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Abstract
We consider an agent acting in a complex environ-
ment modeled through a multi-tiered specification,
in which each tier adds nondeterminism in the en-
vironment response to the agent actions. In this
setting, we devise an effective approach to best-
effort synthesis, i.e., synthesizing agent strategies
that win against a maximal set of possible envi-
ronment responses in each tier. We do this in a
setting where both the multi-tier environment and
agent goal are specified in the linear temporal logic
on finite traces (LTLf ). While theoretical solution
techniques based on automata on infinite trees have
been developed previously, we completely side-
step them here and focus on a DFA-based game-
theoretic technique, which can be effectively im-
plemented symbolically. Specifically, we present a
provably correct algorithm that is based on solving
separately DFA-based games for each tier and then
combining the obtained solutions on-the-fly. This
algorithm is linear, as opposed to being exponen-
tial, in the number of tiers, and thus, it can gra-
ciously handle multi-tier environments formed of
several tiers.

1 Introduction
There is a growing interest in Reasoning about Actions, Plan-
ning, and Sequential Decision Making on developing au-
tonomous AI systems that can operate effectively in com-
plex and dynamic environments where the level of nonde-
terminism is high. We typically assume that the AI sys-
tem, i.e., the agent, has a single or flat model of the en-
vironment (specified, e.g., in the Situation Calculus [Re-
iter, 2001], or in PDDL [Haslum et al., 2019], or in Tem-
poral Logics [Aminof et al., 2018; Camacho et al., 2019;
Aminof et al., 2019]), which the agent uses to deliberate
how to achieve its goals. However, accurately modeling
such environments can be challenging, particularly when
there is a high degree of uncertainty. Hence, the scien-
tific community has been exploring the concept of multi-tier
models of environment behavior, i.e., having simultaneously
several models, or tiers, of the environment such that, in
each tier the environment is more nondeterministic than in

the previous one [Aminof et al., 2020; Ciolek et al., 2020;
Aminof et al., 2021a]. For example, an agent may have a tier
that represents the expected environment behavior, but also
other tiers that represent increasingly nondeterministic devi-
ations from that behavior, due to deteriorated or exceptional
responses.

Given a multi-tier environment model, the agent simulta-
neously reasons on the effects of its actions in all tiers when
deliberating what to do. This increases the robustness and
adaptability of its operations when deployed in complex and
uncertain environments. However, while the agent may have
winning strategies (plans) to achieve its goals in the most de-
terministic tier, it may be impossible to have winning strate-
gies also for the most nondeterministic tiers. This calls for
notions of strategies that are less stringent than the usual ones
used in Formal Methods [Finkbeiner, 2016], or in Planning
[Geffner and Bonet, 2013].

One option is to introduce stochastic/quantitative aspects
in the models and base reasoning on optimization with prob-
abilistic guarantees [Geffner and Bonet, 2013]. But also in
the non-quantitative setting there are interesting solutions, in
particular that of best-effort strategies [Aminof et al., 2020;
Aminof et al., 2021a; Aminof et al., 2021b]: if a strategy
to win the goal against all possible environment responses
does not exist, instead of giving up, we return a strategy that
wins against a maximal set (though not all) of possible en-
vironment responses. Best-effort strategies are based on the
game-theoretic rationality principle that a player (the agent)
should not use a strategy that is “dominated” by another one
(i.e., if another strategy fulfills the goal against more envi-
ronment responses, then the player should adopt that strat-
egy). Best-effort strategies have some notable properties: (i)
they always exist, (ii) if a winning strategy exists, then best-
effort strategies are exactly the winning strategies, (iii) for
Linear Temporal Logic specifications both on infinite traces
(LTL) [Pnueli, 1977] and on finite traces (LTLf ) [De Giacomo
and Vardi, 2013], they can be computed in worst case 2EX-
PTIME, just as for winning strategies (best-effort synthesis
is indeed 2EXPTIME-complete, just as is standard synthesis)
[Aminof et al., 2021b].

These results extend to multi-tier environments. In par-
ticular, a strategy that is best-effort in all tiers of the multi-
tier environment model always exists, i.e., there exists a strat-
egy that in every tier wins against a maximal set of environ-



ment strategies. Moreover, such a strategy can be computed
in 2EXPTIME for LTL/LTLf specifications. The latter result
has been proved constructively in [Aminof et al., 2021a] by
providing a solution technique based on automata on infinite
trees. However that automata-based technique is not particu-
larly promising for implementation.

Interestingly, in the case of flat environment models, one
can resort to an alternative synthesis technique [Aminof et al.,
2021b], which is a game-theoretic construction that can be
implemented effectively, especially for LTLf . This technique
is based on solving an adversarial and a cooperative game
over an arena provided by the environment specification (and
the agent goal) and then combining the two solutions.

In this paper, we focus on LTLf
1. Using LTLf allows to

specify every LTL guarantee specification for the goal and
every LTL safety specification for the environment [Manna
and Pnueli, 1990]. Notably, safety environment specifications
are a generalization of nondeterministic planning domain
specifications (for example, they allow for non-Markovian
properties [Gabaldon, 2011]), e.g., written in PDDL mak-
ing use of oneof (dropping preconditions in favor of con-
ditional effects) [Haslum et al., 2019; Aminof et al., 2018;
De Giacomo et al., 2023a].

Our first contribution is to show that the game-theoretic
approach in [Aminof et al., 2021b] can be extended to handle
multi-tier environments. Specifically, we show that we can
combine adversarial and cooperative games for each tier of
the environment and generate a strategy that is best-effort for
all of them (Algorithm 1). However, by adopting such a basic
technique, we obtain a game arena that is exponential in the
number of tiers, limiting the applicability to only few tiers.

Our second contribution is to show that this exponential
blowup in the number of tiers can be avoided. We present
a refinement (Algorithm 2) of the basic technique, which is
based on solving the games corresponding to an environment
specification separately and combining the solutions on-the-
fly (in linear time) to obtain a strategy that step-wise returns
the next action to be performed. The result is an algorithm
that is linear in the number of environment specifications, and
worst-case doubly exponential only in the size of the formulas
specifying the goal and the environments (Theorem 6).

Our third contribution is to analyze two notable cases of
multi-tier environments specified in LTLf : (i) the case in
which all tiers share a (large) common base component, i.e.,
have the form Ei = Ec∧E ′

i , and (ii) the case in which, each tier
is obtained by conjoining some further conditions to the pre-
vious one, i.e., Ei−1 = Ei ∧ E ′

i−1. We exploit this additional
structure, getting a construction that is even more scalable.

To show the practicality of the proposed approach, we pro-
vide symbolic implementations by leveraging the framework
of [Zhu et al., 2017] and, using such implementations, per-
form an empirical evaluation on some scalable benchmarks.

2 LTLf Synthesis
A trace over an alphabet of symbols Σ is a finite or infinite
sequence of elements from Σ. The empty trace is denoted

1All techniques reported here also apply to LDLf [De Giacomo
and Vardi, 2013] and pure-past LTL [De Giacomo et al., 2020a].

λ. Traces are indexed starting at zero, and we write π =
π0π1 · · · . For a finite trace π, let lst(π) denote the index of
the last element of π, i.e., lst(π) = |π| − 1.

Linear Temporal Logic on finite traces (LTLf ) is a spec-
ification language for expressing temporal properties on fi-
nite traces [De Giacomo and Vardi, 2013]. LTLf has the
same syntax as LTL (which is instead interpreted over infinite
traces [Pnueli, 1977]). Given a setAP of atomic propositions
(aka atoms), the LTLf formulas overAP are generated by the
following grammar: φ ::= a | φ ∧ φ | ¬φ | ◦φ | φU φ,
where a ∈ AP . Here ◦ (Next) and U (Until) are tempo-
ral operators. We use standard Boolean abbreviations such
as ∨ (or), ⊃ (implies), true and false . Moreover, we de-
fine the following abbreviations: •φ ≡ ¬◦¬φ (Weak Next),
3φ ≡ true U φ (Eventually), and 2φ ≡ ¬3¬φ (Always).
The size of φ, written |φ|, is the number of its subformulas.
Formulas are interpreted over finite traces π over the alpha-
bet Σ = 2AP , i.e., the alphabet consisting of the proposi-
tional interpretations of the atoms. Thus, for 0 ≤ i ≤ lst(π),
πi ∈ 2AP is the i-th interpretation of π. That an LTLf formula
φ holds at instant i ≤ lst(π), written π, i |= φ, is defined in-
ductively: 1. π, i |= a iff a ∈ πi (for a ∈ AP ); 2. π, i |=
¬φ iff π, i ̸|= φ; 3. π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |=
φ2; 4. π, i |= ◦φ iff i < lst(π) and π, i + 1 |= φ; and 5.
π, i |= φ1 U φ2 iff ∃j such that i ≤ j ≤ lst(π) and π, j |= φ2,
and ∀k, i ≤ k < j we have that π, k |= φ1. We say that π
satisfies φ, written π |= φ, if π, 0 |= φ.

LTLf (reactive) synthesis [De Giacomo and Vardi, 2015]
concerns finding a strategy to satisfy an LTLf goal specifi-
cation. Goals are expressed as LTLf formulas over AP =
Y ∪ X , where Y and X are disjoint sets of variables. In-
tuitively, Y (resp. X ) is under the agent’s (resp. environ-
ment’s) control. Traces over Σ = 2Y∪X will be denoted
π = (Y0 ∪X0)(Y1 ∪X1) . . . where Xi ⊆ X and Yi ⊆ Y for
every i. Such infinite traces are called plays, and finite traces
are called histories and represent a sequence of moves of the
players ending in an environment move since we assume that
the agent moves first.

An agent strategy is a function σag : (2X )∗ → 2Y mapping
sequences of environment moves to an agent move. Similarly,
an environment strategy is a function σenv : (2Y)+ → 2X

mapping non-empty sequences of agent moves to an environ-
ment move. The domain of σag includes the empty sequence
λ as we assumed that the agent moves first. A trace π is
σag-consistent if Y0 = σag(λ) and Yj+1 = σag(X0 · · ·Xj)
for every j ≥ 0. Analogously, π is σenv-consistent if Xj =
σenv(Y0 · · ·Yj) for every j ≥ 0. We define PLAY(σag, σenv)
to be the unique (infinite) trace that is consistent with both
σag and σenv .

Let φ be an LTLf formula over Y ∪ X . An agent strategy
σag is winning for (aka enforces) φ if, for every environment
strategy σenv , some finite prefix of PLAY(σag, σenv) satis-
fies φ. An agent strategy is cooperatively winning for φ if
there exists an environment strategy σenv such that some fi-
nite prefix of PLAY(σag, σenv) satisfies φ. LTLf synthesis is
the problem of finding an agent strategy σag that enforces φ,
if one exists [De Giacomo and Vardi, 2015].

In this paper, we are interested in LTLf synthesis under en-
vironment specifications [Aminof et al., 2018]. Environment



specifications describe some knowledge about how the envi-
ronment works and are expressed as LTLf formulas E over
Y ∪X . An environment strategy σenv is winning for (aka en-
forces) E if, for every agent strategy σag , every finite prefix of
PLAY(σag, σenv) satisfies E . An environment specification is
an LTLf formula E that is enforceable by some environment
strategy. We denote by ΣE the set of environment strategies
that enforce E .

Definition 1. [Aminof et al., 2018] Let φ (resp. E) be an
LTLf formula over Y ∪ X denoting an agent goal (resp. env
spec). LTLf Synthesis under environment specifications is
the problem of finding an agent strategy σag such that, for
every environment strategy σenv ∈ ΣE , some finite prefix of
PLAY (σag, σenv) satisfies φ, if one exists. Such a strategy
is winning for φ in E (aka enforces φ in E)

An agent strategy σag is cooperatively winning for φ in E
if there exists an environment strategy σenv ∈ ΣE such that
PLAY (σag, σenv) has a finite prefix that satisfies φ.

Synthesis, both with LTLf environment specifications or
not, is 2EXPTIME-complete [De Giacomo and Vardi, 2015;
Aminof et al., 2018]. Synthesis under environment specifi-
cations is a generalization of synthesis which is obtained by
taking E = true.

3 Best-Effort Strategies
We start by recalling basic notions on best-effort strate-
gies [Aminof et al., 2020; Aminof et al., 2021b; Aminof et
al., 2021a].

Definition 2. Let φ and E be LTLf formulas over Y ∪ X de-
noting an agent goal and an environment specification, re-
spectively, and let σ1 and σ2 be agent strategies. We say
that σ1 dominates σ2, written σ1 ≥φ|E σ2, if, for every
σenv ∈ ΣE , if some finite prefix of PLAY(σ2, σenv) satisfies
φ then some finite prefix of PLAY(σ1, σenv) satisfies φ. Fur-
thermore, σ1 strictly dominates σ2, written σ1 >φ|E σ2, if
σ1 ≥φ|E σ2 and σ2 ̸≥φ|E σ1.

Intuitively, σ1 >φ|E σ2 means that σ1 does at least as
well as σ2 against every environment strategy enforcing E
and strictly better against at least one such strategy. An agent
using σ2 is not doing its best, since it could achieve its goal
against a strictly larger set of environment strategies using
σ1. In this framework, a best-effort strategy is one which is
not strictly dominated by any other strategy.

Definition 3. An agent strategy σ is best-effort, or maximal,
for φ in E , written σ ∈ Maxφ|E , if there does not exist another
agent strategy σ′ such that σ′ >φ|E σ.

Best-effort strategies also admit a local characterization
that uses the notion of value of a history [Aminof et al.,
2021b]. Intuitively, the value of a history h is: “winning”,
if the agent can enforce φ in E from h; otherwise, “pend-
ing”, if the agent has a cooperatively winning strategy for φ
in E from h; otherwise, “losing”. With this notion, best-effort
strategies are those that witness the maximum value of each
history h consistent with them.

For a history h and an agent strategy σag , we denote by
ΣE(h, σag) the set of environment strategies σenv enforcing

E such that h is consistent with σag and σenv . For an agent
strategy σag , we denote by HE(σag) the set of all histories h
such that ΣE(h, σag) is non-empty, i.e., HE(σag) is the set of
all histories that are consistent with σag and some environ-
ment strategy enforcing E . For h ∈ HE(σag) define:

1. valφ|E(σag, h) = +1 (“winning”), if for every σenv ∈
ΣE(h, σag), PLAY(σag, σenv) has a finite prefix that sat-
isfies φ; otherwise,

2. valφ|E(σag, h) = 0 (“pending”), if for some σenv ∈
ΣE(h, σag), PLAY(σag, σenv) has a finite prefix that sat-
isfies φ; otherwise,

3. valφ|E(σag, h) = −1 (“losing”).
Finally, we denote by valφ|E(h) the maximum of
valφ|E(σag, h) over all σag such that h ∈ HE(σag) (we de-
fine valφ|E(h) only in case h ∈ HE(σ) for some σ). Here is
the local characterization of best-effort strategies:

Theorem 1. [Aminof et al., 2021b] A strategy σag is best-
effort for φ in E (i.e., σag ∈ Maxφ|E ) iff valφ|E(σag, h) =
valφ|E(h) for every h ∈ HE(σag).

4 Best-Effort Synthesis in Multi-Tier
Environments

We now introduce best-effort synthesis in multi-tier environ-
ments, i.e., environment models consisting of several tiers,
each allowing more nondeterminism than the previous one.
Formally, an LTLf multi-tier environment specification (aka
multi-tier environment model) is a tuple E = (E1, · · · , En) of
LTLf environment tiers such that ΣEi

⊆ ΣEi+1
for every i

(i ≤ i < n). In this framework, a best-effort strategy is one
that is simultaneously best-effort for every tier.

Definition 4. Given an LTLf goal φ and an LTLf multi-
tier environment specification E = (E1, · · · , En), best-effort
synthesis is the problem of finding an agent strategy that is
best-effort for φ in E , i.e. such that σag ∈

⋂
iMaxφ|Ei

.

Unlike classic LTLf synthesis [De Giacomo and Vardi,
2015; Pnueli and Rosner, 1989], a best-effort strategy for an
LTLf goal φ in a LTLf multi-tier environment specification E
always exists, though computing it requires 2EXPTIME as in
classic synthesis [Aminof et al., 2021a].

Theorem 2. [Aminof et al., 2021a] Let φ be an LTLf goal
and E = (E1, · · · , En) an LTLf multi-tier environment speci-
fication. There exists σag ∈

⋂
iMaxφ|Ei

, and it can be com-
puted in 2EXPTIME in the size of φ, E1, · · · , En.

We now illustrate such notions in a simple Robot Navi-
gation (in FOND domains) scenario [Cimatti et al., 2003;
Alford et al., 2014] where an agent has to plan in spite of
increasing nondeterminism.

Example 1. An autonomous agent is assigned the goal of
delivering packages in a building by moving across rooms.
Assume that there is a kid in the building who has keys to
close some doors. It is easy to see that the agent goal may
not be realizable as, e.g., the kid might lock the robot in a
room. Hence, the agent could use a best-effort strategy. In
this scenario, an LTLf environment describes the initial state,
the transitions of the planning domain, and that the kid might



close doors for which he has a key. Assume that the designer
has no knowledge of which keys the kid holds. Then, the agent
could be provided with several specifications describing the
possible environment responses, each of which assumes that
the kid holds some keys. In a multi-tier environment model,
each tier assumes that the kid has more and more keys. A
strategy σag that is best-effort in such a multi-tier environ-
ment will intuitively behave as follows: at every point in time,
and for each environment specification, if the goal is enforce-
able (e.g., because the kid cannot prevent this) then σag will
enforce it, and if the goal requires cooperation to achieve
(e.g., because the kid has the keys to the relevant rooms) then
σag will achieve the goal if the kid chooses to cooperate. The
fact that such a strategy exists is non-trivial in general, and
follows from Theorem 2.

5 Solving Best-Effort Synthesis in Multi-Tier
Environments

While [Aminof et al., 2021a] provide a solution technique for
best-effort synthesis in multi-tier domains, their technique is
based on automata on infinite trees and is not well suited for
efficient implementation. Here, we provide a different tech-
nique based on DFA games, as that for best-effort synthesis in
a flat environment from [Aminof et al., 2021b], but extended
to handle multi-tier environments.

Deterministic Finite Automata. For convenience, we sep-
arate the acceptance condition of automata from their struc-
ture. We define a deterministic transition system (aka tran-
sition system) as a tuple D = (Σ, S, s0, δ), where: Σ is a
finite input alphabet (usually Σ = 2AP ); S is a finite set of
states; s0 ∈ S is the initial state; and δ : S × Σ → S is
the transition function. The size of D is the cardinality of
S. Let α = α0α1 . . . αn be a finite trace over the alpha-
bet Σ. The run of α in D is the finite sequence of states
ρ = s0s1 . . . sn+1 such that s0 is the initial state of D and
si+1 = δ(si, αi) for every i ≤ lst(α). We extend δ to be a
function δ : S × Σ∗ → S as follows: δ(s, λ) = s, and if
sn = δ(s, α0 . . . αn−1) then δ(s, α0 . . . αn) = δ(sn, αn).

Definition 5. The synchronous product of two transition
systems Di = (Σ, Si, s(0,i), δi) (for i = 1, 2) over the
same alphabet is the transition system PRODUCT(D1,D2) =
D1 × D2 = (Σ, S, s0, δ) with: S = S1 × S2; s0 =
(s(0,1), s(0,2)); and δ((s1, s2), x) = (δ(s1, x), δ(s2, x)). The
product PRODUCT(D1, · · · ,Dn) = D1×· · ·×Dn is defined
analogously for any finite sequence D1, · · · ,Dn of transition
systems over the same alphabet.

A deterministic finite automaton (DFA) is a pair A =
(D, F ), where D = (Σ, S, s0, δ) is a deterministic transition
system and F ⊆ S is the set of final states of the system. A
trace α is accepted if δ(s0, α) ∈ F . The language of A is the
set of traces that the automaton accepts.

Theorem 3. [De Giacomo and Vardi, 2013] Given an
LTLf formula φ over AP , we can build a DFA, denoted
TODFA(φ), whose size is at most 2EXP in |φ| and whose
language is the set of finite traces that satisfy φ.

DFA Games. A DFA (D, F ) in which Σ = 2Y∪X is called
a DFA game. Here, D is called the game arena, and F is
called the goal. The notions of plays, histories, and strate-
gies from the Preliminaries Section apply also in this set-
ting. A play is winning if it contains a finite prefix that is
accepted by the DFA. Intuitively, winning a DFA game re-
quires that F is visited at least once. An agent strategy σag
is winning if, for every σenv , PLAY(σag, σenv) is winning.
Furthermore, an agent strategy is cooperatively winning if
there exists σenv such that PLAY(σag, σenv) is winning. Fi-
nally, an environment strategy σenv is winning if, for ev-
ery σag , PLAY(σag, σenv) is not winning. The winning re-
gion (resp. cooperatively winning region) is the set of states
s ∈ S for which the agent has a winning (resp. coopera-
tively winning) strategy in the game G′ = (D′, F ), where
D′ = (2Y∪X , S, s, δ), i.e., the same game as G, but with
initial state s. The environment winning region is defined
analogously. An agent strategy that is winning from every
state in the agent winning region (resp. cooperatively win-
ning region) is called uniform winning (resp. uniform coop-
eratively winning). Of special interest is the case where the
agent strategy can be derived from a function κag : S → 2Y ,
called a positional strategy, mapping states of the game to
agent moves. While a positional strategy is not formally
an agent strategy (i.e., a function from sequences of en-
vironment moves to agent moves), it induces one as fol-
lows: STRATEGY(D, κag)(h) = κag(δ(s0, h)). The pair
(D, κag) is sometimes called a transducer, i.e., a determin-
istic transition-system with output. Solving a DFA game is
the problem of computing the agent winning (resp. coopera-
tively winning) region and determining a positional winning
strategy (resp. positional cooperatively winning) strategy,
written (W,κag) = SOLVEADV(D, F ) (resp. (W ′, γag) =
SOLVECOOP(D, F )). Games played over DFAs are deter-
mined, meaning that the agent winning region and the en-
vironment winning region partition the state space [Gale and
Stewart, 1953]. DFA games can be solved in linear time in
the size of the game arena through a least-fixpoint computa-
tion [Apt and Grädel, 2011]. The environment winning re-
gion is denoted ENVWIN(D, F ).

Sometimes, transitions must be constrained to those that do
not allow the game to leave a set of states:

Definition 6. Let D = (Σ, S, s0, δ) be a transition system
and S′ ⊆ S a non-empty set of states. The restriction of D
to S′ is the transition system RESTRICT(D, S′) = (Σ, S′ ∪
{sink}, s0, δ′) where, for every a ∈ Σ, δ′(s, a) = sink if
s = sink or δ(s, a) ̸∈ S′, and δ′(s, a) = δ(s, a) otherwise.

Solution Technique – Basic Version. As a first step to-
wards developing our solution, we first review the core step
in [Aminof et al., 2021b; De Giacomo et al., 2023b]2 for the

2We observe that in [Aminof et al., 2021b; Aminof et al., 2023]
the environment moves first. This causes a mismatch between the
automata constructed in the algorithms of those papers and the local
characterization. While the local characterization talks about his-
tories ending in environment moves, finite runs in automata corre-
spond to histories ending in agent moves. This mismatch causes a
bug in the algorithms of those papers. This bug can be fixed by hav-
ing the agent move first, as we do in this paper. If one wishes for the



Algorithm 0 SYNTHPOS(φ, E)
Input: LTLf goal φ and an env. specification E
Output: goal DFA Aφ; env. DFA AE ; winning regionW ; co-

operatively winning region W ′; positional winning strat-
egy κ; positional cooperatively winning strategy γ

1: Aφ = TODFA(φ); AE = TODFA(E)
Say Aφ = (Dφ, Fφ) and AE = (DE , FE)

2: D = PRODUCT(DE ,Dφ)
3: Let:

• FE⊃φ = {(sE , sφ) | sE ∈ FE ⊃ sφ ∈ Fφ}
• F¬E = {(sE , sφ) | sE ̸∈ FE}
• FE∧φ = {(sE , sφ) | sE ∈ FE ∧ sφ ∈ Fφ}

4: (W,κ) = SOLVEADV(D, FE⊃φ)
5: V = ENVWIN(D, F¬E)
6: D′ = RESTRICT(D, V )
7: (W ′, γ) = SOLVECOOP(D′, FE∧φ)
8: Return (Aφ,AE ,W,W

′, κ, γ)

single environment LTLf best-effort synthesis problem, en-
capsulated in Algorithm 0. That allows one to compute a po-
sitional strategy as follows: it maps a state s in D = DE×Dφ
to κ(s) if s ∈W , to γ(s) if s ∈W ′ \W , and is arbitrary oth-
erwise. Intuitively, the histories whose induced runs in D that
pass or end in a state in W have value +1 (as witnessed by
κ), those ending in a state in W ′ \W have value 0 (as wit-
nessed by γ), and the rest have value −1. The correctness is
a consequence of the local characterization (Theorem 1).

With the auxiliary procedure Algorithm 0 in place, we are
ready to present our solution technique. For we make no ef-
fort to gain maximal efficiency, which we will do in the next
section, this solution should be thought of as a conceptual so-
lution and not yet a blueprint for implementation. The tech-
nique is detailed in Algorithm 1 and returns a strategy ob-
tained by combining the solutions of simple (adversarial and
cooperative) DFA games, two for each environment specifica-
tion Ei, computed in Step 1 by calling Algorithm 0. These
strategies are combined into a positional strategy over the
Cartesian product of all games computed in Step 3. Algo-
rithm 1 exploits the fact the environment is given in the form
of a multi-tier environment, i.e., ΣE1

⊆ · · · ⊆ ΣEn
, as fol-

lows. Suppose k < i. Then, an agent strategy that wins
for φ in Ei also wins for φ in Ek since winning against all
the strategies in ΣEi

also wins against all the strategies in the
subset ΣEk

. Similarly, an agent strategy that cooperatively
wins for φ in Ek also cooperatively wins for φ in Ei since a
cooperating environment strategy in ΣEk

is also in ΣEi . In-
tuitively, histories whose induced runs in the product D that
pass or end in a state whose j-th coordinate is inWj (where j
is computed in Step 3) have value +1 for each of the environ-
ment specifications E1 up to Ej , and have value 0 for each of
the environment specifications Ej+1 up to En; of the remain-
ing histories, those ending in a state whose ℓ-th coordinate is

environment to move first, we can easily change the specification so
that it ignores the first agent move. Alternatively, we can modify the
automata construction by adding intermediate states in each transi-
tion that correspond to half time-steps after the environment move
but before the corresponding agent move.

Algorithm 1 MULTIENVBESYNTH(φ, E1, · · · , En)
Input: LTLf goal φ and a multi-tier env. E = (E1 · · · En)
Output: Agent strategy σ that is best-effort for φ in E

1: For i = 1 . . . n:
(Aφ,AEi

,Wi,W
′
i , κi, γi) = SYNTHPOS(φ, Ei)3

Say Aφ = (Dφ, Fφ), Dφ = (2Y∪X , Sφ, sφ, δφ)
Say AEi

= (DEi
, FEi

), DEi
= (2Y∪X , SEi

, sEi
, δEi

)
2: D = PRODUCT(DE1

, · · · ,DEn
,Dφ)

Say S = SE1 × · · · × SEn × Sφ
3: Define a positional strategy ν on S as follows.

For s = (s1, · · · , sn, t) ∈ S:
1. j = max{i : (si, t) ∈Wi}
2. ℓ = min{i : (si, t) ∈W ′

i}
3. if j exists then define ν(s) = κj(sj , t)

4

else if ℓ exists then define ν(s) = γℓ(sℓ, t)
else define ν(s) = Y (i.e., arbitrarily) endif

4: Return STRATEGY(D, ν)

inW ′
ℓ have value 0 for each of the environment specifications

Eℓ up to En, and otherwise have value −1. The following the-
orem shows the correctness of the solution technique above:
Theorem 4. Algorithm 1 returns a strategy in ∩i≤nMaxφ|Ei

.

6 Advanced Solution Technique
Although Algorithm 1 is correct, its runtime grows exponen-
tially in n, the number of tiers in the multi-tier environment.
Indeed, Algorithm 1 returns an agent strategy represented as
a transducer with state space SE1

×· · ·×SEn
×Sφ, where Sφ

is the state space of Aφ and, for every i, SEi
is the state space

of AEi
. The size of this state space grows exponentially in

n. Constructing the positional strategy ν requires searching
the whole state space (Step 3), and hence exponential time in
n. Such exponential dependency limits the applicability of
Algorithm 1 to best-effort synthesis problems with just few
tiers. However, the ideas at the base of Algorithm 1 can be
refined to avoid the exponential blow-up.

To do so, we substitute Algorithm 1 with Algorithm 2. The
key difference is that we avoid the construction of the Carte-
sian product and instead return a strategy that determines on-
the-fly, at each instant, the next action to perform by scanning
in linear time the regions Wi and W ′

i (for 1 ≤ i ≤ n) and
choosing a suitable output from the strategies κi and γi. With
this technique, the cost of computing the output best-effort
strategy is just linear in n (while remaining double exponen-
tial in the size of the LTLf formulas E1, · · · , En, φ), as well
as the time cost for executing, at any instant, the output strat-
egy. Since it is easy to see that the strategy returned by Algo-
rithm 2 is equivalent to the strategy returned by Algorithm 1,
from Theorem 4 we get the correctness of Algorithm 2.
Theorem 5. Algorithm 2 returns a strategy in ∩i≤nMaxφ|Ei

.

Complexity. By analyzing Algorithm 2 we see that, while
its complexity is 2EXPTIME in the LTLf formulas (as classic
synthesis), it depends linearly on the number of tiers:

2In fact, we only need to call TODFA(φ) once.
4Recall that by Alg 0, the domains of κi and γi are SEi × Sφ.



Algorithm 2 ONTHEFLYBESYNTH(φ, E1, · · · , En)
Input: LTLf goal φ and a multi-tier env. E = (E1 · · · En)
Output: Agent strategy σ that is best-effort for φ in E

1: For i = 1 . . . n:
(Aφ,AEi

,Wi,W
′
i , κi, γi) = SYNTHPOS(φ, Ei)2

Say Aφ = (Dφ, Fφ), Dφ = (2Y∪X , Sφ, sφ, δφ)
Say AEi

= (DEi
, FEi

), DEi
= (2X∪Y , SEi

, sEi
, δEi

)
2: Return the following best-effort strategy:

While true:
1. j = max{i : (sEi , sφ) ∈Wi}
2. ℓ = min{i : (sEi , sφ) ∈W ′

i}
3. if j exists, output Y = κj(sEj , sφ)

else if ℓ exists, output Y = γℓ(sEℓ
, sφ)

else output Y = Y endif
4. On environment’s choice X ⊆ X :

• Update sφ = δφ(sφ, Y ∪X)
• For i = 1 . . . n: update sEi

= δEi
(sEi

, Y ∪X)

Theorem 6. Let φ be an LTLf goal and E = (E1, · · · , En) a
multi-tier environment specification. Then Algorithm 2 com-
putes a strategy σ ∈

⋂
iMaxφ|Ei

in 2EPXTIME in the size of
φ, E1, · · · , En and in linear time in n, the number of tiers in
the multi-tier environment.

Specifically, Algorithm 2 finds, at each instant (history),
the next agent move (assignment of the Y) in linear time in
the number of tiers, i.e., Algorithm 2 (differently form Algo-
rithm 1) scales graciously as the number of tiers grows.

Interestingly, the computations in Step 1 of Algorithms 1
and 2 can be done in parallel. The n+ 1 steps for computing
the DFAs of the goal and the n environment specifications can
be done in parallel; the n steps for computing the regions Wi

and the strategies κi can be done in parallel; the n steps for
computing the regions W ′

i and the strategies γi can be done
in parallel. As a result, if n+1 processors are available, han-
dling multi-tier environments is virtually for free, i.e., costs
the same as handling the most computationally expensive tier.

These features suggest that Algorithm 2 is suited for effi-
cient implementation, as confirmed empirically in Section 8.

7 Notable Cases
Before turning to implementation and experimental evalua-
tion, we consider two notable cases of multi-tier environment
models, for which we can offer further optimizations.
Multi-Tier Environments with a Common Base. In this
case we have a (large) common base Ec that is common to all
tiers. That is, each tier Ei is specified as conjunction of Ec
with some additional LTLf specification E ′

i . Formally, multi-
tier environments with a common base have the form: for
every i s.t. 1 ≤ i ≤ n, Ei = Ec∧E ′

i , where ΣE′
1
⊆ · · · ⊆ ΣE′

n
.

Multi-Tier Environments with Conjunctive Refinements.
Next, we consider multi-tier environments consisting of tiers
that conjoin further constraints to the previous tier, becom-
ing more determined. That is, the base environment is En,
and each tier Ei refines Ei+1 with some conjunct E ′

i . For-
mally, multi-tier environments with conjunctive refinements
have the form: for every i s.t. 1 ≤ i < n, Ei = Ei+1 ∧ E ′

i .

Exploiting Structure in Notable Cases. By taking advan-
tage of the syntactic structure of these notable cases, we can
devise optimized variants of Algorithm 2 that construct more
efficiently the DFAs of the tiers. To do this, we exploit the
following composition technique, whose correctness follows
immediately by the notion of product of transition systems:

Theorem 7. Given n LTLf formulas ψi, let ψ =
∧

1≤i≤n ψi.
If Aψi = (Dψi , Fψi) is a DFA recognizing ψi (for 1 ≤ i ≤
n), then the DFA Aψ = (Dψ, Fψ) recognizes ψ: Dψ =
PRODUCT(Dψ1

, · · · ,Dψn
) and Fψ = Fψ1

× · · · × Fψn

With Theorem 7, we can construct the DFAs of the tiers
as follows: (i) we construct the DFA of the base conjunct, i.e.,
Ec and En, respectively; (ii) we construct the DFAs of the con-
juncts E ′

i ; (iii) we compose the obtained DFAs to construct the
DFAs of the environment tiers. Constructing and composing
the DFAs of the various conjuncts takes less time than trans-
forming every tier into a DFA as a whole, especially if the size
of the least refined tier is large and dominates that of the other
conjuncts. This is confirmed empirically in Section 8.

8 Implementation and Evaluation
We implemented Algorithm 2 in a tool called MtSyft5, lever-
aging the symbolic LTLf synthesis framework [Zhu et al.,
2017], at the base of state-of-the-art LTLf synthesis tools
[Bansal et al., 2020; Favorito and Zhu, 2023]. We also devel-
oped variants of MtSyft customized for the two notable cases
above, called cb-MtSyft and conj-MtSyft. In MtSyft, we build
the minimized explicit-state DFAs of LTLf formulas with LY-
DIA [De Giacomo and Favorito, 2021], which is among the
best performing tools publicly available for LTLf -to-DFA con-
version. We code Boolean functions representing transitions
and final states of symbolic DFAs by BDDs [Bryant, 1992]
with the BDD library CUDD 3.0.0 [Somenzi, 2016]. We
compute the positional strategies for the DFA-games through
Boolean synthesis [Fried et al., 2016].

Setup. Experiments were run on a laptop with an operating
system 64-bit Ubuntu 20.04, 3.6 GHz CPU, and 12 GB of
memory. Timeout was set to 300 seconds.

Benchmark. To evaluate the performance of our imple-
mentations, we devised an extension of the counter game
benchmarks presented in [De Giacomo et al., 2020b; Zhu et
al., 2020] to construct multi-tier environment specifications.
The counter game involves a k-bit counter as follows: (i)
at each round, the environment chooses whether to request
an increment of the counter (add), and the agent chooses
whether to grant such a request or not; (ii), the counter is
initialized with all bits set to 0, and the agent goal is for the
counter to have all bits set to 1; (iii) multi-tier environment
specifications define possible policies according to which the
environment issues increment requests. Specifically, environ-
ment specifications are LTLf formulas E1 = add, and for
m ≥ 2, Em = Em−1 ∧ •• · · ·•add, where there are m − 1
occurrences of • in Em. In our experiments, the environment
issues between 1 and 100 increment requests (1 ≤ m ≤ 100).
Given a k-bits counter and an environment specification Em,

5https://github.com/GianmarcoDIAG/MtSyft

https://github.com/GianmarcoDIAG/MtSyft


Bits Coverage Avg. RT (secs)
MtSyft cb-MtSyft MtSyft cb-MtSyft

1 82 82 50.98 54.92
2 82 82 55.85 51.46
3 81 83 52.04 54.95
4 80 82 49.55 53.40
5 82 84 55.75 57.99
6 82 82 58.84 55.53
7 81 80 64.05 57.64
8 76 77 73.42 74.94
9 0 0 - -

10 0 0 - -
Total 646 652

Table 1: Coverage (solved instances out of 100) and average runtime
(Avg. RT) achieved by MtSyft and cb-MtSyft in counter games with
base conjunct E1 and number of tiers 1 ≤ n ≤ 100.

the realizability of the agent goal (existence of a winning
strategy for the goal) depends on k andm: ifm ≥ 2k−1, the
goal is realizable. Regardless of the realizability of the agent
goal, a best-effort (possibly winning) strategy for the agent is
to accept all environment increment requests.

Our benchmark consists of counter games with at most 10-
bits. For each game, we constructed multi-tier environments
with n tiers as follows: (i) we fixed a base conjunct Eℓ; (ii)
stacked the tiers Eℓ, · · · , Eℓ+n−1 in increments of 1. As base
conjucts, we considered E1, and E10 to E90 in increments of
10. In total, our benchmark consists of about 5600 instances.

Empirical Results. We performed experiments to assess:
(i) the practical feasibility of best-effort synthesis in multi-
tier environments as the number of tiers grows; and (ii) fur-
ther scalability improvement obtainable exploiting the special
structure of the two notable cases.

Table 1 shows the performance of MtSyft in counter game
instances with number of tiers between 1 and 100 (1 ≤ n ≤
100) where E1 is the base conjuct. We can see that MtSyft, run
on a laptop, solves at most 8-bits counter games up to 76 tiers
within the 300 secs timeout. For 8-bits counter games (or
lower) the computational bottleneck is converting LTLf tier
specifications into DFAs. Instead, solving the single games
and composing the synthesized positional strategies into a the
best-effort strategy (expressed as the while-program returned
by Algorithm 2) brings only a minor computational overhead.
For 9-bits and 10-bits counter games, MtSyft reaches the time-
out while converting the LTLf goal itself (i.e., the counter
specification) into a DFA (as opposed to the tiers). This is
an excellent scalability result with respect to the number of
tiers and confirms the practical feasibility of the synthesis in
multi-tier environments. Table 1 includes the performance
of cb-MtSyft as well, but the size of the base conjunct is too
small to observe a significant scalability improvement.

Figure 1 shows the performance comparison of MtSyft and
cb-MtSyft in 8-bits counter games with base conjunct E80
(i.e., it has 80 successive increment request) and number of
tiers between 1 and 20 (hence, going from E80 to E100). The
results show that cb-MtSyft successfully solves all the con-
sidered instances, while MtSyft reaches the timeout when
n = 14. In the solved instances, cb-MtSyft scales much

Figure 1: MtSyft and cb-MtSyft comparison on 8-bits counter games
with base conjunct E80 and number of tiers 1 ≤ n ≤ 20.

Figure 2: MtSyft and conj-MtSyft comparison on 1-bit counter games
with base conjunct E80 and number of tiers 1 ≤ n ≤ 20.

better than MtSyft by exploiting the structure of the multi-
tier environment to more efficiently construct the DFAs of
the tiers. Figure 2 shows an analogous result on the perfor-
mance comparison of MtSyft and conj-MtSyft in 1-bit counter
games with base conjunct E80 and number of tiers between
1 and 20. We get the same performance up to 3-bits coun-
ters, then for 4-bits on it goes in time out. The reason is
that our implementation does the conjunctions symbolically
without minimizing the result, i.e., the product DFA grows
exponentially in the number of conjuncts. To avoid the ex-
ponential blowup, one should adopt a more sophisticated
way of handling conjunctions, as in [Bansal et al., 2020;
Bansal et al., 2022].

9 Conclusion
We developed an effective technique to solve LTLf best-effort
synthesis in multi-tier environments which allow for increas-
ing nondeterminism. In our framework, we have considered a
single goal for all tiers. However, it is also of interest to con-
sider the case in which, as tiers become more undetermined,
also the goal is weakened. For instance, the agent may have
a primary goal that requires a certain type of environment be-
havior, but also secondary goals that can be achieved even if
the environment does not behave as expected. This was stud-
ied for PDDL planning in [Ciolek et al., 2020]. We believe
that the general approach presented here can be extended to
handle this case as well. We leave the details for future work.
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10.1 Proof of Theorem 4
In this section we prove Theorem 4 that states that Alg 1 re-
turns a strategy in ∩i≤nMaxφ|Ei

.
We first recall that synthesis under environment specifica-

tions can be reduced to synthesis of the implication E ⊃ φ.
Theorem 8. [Aminof et al., 2019] Let σag be an agent strat-
egy. If σag enforces E ⊃ φ then σag enforces φ under E (the
converse may fail). Moreover, the following are equivalent:

1. There exists an agent strategy that enforces φ under E .

2. There exists an agent strategy that enforces E ⊃ φ.

We first fix some notation. When Σ = 2Y∪X , for a joint
history h, we denote by stateD(h) the last state on the run in-
duced by h on D. For i ≤ n, we will let Di,D′

i refer to D,D′

constructed in Algorithm 0 applied to input φ, Ei. For ease
of notation we will sometimes blur the technical distinction
between κi and STRATEGY(Di, κi), e.g., instead of writing
valφ|Ei

(STRATEGY(Di, κi), h) we write valφ|Ei
(κi, h).

Since Algorithm 1 works on arenas obtained from LTLf
formulas, we need to transfer the results of the game on states,
to the value of the strategy on histories. This is done in the
following two propositions.
Proposition 1. Given i ≤ n, let Wi be the winnning region
and κi the winning strategy constructed in Step 1 of Algo-
rithm 1. Let h ∈ HEi

(κi).

1. If some prefix of h satisfies Ei ⊃ φ then valφ|Ei
(δ, h) =

+1 for every δ consistent with h (in particular for δ =
κi).

2. If no prefix of h satisfies Ei ⊃ φ and valφ|Ei
(h) = +1

then stateDi(h) ∈Wi.

3. If stateDi
(h) ∈Wi then valφ|Ei

(κi, h) = +1.

Proof. We fix i, and so drop the subscript and write, e.g., E
instead of Ei, D instead of Di, and W instead of Wi. We also
write state(h) for stateDi(h).

By Theorem 8, we have that
• (*) valE⊃φ(κ, h) = +1 implies valφ|E(κ, h) = +1, and

• (**) valφ|E(h) = +1 if and only if valE⊃φ(h) = +1.

We prove Part 1. Suppose some prefix h′ of h satisfies
E ⊃ φ. Then every infinite trace that extends h has a prefix
that satisfies the E ⊃ φ (i.e., h′), and thus valE⊃φ(δ, h) = +1
by definition of value, where δ is an arbitrary strategy with
which h is consistent. Now apply (*).

We prove Part 2. Suppose no prefix of h satisfies E ⊃ φ.
Applying (**) to the assumption that valφ|E(h) = +1 we
also have that valE⊃φ(h) = +1. Thus, there is an agent
strategy σag such that every infinite trace τ that extends h and
is consistent with σag has a finite prefix that satisfies E ⊃
φ. We show that state(h) ∈ W . Let ρ be the run in D
on h. Every run in D extending ρ that labels a trace τ that
is consistent with σag visits a final state (i.e., an element of

FE⊃φ), but since no prefix of h satisfies E ⊃ φ also no prefix
of ρ reaches a final state. Thus, every run in D starting in
state(h) that labels a trace τ that is consistent with σag visits
a final state. So state(h) ∈W .

We prove Part 3. Suppose state(h) ∈ W . By construc-
tion, the strategy κ is a winning strategy from state(h). This
means that every run in D starting in state(h) and consistent
with κ reaches a final state, and thus every infinite trace τ that
is consistent with κ and that extends h has a finite prefix that
satisfies E ⊃ φ. Thus valE⊃φ(κ, h) = +1.

Proposition 2. Given i ≤ n, let W ′
i be the winnning region

and γi the winning strategy constructed in Step 1 of Algo-
rithm 1. Let h ∈ HEi

(γi).

1. If valφ|Ei
(h) = 0 then stateDi

(h) ∈W ′
i \Wi.

2. If stateDi
(h) ∈ W ′

i and the state of no prefix is in Wi

then valφ|Ei
(γi, h) = 0.

3. If stateDi(h) ∈W ′
i then valφ|Ei

(γi, h) ≥ 0.

Proof. We fix i, and so drop the subscript and write, e.g., E
instead of Ei, D instead of Di, andW instead ofWi. We write
state(h) for stateDi

(h). We write val(h) for valφ|Ei
(h). We

write H(γi) for HEi
(γi).

Part 3 is immediate from the definition of value.
We prove Part 1. By Proposition 1 Part 3, state(h) ̸∈ W .

Thus, it remains to show that state(h) ∈W ′. Since val(h) =
0 there is an agent strategy σag and an environment strategy
σenv ∈ ΣE(h, σag) so that the trace PLAY(σag, σenv) satisfies
φ and extends h. Since σenv enforces E , every trace consis-
tent with it satisfies E and thus for every prefix h′ of such a
play, we have that state(h′) ∈ V (where V is the set con-
structed in Step 5 of Algorithm 0). Thus, the run induced by
PLAY(σag, σenv) play stays in V and never allows the agent
to venture out, i.e., this path is also in D′ computed in Step 6
of Algorithm 0. Hence, by the definition of W ′, we have that
state(h) ∈W ′.

We prove Part 2. First we claim that no prefix of h satisfies
E ⊃ φ. Otherwise, let h′ be the shortest such prefix. By Item
1 Proposition 1 followed by Item 2 Proposition 1 we get that
state(h′) ∈ W which is a contradiction to the assumption of
Part 2. Then, by Item 2 Proposition 1, we get that val(h) ̸=
+1. By Item 3 Proposition 2, val(h) ≥ 0.

Proof of Theorem 4. Let σ be the strategy returned by Algo-
rithm 1. To see that σ is best-effort for φ under Ei (for ev-
ery i), it is enough by Theorem 3 (local characterisation) to
show that for every i and every history h ∈ HEi

(σ), that
valφ|Ei

(h) = valφ|Ei
(σ, h).

Losing case. If valφ|Ei
(h) = −1 then valφ|Ei

(σ, h) = −1
(since every strategy achieves this value).

Winning case. For the case of winning, we will use the
following direct consequence of our assumption that the en-
vironment is given as a multi-tier environment model (i.e.,
ΣEi

⊆ ΣEi+1
for all i < n):

• (†) For every agent strategy δ, if valφ|Ei+1
(δ, h) = +1

then valφ|Ei
(δ, h) = +1.



We first prove, by backward induction from n to 1, that
valφ|Ei

(h) = +1 implies valφ|Ei
(σ, h) = +1. In what fol-

lows we assume that no prefix of h satisfies Ei ⊃ φ (other-
wise the inductive statement holds already by Proposition 1
item 1).

For the base case (i = n), By item 2 Proposition 1 we
have stateDn(h) ∈ Wn. Thus by in Alg 1 step 3.1, j exists
and is equal to n, and thus by Alg 1 step 3.3 we have that
valφ|En

(σ, h) = valφ|En
(κn, h). By Proposition 1 item 3,

this value is equal to +1.
For the inductive case, assume that the statement holds

for i + 1. Let h ∈ HEi
(σ) be any history such that

valφ|Ei
(h) = +1. There are two cases depending on whether

or not valφ|Ei+1
(h) = +1.

(i) Suppose valφ|Ei+1
(h) = +1. By the induction hy-

pothesis, valφ|Ei+1
(σ, h) = +1. Now use (†) to get that

valφ|Ei
(σ, h) = +1.

(ii) Suppose that valφ|Ei+1
(h) ̸= +1. By Proposition 1

state(h) ∈ Wi \ Wi+1. Thus, by step 3 of Algorithm 1,
j = i and thus the strategy σ does what κi does at h. To
show that valφ|Ei

(σ, h) = +1, we will show that for every
environment strategy σenv that enforces Ei with which h is
consistent, we have that PLAY(σ, σenv) satisfies φ. There are
two cases depending on whether or not the strategy σ does
what the strategy κi does at every point along this play.

On the other hand, if σ switches at some point to a strat-
egy different from κi, let h′ be the shortest history that ex-
tends h where the move made by σ is not that made by κi.
If some prefix of h′ satisfies Ei ⊃ φ then since σenv enforces
Ei it must be that PLAY(σ, σenv) satisfies φ. Otherwise, ob-
serve that since we assumed that valφ|Ei

(h) = 1 then also
valφ|Ei

(h′) = 1 (immediate from the definition of value and
the fact that h′ extends h). Thus, by Proposition 1 item 2,
stateDi(h

′) ∈ Wi, and thus in Step 3 of the Algorithm ap-
plied to s = stateD(h

′), we have that j exists and j > i.
Thus stateDj (h

′) ∈ Wj . By repeating this argument, we
see there exists largest k > 0 such that from some point h′′
we have: (i) σ sticks with κi+k from h′′ onwards, and (ii)
stateDi+k

(h′′) ∈ Wi+k. So, by Proposition 1 item 3, we
have that valφ|Ei+k

(κi+k, h
′′) = +1, it follows that the play

satisfies φ.
Pending case. For the case of pending, we now prove

by induction from 1 to n, that valφ|Ei
(h) = 0 implies

valφ|Ei
(σ, h) = 0.

We will use the following consequence of our assump-
tion that the environment is given as a multi-tier environment
model:
(††): For every agent strategy δ, if valφ|Ei

(δ, h) ≥ 0 then
valφ|Ei+1

(δ, h) ≥ 0, which, like (†) follows directly from the
fact that ΣEi ⊆ ΣEi+1 .

Consider i between 1 and n. If valφ|Ei
(h) = 0 then

by definition of value, valφ|Ei
(h′) = 0 for every prefix

h′ of h. Thus, by item 1 Proposition 2, stateDi
(h′) ∈

W ′
i \ Wi for every prefix h′ of h. Thus, by item 2 Propo-

sition 2, valφ|Ei
(γi, h) = 0. Thus, there exists an environ-

ment strategy σenv enforcing Ei, consistent with h, such that
PLAY(γi, σenv) satisfies φ.

Observe that it is enough to show that PLAY(σ, σenv) |= φ

(and we will do that in the analysis of some of the following
cases). Indeed, in this case valφ|Ei

(σ, h) ≥ 0 and thus since
valφ|Ei

(h) = 0 it must be that valφ|Ei
(σ, h) = 0.

There are two cases depending on whether
PLAY(σ, σenv) = PLAY(γi, σenv). If ’yes’, we are done.
Otherwise, let h′ be the longest common prefix of these two
plays, and note that h is a proper prefix of h′. We assume
(*): no prefix of h′ satisfies Ei ⊃ φ. Indeed, if such a prefix
exists, then by Item 1 Proposition 1 valφ|Ei

(σ, h′) = 1, and
thus PLAY(σ, σenv) satisfies φ, and we are done.

Observe that valφ|Ei
(γi, h

′) ≥ 0 (since h′ is on a play that
satisfies φ). Consider s = stateD(h

′). There are two options
depending on whether or not j exists for s in step 3 of Alg 1.

(1) In case j exists, stateDj (h
′) ∈ Wj , item 3 Proposi-

tion 1 implies that valφ|Ej
(κj , h

′) = +1. Then valφ|Ej
(h′) =

+1, and thus by our first induction valφ|Ej
(σ, h′) = +1. If

j ≥ i, then by (†), valφ|Ei
(σ, h′) = +1. If j < i, then by

(†)(†), valφ|Ei
(σ, h′) ≥ 0. In both cases, valφ|Ei

(σ, h′) ≥ 0,
and since h′ extends h, valφ|Ei

(σ, h) ≥ 0.
(2) In case j does not exist, by (*) and Item 2 Proposition 1,

valφ|Ei
(h′) ̸= +1, and thus (recall that valφ|Ei

(γi, h
′) ≥ 0)

we have valφ|Ei
(h′) = 0. Hence by Item 1 Proposition 2,

in step 3 of the Algorithm ℓ exists and is smaller or equal to
i. Note that ℓ = i is a contradiction to the fact that σ and
γi diverge at h′ by Step 3.2 of the algorithm, which is all we
need for the base case of the induction i = 1. If ℓ < i (which
means we are in the inductive step) then by Item 3 Proposi-
tion 2, valφ|Eℓ

(h′) ≥ 0 and thus valφ|Eℓ
(h′) ≥ 0. If this

value is +1 then by the previous induction valφ|Eℓ
(σ, h′) =

+1. If this value is 0, then by the inductive hypothesis
valφ|Eℓ

(σ, h′) = 0. Recall that h is a prefix of h′, and
thus in both cases, valφ|Eℓ

(σ, h) ≥ 0. Therefore, by (††),
valφ|Ei

(σ, h) ≥ 0.

10.2 Empirical Analysis on Robot Navigation
Benchmarks

We present here the empirical analysis of the robot navigation
benchmarks. We begin by presenting the benchmark. Doing
so also provides a formalization of the scenario described in
Example 1.

Benchmarks. We devised a scalable robot navigation
benchmark. In this benchmark, an instance of robot naviga-
tion consists of an agent assigned to move between rooms of
a building (to, e.g., deliver packages) where a kid is given dif-
ferent degrees of freedom to interfere with the agent goal by
closing doors between rooms. Our benchmarks consider that
rooms are arranged linearly, as shown in Figure 3. We make
the benchmark scalable by increasing the number of rooms in
the building. Specifically, we consider buildings consisting
of k rooms, where 2 ≤ k ≤ 10.

The set of atomic propositions of an instance of robot nav-
igation is AP = F ∪ Act, where F is the set of fluents of
the planning domain, and Act is the set of agent actions. We
partition AP as follows: X = F and Y = Act, i.e., the en-
vironment and the agent control the sets of fluents and agent
actions, respectively. Fluents describe the current position of
the robot in the building and which doors are open and which



Figure 3: The linear layout of a building (with k rooms) we consider
in robot navigation benchmarks. Each room i (with 1 ≤ i < k) is
connected to the room i + 1. The door between rooms i and i + 1
may be either open or closed. The agent, in red, starts in room 1.
The agent goal is to reach room k.

are not. We consider fluents at(i), stating that the robot is in
room i, and open(i, j), stating that the door between rooms i
and j is open. Agent actions define how the agent can move
between rooms (we will encode in the agent goal that at each
point in time, exactly one action a ∈ Act is chosen). Each ac-
tion a ∈ Act consists of a precondition pre(a), a list of added
fluents (aka the add-list) add(a), and a list of deleted fluents
(aka the delete-list) del(a). An agent action a = move(i, j)
states that the agent can move between the rooms i and j; the
precondition add(a) states that, in order to be able to perform
action a, the robot must be in room i and the door between
rooms i and j must be open, i.e., pre(a) = at(i)∧open(i, j);
the add-list add(a) states that the robot moves in room j, i.e.,
add(a) = at(j); the delete-list del(a) states that the robot is
not in room i anymore, i.e., del(a) = at(i).

In an instance of robot navigation, an LTLf environment
specification consists of the description of the planning do-
main and an assumption about how the kid may interfere with
the agent goal. That is, we write an environment specification
as:

E = Edomain ∧ Ekid
Edomain is the LTLf formula describing the planning domain,
i.e., its initial state and transition rules. That is, we write
Edomain as:

Edomain = E0 ∧ Etrans
Where:

• E0 = s0, where s0 is a propositional formula describing
the fluents that are true in the initial state. In our bench-
marks, we assume that in the initial state, the agent is in
the leftmost room and that all doors are open;

• Etrans is an LTLf formula describing how agent actions
affect the planning domain. Formally, we define Etrans
as:

Etrans = 2
∧
f∈F

(
•f ↔ ((f∧¬

∨
f ̸∈del(a)

a)∨
∨

f∈add(a)

a)
)

That is, Etrans states that, at each instant, f holds if and
only if one of the following two holds:

1. f was true in the previous instant and is not deleted
by some agent action;

2. f is added by some agent action.
In robot navigation benchmarks, the kid may interfere by

closing doors for which he has a key, hence preventing the
agent from moving between rooms. To model the assumption
that the kid has no key to close the door between rooms i
and j, we use the LTLf formula 2(open(i, j)), i.e., the door

Number of
Envs. (n)

Avg. RT (secs)
MtSyft cb-MtSyft conj-MtSyft

1 113,62 113,57 111,57
2 226,09 114,81 113,06
3 335,73 113,34 112,67
4 450,04 113,19 113,47
5 565,69 114,44 113,92
6 674,93 113,50 112,40

Table 2: Average runtime (Avg. RT) achieved by MtSyft, cb-MtSyft,
and conj-MtSyft in robot benchmark instances with k = 6 rooms
and number of environments 1 ≤ n ≤ 6.

between rooms i and j is always open. The specification Ekid
is a conjunction of such LTLf formulas, i.e., it specifies the
doors which are always open.

For an instance of robot navigation with k rooms, we con-
struct multi-tier environment specifications E1, · · · , Eℓ (with
ℓ ≤ k) as follows: (i) we fix some Eℓ = Edomain ∧ Ekid,
and (ii) define, for 1 ≤ i < ℓ, Ei = Ei+1 ∧ 2(open(r1, r2)),
where 2(open(r1, r2)) does not appear in Ei+1. That is, as
one goes down the multi-tier environment, the kid holds more
and more keys. Observe that in these multi-tier environments,
the LTLf environment specification Eℓ is the base environ-
ment conjunct, whereas the assumptions 2(open(r1, r2)) are
the refinements. In fact, the multi-tier environments described
above can also be represented as multi-tier environments with
a common base or as multi-tier environments with conjunc-
tive refinements (c.f. Notable Cases Section).

As for the agent goal, we define it as the LTLf formula
φ = φgoal ∧ φAct ∧ φpre, where:

• φgoal = 3(at(k)) states that the agent eventually
reaches the rightmost room;

• φAct = 2(
∨
a∈Act a∧

∧
a∈Act,a′∈Act,a̸=a′(a ⊃ ¬a′)) is

a formula stating that, at each instant, the agent performs
exactly one action;

• φpre = 2(
∧
a∈Act a ⊃ pre(a)) is a formula stating that,

at each instant, if the agent performs action a, then the
precondition pre(a) must hold.

It is easy to see that the agent has a winning strategy when
the kid has no key. Otherwise, the agent could use a best-
effort strategy. In this case, one possible best-effort strategy
for the agent is to move toward room k whenever possible. In
total, this benchmark consists of about 50 instances.
Setup. Experiments were run on a laptop with an operating
system 64-bit Ubuntu 20.04, 3.6 GHz CPU, and 12 GB of
memory. Timeout was set to 1000 seconds.
Empirical Results. We performed experiments to assess
that implementations using optimized algorithms for notable
types of multi-tier environments (i.e., cb-MtSyft and conj-
MtSyft) scale better than the implementation using Algo-
rithm 2 (i.e., MtSyft).

All implementations solve robot navigation instances with
at most k = 6 rooms. Table 2 shows the performance of Mt-
Syft, cb-MtSyft, and conj-MtSyft in robot navigation instances
with k = 6 rooms and a number of environment specifica-
tions between 1 and 6 (1 ≤ n ≤ 6). It is immediate to see that



both cb-MtSyft and conj-MtSyft achieve better performance
than MtSyft, as they both take advantage of the unique struc-
ture of the input multi-tier of environment specifications. In
fact, both cb-MtSyft and conj-MtSyft construct the DFA of the
planning domain (i.e., the base environment) just once and
compose it with the DFAs of the refinements to construct the
DFAs of the environment specifications in the multi-tier envi-
ronment. Since the size of the base environment is large and
dominates the size of the refinements, constructing multi-tier
environments with n ≥ 2 environment specifications has vir-
tually the same cost as constructing the environment specifi-
cation of the base environment, i.e., when n = 1. Differently,
MtSyft, which does not exploit the additional structure of no-
table multi-tier environment specifications, constructs all the
n environment specifications in the multi-tier environment.
When using MtSyft, the results show that the time cost of the
synthesis for a multi-tier environment with 2 ≤ n ≤ 6 envi-
ronment specification is roughly n times the time cost for the
case n = 1, i.e., when the multi-tier environment consists of
the base environment only. In fact, the size of each environ-
ment specification is virtually the same as that of the base en-
vironment, which explains the obtained result. These results
confirm again that taking advantage of the unique structure
of multi-tier environment specifications allows for improving
the performance of the synthesis.



11 Cover Letter to AAAI Reviews
This paper is a revised version of an AAAI2024 submission
titled Game-Theoretic Approach to LTLf Best-Effort Synthe-
sis Under Multiple Environment Specifications. That paper
was criticized not for its technical content, but for how such
content was exposed and motivated, as also reflected in the
AAAI2024 meta-review:

The reviewers acknowledge the importance of the
topic – strategy synthesis. However, they felt that
the specific setting tackled in this paper – multiple
environment specifications in a subsumption chain
– could be better motivated. As a result, reviewers
felt the significance of the paper could be stronger,
and this might require a re-write of the work.

We took the point and completely rewrote the paper using a
less technical and more intuitive and motivation-based narra-
tion in the paper, including dropping the name ”multiple en-
vironment specifications in a subsumption chain” in favor of
”multi-tier environments” used, e.g., in [Ciolek et al., 2020]
for introducing a related form of environment.

The changes touched all sections of the paper. Specifically:

1. Section 1 (Introduction) has been completely rewritten
to motivate investigating best-effort synthesis in multi-
tier environments and highlight the novel contributions
of the paper and their positive impacts for efficiently per-
forming strategy synthesis in a multi-tier setting.

2. Section 2 (LTLf Synthesis). This preliminary sec-
tion (analogous to the one titled Preliminaries in the
AAAI2024 submission) has been tightened to focus
on LTLf synthesis in flat environments (environment
formed by one tier only).

3. Section 3 (Best-Effort Strategies) introduces the notion
of best-effort strategy in a flat environment.

4. Section 4 (Best-Effort Synthesis in Multi-Tier Envi-
ronments) introduces the problem studied in the paper.

5. Section 5 (Solving Best-Effort Synthesis in Multi-Tier
Environments) introduces our game-theoretic solution
to the problem. First, it introduces the necessary prelimi-
nary notions on adversarial and cooperative DFA games;
then, it gives the solution (Algorithm 1) and shows its
correctness (Theorem 4).

6. Section 6 (Advanced Solution Technique) reports our
main result in the paper, a solution algorithm (Algorithm
2) that notably is linear (vs. Exponential) in the number
of tiers. Here, we also prove its correctness and charac-
terize its complexity.

The latter four sections (Sections 3, 4, 5, and 6) consti-
tute the bulk of the paper and are completely restructured
and rewritten with respect to the corresponding four sec-
tions in the AAAI2024 submission, namely, Synthesis
for a Chain of Environments (which included material
now separated into the current Sections 3 and 4), Games
on Deterministic Automata (which included some of the
material in the current Section 5), Algorithms (which
contains Algorithm 0 and Algorithm 1, now in Section

5), and On-The-Fly Synthesis Algorithm (which contains
Algorithm 2, now in Section 6).

7. Section 7 (Notable Cases) introduces the two notable
cases we consider, and has been rewritten introducing
new names that better reflect the nature of the cases.

8. Section 8 (Implementation and Empirical Evalua-
tion) introduces the implementation of Algorithm 2
and its evaluation on some benchmarks. This section
has been rewritten, adopting the new terminology and
adding a more detailed analysis of the results for the spe-
cial case of conjunctive refinements.

9. Section 9 (Conclusion) is a short conclusion of the pa-
per, which, again, has been rewritten using the new ter-
minology.
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