⊆ PathsM′

π
iff h is an execution of γ. Furthermore, by

assumption, any finite prefix ρ′, say of length m, of ρ, is such that ρ′[m] �∈ T .
Then, again by Lemma 4, this holds iff h′ = τ̃ϕ,C̃(ρ′) is not successful, meaning
that does not exist a prefix h′ ∈ prefixes(h) with h′ �= h such that h′ is successful.
But this is precisely the membership condition for Hϕ

γ,C̃

This result shows the correctness of our technique:

310 G. De Giacomo et al.

Theorem 3. Let (C̃, ϕ) be an instance of Problem 2, and let M′ be the com-
position MDP for C̃ and ϕ. We have that π is optimal (w.r.t. Eq. (5)) iff its
equivalent orchestrator γ is optimal (w.r.t. Eq. (4)).

Proof. First, we show that π = arg maxπ′ PM′
π,s′

0
(♦T) iff γ = arg maxγ′ P C̃

ϕ(γ′).
For any pair π and its equivalent γ, we have:

Pπ,s′
0
(♦T) =

∑

ρT ∈PathsT,π(s′
0)

PM′
π′ ,s′

0
(PathsωM′

π,s′
0
(ρT)) (9)

=
∑

h̃∈Hϕ

γ,C̃

Pγ,C̃(Tγ,C̃(h̃)) (10)

= Pγ,C̃

(⋃

h∈Hϕ

γ,C̃

Tγ,C̃(h)
)

(11)

= P C̃
ϕ(γ) (12)

where step 9 is by definition of probabilistic reachability, step 10 is by Lemma
3 and Lemma 5, step 11 is by disjointness of all Tγ,C̃(h) for h ∈ Hϕ

γ,C̃ , and
step 12 is by Eq. (2). From this, we obtain that π∗ = arg maxπ′ PMπ′ ,s′

0
(♦T) iff

γ∗ = arg maxγ′ P C̃
ϕ(γ′).

It remains to prove that π is cost-optimal iff γ is cost-optimal. We have:

Eρ∼M′
π,s′

0
[costT (ρ) | ♦T]

=
∑

ρT ∈PathsT,π(s′
0)

PM′
π′ ,s′

0
(PathsωM′

π,s′
0
(ρT)) ·

|ρT |∑

k=0

C ′(s′
k, a′

k+1) (13)

=
∑

h̃∈Hϕ

γ,C̃

Pγ,C̃(Tγ,C̃(h̃)) ·
|h|∑

k=0

Cok+1(σok,k, ak+1) (14)

= Eh∼Pγ,C̃

[|h|∑

k=1

Cok
(σok,k−1, ak)

∣
∣
∣
∣ successful(h)

]

(15)

= J C̃
ϕ (γ) (16)

where step 13 by definition of total expected cost conditioned on reaching of
target states T , step 14 by construction of M′ and by Lemma 3 and Lemma 5,
step 15 by definition of total expected cost on successful executions of γ, and
step 16 by Eq. (3). Therefore, if π ∈ arg minπ′ Eρ∼M′

π,s′
0
[costT (ρ) | ♦T] then

γ ∈ arg minγ′ J C̃
ϕ (γ′). Combining both results, we get the thesis.

Computational Cost. Theorem 3 guarantees that we can reduce Problem 1 to
the problem of finding an optimal policy for the lexicographic bi-objective opti-
mization problem (Eq. (5)) over a composition MDP M′. As explained above,

Composition of Stochastic Services for LTLf Goal Specifications 311

Fig. 2. The electric motor manufacturing process represented using declare.

the two-stage technique requires solving a planning problem over MDPs. Since
it is known that both steps require polynomial time complexity in the number
of states and actions of the MDP [31] and that our Composition MDP has a
state space that is a single-exponential in the size of the goal specification, we
get this result:

Theorem 4. Problem 1 can be solved in at most exponential time in the size
of the formula, in at most exponential time in the number of services, and in
polynomial time in the size of the services.

Observe that, differently from the classical setting of ltl/ltlf synthesis on
probabilistic systems [11,35], and analogously to our solution method for the
non-stochastic case, we do not have unobservable “adversarial” nondeterminism
in the composition MDP; hence, we do not need to determinize the nfa of the
goal specification, thereby saving an exponential blow-up in time complexity.

4 Case Study

To introduce the proposed approach, its functionalities, and its capacity to
address smart manufacturing, we consider the production process of an electric
motor widely used in various applications such as industrial machinery, electric
vehicles, household appliances, and many others [12]. To function properly, elec-
tric motors require certain materials that possess specific electrical and magnetic
properties. Therefore, before the manufacturing processes start, the raw materi-
als (i.e., copper, steel, aluminium, magnets, insulation materials, bearings) must
be extracted and refined to obtain essential metals and polymers for electric
motor parts manufacturing. When the materials are in the manufacturing facil-
ity, the effective manufacturing process can start. For the sake of brevity, in the

312 G. De Giacomo et al.

following, we focus on the main aspects of the manufacturing process, skipping
the provisioning, but the formalization can be easily extended to cover more
details.

Goal. Figure 2 depicts the declare formalization [30] of the electric motor
manufacturing process. The main components of an electric motor are the sta-
tor, the rotor, and, in the case of alternate current motors with direct current
power (e.g., in the case of electric cars). These three components are built or
retrieved in any order (no precedence declare constraints between these tasks)
and then eventually assembled to build a motor (alternate succession constraint
between Build/Retrieve tasks and the Assemble Motor task). After the motor is
assembled, a running-in test must be performed (alternate succession constraint
between the Assemble Motor task and the Running In task), and at most one
(not coexistence constraint) between an electric test and a full static test (the
latter comprises the former). In addition, the motor can be painted optionally.
The Painting, Electric Test and Static Test tasks optionally follow the Assemble
Motor task (alternate precedence constraints). The process depicts the manufac-
turing tasks involved in producing a single motor as indicated by the existence
constraints. Machines and/or human operators can perform all these operations.

Services. The behaviour of each process actor can be described as a stochas-
tic service, i.e., a state machine with a probabilistic behaviour used to model
two types of actors involved in the manufacturing process, namely machines
and human operators, shown in Fig. 3. Each transition edge has a label which
indicates the operation, the probability of transition and the associated cost.
Figure 3a depicts a simple stochastic service of human workers. Such services
have an initial accepting state in which they are Ready and accept operations,
and a sink failure state from where no action can be taken. The transition trig-
gered by the [Op] action has a probability of ps of remaining in the same ready
state (success), but a 1 − ps probability of failing. The transition is associated
with a certain cost c

[Op]
i to perform the action (preceded by a −, i.e., the cost is

thought of as a negative value, using the reward-based representation). Figure 3b
depicts a generic stochastic service of machines. The machine is initially in the
Ready state, which is also the unique accepting state, where it can receive the
Config[Dev] command (the reader, in the following, can imagine the [Dev]
trailer to be replaced with the name of the specific manufacturing actor). This
action takes the service to the Configuration state where the actor is set
up or warmed up. At the end of this phase, the Checked[Dev] action is per-
formed. If the configuration is unsuccessful, with a probability pu

i representing
the possibility of finding the actor unemployable, the actor goes into the Bro-
ken state. If the configuration is successful, with a probability 1 − pu

i , the actor
goes to the Executing state, where a family of operations, denoted with [Op]
in the picture, can be executed. For the sake of compactness, we only show a
single operation, but the service can be easily generalized to the case where a
single actor can perform multiple operations. The action [Op] represents one of
those operations defined in Fig. 2. Executing an operation implies a certain cost

Composition of Stochastic Services for LTLf Goal Specifications 313

Fig. 3. The two types of service we consider for the Electric Motor case study.

c
[Op]
i . In some cases, the execution of [Op] may take the actor i to the Broken

state with probability pb
i and also, in this case, the operation implies a high cost

c
Bad[Op]
i . To take the actor back to the Ready state, a Restore[Dev] task must

be executed on the actor, which has a repair cost cr
i depending on the actual

conditions of the actor, and that takes the actor to the Repairing state. When
the actor is repaired, a Repaired[Dev] event is received, making the actor avail-
able again for manufacturing. Noteworthy, the Config[Dev], Checked[Dev],
Restore[Dev], Repaired[Dev] operations do not leave any trace on the target
process. Noticeably, we can imagine that some of these operations are triggered,
in reality, as exogenous events, i.e., they should be reflected in the controller,
but the actor will wait for these events instead of autonomously enacting them.

We are interested in the problem of maximising the probability that the smart
factory succeeds in producing electric motors at a minimum utilization cost. A
two-stage approach can achieve this: in the first stage, we aim to find the max-
imally permissive strategy that (i) determines the equally optimal sequences of
actions to satisfy the goal specification and (ii) the equally optimal dispatching
strategy that decides which services should perform the operation. The opti-
mization must also consider configuration/checking/repairing action to bring
the service back to a final configuration. This might require limiting the use
of services with certain probability of leading to a failing configuration. In the
second stage, we select, among the available strategies, those that also minimize
the utilization cost. Crucially, the optimal solution might vary depending on the
service available and their capabilities, as well as the probabilities ps

i , pu
i , pb

i and
costs c

[
iOp], c

Bad[Op]
i and cr

i . Given the high degrees of freedom, it is paramount
to use a technique, such as the one proposed in this work, that can automatically
handle such a complex scenario.

314 G. De Giacomo et al.

5 Conclusion

This paper proposes a novel stochastic composition framework in which we aim
to maximize the satisfaction probability of a goal specification, expressed as a
high-level logic formalism such as ltlf , and conditioned on this, minimize the
utilization costs of the available services. We formalized the problem and pro-
posed a solution based on a reduction to a bi-objective optimization over MDPs,
proving the correctness. Finally, we highlighted the relevance of our contribution
by providing an industrial case study considered in the literature. In future work,
we would like to study the process-oriented variant of our framework, namely,
to maximize the probability of realizing all traces that are compatible with the
specification, and conditioned on this, maximize as much as possible the average
expected reward coming from the utilization of the services. This would allow us
to consider a hierarchy of target specifications (either goal-oriented or process-
oriented), hence delivering a rich framework suitable for several applications.
The same kind of generalization can be considered for the reward function of
the services, where we can have more than one reward to consider regarding the
service utilization. Moreover, we would like to implement our approach using
state-of-the-art probabilistic model checkers such as PRISM [24] and Storm [23].

Acknowledgements. This work has been partially supported by the EU H2020
project AIPlan4EU (No. 101016442), the ERC-ADG WhiteMech (No. 834228), the
EU ICT-48 2020 project TAILOR (No. 952215), the PRIN project RIPER (No.
20203FFYLK), and the PNRR MUR project FAIR (No. PE0000013). This work has
been carried out while Luciana Silo was enrolled in the Italian National Doctorate on
Artificial Intelligence run by Sapienza University of Rome.

References

1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University, USA (1997). https://searchworks.stanford.edu/view/3910936

2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of E -services that export their behavior. In: Orlowska, M.E., Weer-
awarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp.
43–58. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24593-3 4

3. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of services
with nondeterministic observable behavior. In: Benatallah, B., Casati, F., Traverso,
P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 520–526. Springer, Heidelberg (2005).
https://doi.org/10.1007/11596141 43

4. Brafman, R.I., De Giacomo, G., Mecella, M., Sardiña, S.: Service composition in
stochastic settings. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017.
LNCS, vol. 10640, pp. 159–171. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70169-1 12

5. Brafman, R.I., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-Markovian rewards.
In: AAAI, pp. 1771–1778. AAAI Press (2018)

6. Busatto-Gaston, D., Chakraborty, D., Majumdar, A., Mukherjee, S., Pérez, G.A.,
Raskin, J.: Bi-objective lexicographic optimization in Markov decision processes

https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/978-3-540-24593-3_4
https://doi.org/10.1007/11596141_43
https://doi.org/10.1007/978-3-319-70169-1_12
https://doi.org/10.1007/978-3-319-70169-1_12

Composition of Stochastic Services for LTLf Goal Specifications 315

with related objectives. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS, vol.
14215, pp. 203–223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
45329-8 10

7. Chatterjee, K., Katoen, J.-P., Weininger, M., Winkler, T.: Stochastic games with
lexicographic reachability-safety objectives. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 398–420. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 21

8. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/
11672142 26

9. Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-HTN planning approach to enhance
flexibility of automatic web service composition. In: ICWS, pp. 9–16. IEEE Com-
puter Society (2009)

10. Chen, Y., Huang, J., Lin, C., Shen, X.: Multi-objective service composition with
QoS dependencies. IEEE Trans. Cloud Comput. (2019)

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

12. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Monti, F., Silo, L.: AIDA:
a tool for resiliency in smart manufacturing. In: Cabanillas, C., Pérez, F. (eds.)
CAiSE 2023. LNBIP, vol. 477, pp. 112–120. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-34674-3 14

13. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twins
composition via Markov decision processes. In: ITBPM@BPM. CEUR Workshop
Proceedings, vol. 2952, pp. 44–49. CEUR-WS.org (2021)

14. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Modeling resilient
cyber-physical processes and their composition from digital twins via Markov deci-
sion processes. In: PMAI@IJCAI. CEUR Workshop Proceedings, vol. 3310, pp.
101–104. CEUR-WS.org (2022)

15. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twin com-
position in smart manufacturing via Markov decision processes. Comput. Ind. 149,
103916 (2023)

16. De Giacomo, G., Mecella, M., Patrizi, F.: Automated service composition based
on behaviors: the roman model. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.)
Web Services Foundations, pp. 189–214. Springer, New York (2014). https://doi.
org/10.1007/978-1-4614-7518-7 8

17. De Giacomo, G., Patrizi, F., Sardina, S.: Automatic behavior composition synthe-
sis. Artif. Intell. 196, 106–142 (2013)

18. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. IJCAI/AAAI (2013)

19. Di Ciccio, C., Montali, M.: Declarative process specifications: reasoning, discovery,
monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. Lecture Notes in Business Information Processing, vol. 448, pp. 108–152.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3 4

20. Dumas, M., et al.: AI-augmented business process management systems: a research
manifesto. ACM Trans. Manag. Inf. Syst. 14(1), 11:1–11:19 (2023)

21. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using Markov
decision processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS,
vol. 3739, pp. 308–319. Springer, Heidelberg (2005). https://doi.org/10.1007/
11563952 28

https://doi.org/10.1007/978-3-031-45329-8_10
https://doi.org/10.1007/978-3-031-45329-8_10
https://doi.org/10.1007/978-3-030-53291-8_21
https://doi.org/10.1007/978-3-030-53291-8_21
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/978-3-031-34674-3_14
https://doi.org/10.1007/978-3-031-34674-3_14
https://doi.org/10.1007/978-1-4614-7518-7_8
https://doi.org/10.1007/978-1-4614-7518-7_8
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/11563952_28
https://doi.org/10.1007/11563952_28

316 G. De Giacomo et al.

22. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Model-
free reinforcement learning for lexicographic omega-regular objectives. In: Huis-
man, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 142–159.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6 8

23. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical
processes through action-based formalisms. AI Commun. 31(1), 47–74 (2018)

26. Monti, F., Silo, L., Leotta, F., Mecella, M.: On the suitability of AI for service-
based adaptive supply chains in smart manufacturing. In: ICWS, pp. 704–706.
IEEE (2023)

27. Monti, F., Silo, L., Leotta, F., Mecella, M.: Services in smart manufacturing:
comparing automated reasoning techniques for composition and orchestration. In:
Aiello, M., Barzen, J., Dustdar, S., Leymann, F. (eds.) SummerSOC 2023. CCIS,
vol. 1847, pp. 69–83. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
45728-9 5

28. Moustafa, Ahmed, Zhang, Minjie: Multi-objective service composition using rein-
forcement learning. In: Basu, Samik, Pautasso, Cesare, Zhang, Liang, Fu, Xiang
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 298–312. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 21

29. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

30. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full support for loosely-
structured processes. In: EDOC (2007)

31. Puterman, M.L.: Markov decision processes (1994)
32. Sadeghiram, S., Ma, H., Chen, G.: A user-preference driven lexicographic approach

for multi-objective distributed web service composition. In: 2020 IEEE Symposium
Series on Computational Intelligence (SSCI) (2020)

33. Skalse, J., Abate, A.: On the limitations of Markovian rewards to express multi-
objective, risk-sensitive, and modal tasks. In: UAI. Proceedings of Machine Learn-
ing Research, vol. 216, pp. 1974–1984. PMLR (2023)

34. Skalse, J., Hammond, L., Griffin, C., Abate, A.: Lexicographic multi-objective rein-
forcement learning. In: IJCAI, pp. 3430–3436. ijcai.org (2022)

35. Wells, A.M., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: LTLf synthesis on prob-
abilistic systems. In: GandALF. EPTCS, vol. 326 (2020)

36. Wray, K., Zilberstein, S., Mouaddib, A.I.: Multi-objective MDPs with conditional
lexicographic reward preferences. In: AAAI (2015)

37. Yadav, N., Sardiña, S.: Decision theoretic behavior composition. In: AAMAS, pp.
575–582. IFAAMAS (2011)

https://doi.org/10.1007/978-3-030-90870-6_8
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-031-45728-9_5
https://doi.org/10.1007/978-3-031-45728-9_5
https://doi.org/10.1007/978-3-642-45005-1_21

	Composition of Stochastic Services for LTLf Goal Specifications
	1 Introduction
	2 Preliminaries
	3 Composition of Stochastic Services for ltlf Tasks
	3.1 Stochastic Services Framework
	3.2 Stochastic Services Solution Technique

	4 Case Study
	5 Conclusion
	References

