
Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic
(Extended Abstract)∗

Luigi Bonassi1 , Giuseppe De Giacomo2,3 , Marco Favorito4† , Francesco Fuggitti4† ,
Alfonso Emilio Gerevini1 and Enrico Scala1

1University of Brescia, Italy
2University of Oxford, UK
3Sapienza University, Italy

4Bank of Italy
{luigi.bonassi, alfonso.gerevini, enrico.scala}@unibs.it, giuseppe.degiacomo@cs.ox.ac.uk,

{marco.favorito, francesco.fuggitti}@gmail.com

Abstract
We study classical planning for temporally ex-
tended goals expressed in Pure-Past Linear Tem-
poral Logic (PPLTL). PPLTL is as expressive as
Linear-time Temporal Logic on finite traces (LTLf),
but as shown in this paper, it is computationally
much better behaved for planning. Specifically, we
show that planning for PPLTL goals can be encoded
into classical planning with minimal overhead, in-
troducing only a number of new fluents that is at
most linear in the PPLTL goal and no spurious ad-
ditional actions. Based on these results, we im-
plemented a system called Plan4Past, which can
be used along with state-of-the-art classical plan-
ners, such as LAMA. An empirical analysis demon-
strates the practical effectiveness of Plan4Past,
showing that a classical planner generally performs
better with our compilation than with other exist-
ing compilations for LTLf goals over the consid-
ered benchmarks.

1 Introduction
In AI Planning, a temporally extended goal is a (possibly
complex) property that the state-trace induced by a plan has
to satisfy. Planning for temporally extended goals has a long
tradition in AI Planning, including pioneering work in the
late ’90s [Bacchus et al., 1996; Bacchus and Kabanza, 1996;
Bacchus et al., 1997; Bacchus and Kabanza, 2000], work
on planning via Model Checking [Cimatti et al., 1997; De
Giacomo and Vardi, 1999; Giunchiglia and Traverso, 1999],
and work on declarative and procedural constraints [Baier and
McIlraith, 2006; Baier et al., 2008b]. Also, recent works fo-
cus on handling the subset of temporally extended goals de-
fined by PDDL3 [Gerevini et al., 2009], interpreting them
as preferences [Percassi and Gerevini, 2019], state-trajectory

∗Extended abstract of the paper [Bonassi et al., 2023b] published
in ICAPS 2023.

†Views and opinions expressed here are of the author’s own and
are not representative of the Bank of Italy’s official position.

constraints [Bonassi et al., 2021; Bonassi et al., 2022b;
Bonassi et al., 2024], or over action sequences [Bienvenu et
al., 2011; Bonassi et al., 2022a].

In this scenario, a powerful formalism to express tempo-
rally extended goals is Linear-time Temporal Logic (LTL),
which has been advocated as an excellent tool to express
properties of processes in Formal Methods [Baier et al.,
2008a]. Given that tasks in AI planning are inherently of
finite nature, a finite-trace variant of LTL, namely LTLf , has
often been employed [Bacchus and Kabanza, 1996; Baier and
McIlraith, 2006; De Giacomo and Vardi, 2013]. Notably, an
alternative to LTLf is the Pure-Past Linear Temporal Logic, or
PPLTL [Lichtenstein et al., 1985], which has been attractive in
expressing non-Markovian rewards in MDPs [Bacchus et al.,
1996], normative properties in multi-agent systems [Fisher
and Wooldridge, 2005; Knobbout et al., 2016; Alechina et
al., 2018], explanations in dynamical systems [Sohrabi et
al., 2011], synthesis specifications [Cimatti et al., 2020], or
in the context of plan/goal recognition [Fraga Pereira et al.,
2024]. PPLTL looks at the trace backward instead of forward
as LTLf and does so by expressing properties on traces using
past operators only. PPLTL and LTLf have the same expres-
sive power, but translating a formula from one into the other
(and vice versa) can be prohibitive since the best-known al-
gorithms are 3EXPTIME [De Giacomo et al., 2020].

In this paper, we study the problem of planning for PPLTL
temporally extended goals in deterministic domains. Sim-
ilarly to planning for LTLf goals, which has already been
studied in, e.g., [Baier and McIlraith, 2006; De Giacomo and
Vardi, 2013; Torres and Baier, 2015], planning for PPLTL
goals requires reaching a certain state satisfying the PPLTL
goal, i.e., the state-trace produced to reach such a state satis-
fies the goal formula.

From the literature, it is well-known that LTL formulas
have a fixpoint characterization that allows splitting any for-
mula into a propositional formula to be checked at the current
instant and a temporal formula to be checked at the next in-
stant [Gabbay et al., 1980; Manna, 1982; Emerson, 1990].
This property has already been exploited in AI, e.g., in the
MetateM approach [Barringer et al., 1989], and later by Bac-
chus and Kabanza [1996], one of the most influential work on

planning for temporally extended goals. Analogously, when
we consider PPLTL formulas, such a fixpoint characterization
splits the formula into a propositional formula on the current
instant and a temporal formula on the past to be checked at
the previous instant. In this paper, similarly to what was done
by [Bacchus et al., 1997] in the context of (factorized) MDPs
with PPLTL rewards, we exploit the fixpoint characterization
of PPLTL formulas to show that planning for PPLTL goals can
be polynomially encoded into classical planning and without
adding any spurious actions. The use of PPLTL is crucial to
obtain such nice results, as encoding LTLf goals into classi-
cal planning problems results either in worst-case exponential
encodings [Baier and McIlraith, 2006] or in encodings that in-
clude additional spurious actions significantly increasing the
plan length [Torres and Baier, 2015].

Finally, we developed our approach in a tool called
Plan4Past that can be used along with state-of-the-art clas-
sical planners and experimentally showed its practical effec-
tiveness by comparing it against techniques for LTLf goals.

2 Classical Planning with Pure-Past Linear
Temporal Logic Goals

We model a classical planning domain as a tuple D =
⟨F , A,Pre,Eff ⟩, where F is a set of fluents (i.e., a set of
positive literals), A is a set of action labels, and Pre and Eff
are two functions denoting the preconditions and effects of
each action a ∈ A. A planning state s is a collection of atoms
from F , meaning that f is true in s if f ∈ s and f is false in
s otherwise. Both functions Pre and Eff take an action label
a ∈ A as input and return a propositional formula over F and
a set of conditional effects, respectively. A conditional effect
is a pair c ▷ e, where c is a formula, and e is a set of literals.
An action a can be applied in a state s only if Pre(a) holds
true in s, and applying a in s induces a new state s′, denoted
with s[a], that is defined following the standard definition of
conditional effects [Röger et al., 2014]. Intuitively, a condi-
tional effect c ▷ e specifies that if the condition c holds in the
current state, then the effect e needs to be applied.

A classical planning problem is a tuple Γ = ⟨D, s0, G⟩,
where D is a domain model, s0 is the initial state, and G is a
formula over F representing the goal to achieve. A solution
to a planning problem Γ is a sequence of actions a ∈ A called
plan π = a0, . . . , an−1 such that, when executed, induces a
finite state-trace τ = s0, . . . , sn, where si satisfies Pre(a)
and si+1 = s[a] for i = 0, . . . , n−1, and sn satisfies G.

Usually, G is a reachability goal as it represents a property
that must hold in the final state. Many real-world scenarios
require achieving more general goals than just reachability
goals. In most cases, realistic goals require properties to hold
over a sequence of planning states. These types of temporal
goals, also called temporally extended goals, are often ex-
pressed using temporal logics on finite or infinite sequences
of states. In particular, this paper focuses on temporally ex-
tended goals expressed in Pure-Past Linear Temporal Logic
(PPLTL). PPLTL is the variant of LTLf that talks about the past
instead of the future. Given a set P of propositions, PPLTL is
defined as:

φ ::= p | ¬φ | φ ∧ φ | Yφ | φSφ

where p ∈ P , Y is the yesterday operator and S is the since
operator. PPLTL formulas are interpreted on finite nonempty
traces, also called histories, τ = s0 · · · sn where si at instant
i is a propositional interpretation over the alphabet 2P . We
define the satisfaction relation τ, i |= φ, stating that φ holds
at instant i, as follows:

• τ, i |= p iff p holds in si (for p proposition);

• τ, i |= ¬φ iff τ, i does not satisfy φ;

• τ, i |= φ1 ∧ φ2 iff both φ1 and φ2 hold at instant i;

• τ, i |= Yφ iff φ held at the previous instant i − 1 with
i ≥ 1. If i = 1, then Yφ is false.

• τ, i |= φ1 Sφ2 iff φ2 held at some previous instant k,
and φ1 held in every subsequent instant j with k < j ≤
i.

The entire trace τ satisfies φ, denoted with τ |= φ, when
φ holds in the last instant of τ . From the primitive PPLTL
operators, one can easily derive other operators, such as φ1 ∨
φ2 ≡ ¬(φ1 ∧ φ2), the once operator Oφ ≡ true Sφ and the
historically operator Hφ ≡ ¬O¬φ. Intuitively, Oφ specifies
that φ held true sometimes in the past, while Hφ requires φ
to always hold in each past state. We denote by sub(φ) the
set of all subformulas of φ obtained from the syntax tree of
φ [De Giacomo and Vardi, 2013].

If we specify planning goals using PPLTL, a planning prob-
lem becomes a tuple Γ = ⟨D, s0, φ⟩, where φ is a PPLTL goal
formula. In the case of planning with a temporally extended
goal φ, a plan π is a solution to Γ if the sequence of states
τ = s0, . . . , sn induced by π satisfies φ. The following ex-
ample shows two properties that are naturally expressed in
PPLTL. Further examples can be found in Fuggitti [2023].

Example 1. The goal “We are now at location l1 and have
passed through location l2” in PPLTL is l1 ∧ O(l2). Another
interesting property is “Every time I took the bus, I bought
a new ticket beforehand”, which translates as H(Bus =⇒
Y(¬Bus STicket)) [De Giacomo et al., 2020].

3 Handling PPLTL Goals
Our approach exploits three main observations: (i) to evaluate
the PPLTL goal formula we only need the truth value of its
subformulas; (ii) every PPLTL formula can be put in a form
where its evaluation depends only on the current state and the
evaluation of a key set of PPLTL subformulas at the previous
instant; (iii) one can recursively compute the value of such a
small set of formulas and keep track of them with additional
propositional variables in the state of the planning domain.

The well-known fixpoint characterization of LTL and vari-
ants [Gabbay et al., 1980; Manna, 1982; Emerson, 1990]
is key to our approach. For PPLTL, such a fixpoint char-
acterization splits the formula into a propositional formula
on the current instant and a temporal formula on the past
to be checked at the previous instant. In particular, PPLTL
formulas can be decomposed into present and past compo-
nents, given the fixpoint characterization of the since opera-
tor: ϕ1 Sϕ2 ≡ ϕ2∨(ϕ1∧Y(ϕ1 Sϕ2)). Exploiting this equiv-
alence, the formula decomposition can be computed by recur-
sively applying the following transformation function pnf(·):

• pnf(p) = p;
• pnf(Yϕ) = Yϕ;
• pnf(ϕ1 Sϕ2) = pnf(ϕ2) ∨ (pnf(ϕ1) ∧ Y(ϕ1 Sϕ2));
• pnf(ϕ1 ∧ ϕ2) = pnf(ϕ1) ∧ pnf(ϕ2);
• pnf(¬ϕ) = ¬pnf(ϕ).
A formula resulting from the application of pnf(·) is in Pre-

vious Normal Form (PNF). Note that formulas in PNF have
proper temporal subformulas (i.e., subformulas whose main
construct is a temporal operator) appearing only in the scope
of the Y operator. Also, observe that the formulas of the form
Yϕ in pnf(φ) are such that ϕ ∈ sub(φ). It is easy to see
that every PPLTL formula φ can be converted to its PNF form
pnf(φ) in linear-time in the size of the formula (i.e., |sub(φ)|)
and that pnf(φ) is equivalent to φ.
Example 2. As a running example, we use the formula φ =
t∧¬r Sm, which enforces scenarios where an agent finishes
the task t without using the resource r since activating the
machine m. The pnf of φ is:

pnf(t ∧ ¬r Sm) = t ∧ (m ∨ (¬r ∧ Y(¬r Sm))).

Notably, the PNF transformation allows us to determine
the truth value of a PPLTL formula by knowing the truth of
some atomic propositions at the current instant and the truth
of some key subformulas at the previous instant. In partic-
ular, the key subformulas that we need to consider are those
appearing within the Y-scope in the PNF. Therefore, we in-
terpret these specific subformulas as atomic propositions, de-
noting them with quotes, and collecting them in a set denoted
as Σφ. These propositions are:

1. “Yϕ” for each subformula of φ of the form Yϕ;
2. “Y(ϕ1 Sϕ2)” for each subformula of φ of the form
ϕ1 Sϕ2;

Example 3. For φ = t ∧ ¬r Sm we have Σφ =
{“Y(¬r Sm)”}. Therefore, to evaluate φ, we only need to
keep track of the subformula Y(¬r Sm) using the proposi-
tional variable “Y(¬r Sm)”.

To evaluate the truth value of propositions in Σφ, we intro-
duce the interpretation σ : Σφ → {⊤,⊥}, and characterize
the evaluation of subformulas at a certain instant i ≤ n with
σi. Intuitively, given an instant i, σi tells us which proposi-
tions related to the previous instant (i.e., in Σφ) are true at the
instant i. Therefore, a PPLTL formula φ can be simply evalu-
ated considering the propositional interpretation in the current
instant i and the truth value assigned by σi to propositions
related to the previous instant. We can easily do so by in-
troducing an evaluation procedure denoted by val(φ, σi, si).
Essentially, val(·) takes as input a PPLTL formula φ, the cur-
rent interpretation si of the propositional symbols, and the
current interpretation σi of the “Y(ϕ)” atoms, and evaluates
the (propositional) formula obtained by swapping every Y(ϕ)
with “Y(ϕ)” in the recursive computation of pnf(φ). An ex-
ample of this procedure is shown below.
Example 4. We have that val(t ∧ ¬r Sm, si, σi) evaluates
whether the formula:

t ∧ (m ∨ (¬r ∧ “Y(¬r Sm)”))

holds true given the interpretations si and σi. For instance,
val(t ∧ ¬r Sm, si, σi) is true when σi(“Y(¬r Sm)”) = ⊤
and si satisfy both t and ¬r.

Note that, the same procedure can be applied to determine
val(ϕ, σi, si) for every subformula ϕ ∈ sub(φ). With this
approach, we can use val(φ, σi, si) to capture the truth of
φ at any instant i (i.e., val(φ, σi, si) is true iff τ, i |= φ).
Clearly, computing val(·) for some instant i requires the in-
terpretation σi. Luckily, given a trace τ = s0, s1, . . . sn, we
can easily construct σi for every i ∈ {0, 1, . . . n} as follows.
At the beginning of the trace, we know that, by definition of
PPLTL, every formula of the form Y(ϕ) is false. Hence, we
set σ0(“Yϕ”)

.
= ⊥ for each “Yϕ” ∈ Σφ, enabling the com-

putation of val(ϕ, s0, σ0) for every ϕ ∈ sub(φ). Then, since
Y(ϕ) holds at instant i iff ϕ holds at the previous instant i−1,
we can iteratively set σi(“Yϕ”)

.
= val(ϕ, σi−1, si−1) for ev-

ery i = {1, . . . n}. By doing so, we can evaluate any PPLTL
formula at any instant i without considering the entire history
produced so far.

4 Encoding PPLTL Goals in Planning
Intuitively, given a goal formula φ, we introduce a set of fresh
atoms to keep track of the interpretation σ. Then, we simulate
the construction of σi and the computation of val(φ, σi, si)
for every instant i of the state trace as actions are applied.
We do so by modifying the effect function and by employing
axioms and derived predicates [Thiébaux et al., 2005]. Given
a problem Γ = ⟨D, s0, φ⟩, in the following we describe how
to encode Γ into Γ′ = ⟨D′, s′0, G

′⟩, where G′ is a reachability
goal, and D′ = ⟨F ′,X ′, A,Pre,Eff ′⟩ is the new planning
domain extended with a set of axioms X ′.
Fluents. F ′ contains the fluents of F , as well as one fluent
for each proposition “Yϕ” in Σφ to keep track of proposi-
tional interpretations σi, and the set of predicates Pder de-
fined below. Formally, F ′ = F ∪ Σφ ∪ Pder.
Axioms. We employ axioms to elegantly determine
val(ϕ, σi, si) in every state si. Axioms have the form d← ψ,
where d ∈ Pder is a positive literal called derived predicate,
and ψ is a propositional formula over a set of predicates. Let s
be a state, axiom d← ψ determines that the derived predicate
d holds in s if and only if s |= ψ.

We include an axiom valϕ ← ψ for every subformula ϕ ∈
sub(φ), and Pder is defined as the set of all derived predicates
valϕ, i.e., Pder = {valϕ | ϕ ∈ sub(φ)}. By mimicking the
recursive computation of pnf(·), we get the following axioms:

• valp ← p;
• valYϕ ← “Yϕ”;
• valϕ1 Sϕ2

← (valϕ2
∨ (valϕ1

∧ “Y(ϕ1 Sϕ2)”));
• valϕ1∧ϕ2 ← (valϕ1 ∧ valϕ2);
• val¬ϕ ← ¬valϕ.

Clearly, we have that valϕ captures the evaluation of
val(ϕ, σi, si). We add to D′ a set of axioms for every sub-
formula ϕ in sub(φ), i.e., X ′ = {valϕ ← ϕ | ϕ ∈ sub(φ)}.
Initial State. The initial state assigns each fluent “Yϕ” ∈
Σφ to the truth value given by σ0. That is, s′0 = (σ0, s0).

Effects. The effect of every action is modified by adding
a way to update the assignments of propositions in Σφ. For
each “Yϕ” ∈ Σφ, we model the assignment σi(“Yϕ”)

.
=

val(ϕ, σi−1, si−1) using two conditional effects of the form:

valϕ ▷ “Yϕ”

¬valϕ ▷ ¬“Yϕ”

These effects specify that the fluent “Yϕ” is set to true (false,
resp.) in the state si iff valϕ is true (false, resp.) in si−1.
The effect of each action is extended with the same set of
conditional effects. Formally, for all a ∈ A, Eff ′(a) =
Eff (a) ∪ {valϕ ▷ “Yϕ”,¬valϕ ▷ ¬“Yϕ” | “Yϕ” ∈ Σφ}.
Goal. The new goal is G′ = valφ. That is, we require the
derived predicate associated with the original PPLTL goal for-
mula φ to hold in the last instant.

The encoding is polynomially related to the original prob-
lem. In addition, every plan π for Γ is also a plan for Γ′ and
vice versa, making the encoding sound and complete.

Theorem 1 (Bonassi et al. 2023b). Let Γ be a planning prob-
lem with a PPLTL goal φ, and Γ′ be the corresponding en-
coded planning problem. The size of Γ′ is polynomial in the
size of Γ. In particular, the additional fluents introduced are
linear in the size of the PPLTL goal φ of Γ. Moreover, every
plan π is a plan for Γ iff π is a plan for Γ′.

5 Experiments
This section briefly summarizes the experimental analysis
presented in Bonassi et al. [2023b]. The novel approach has
been implemented in a tool called Plan4Past (P4P), which is
available at https://github.com/whitemech/Plan4Past.

The experimental analysis compares P4P with the two
state-of-the-art compilations Exp [Baier and McIlraith, 2006]
and Poly [Torres and Baier, 2015] for LTLf temporally ex-
tended goals. In particular, Exp explicitly uses NFAs to rep-
resent the LTLf formula, whereas Poly implicitly constructs
the NFA for the goal formula. As a result, the Exp encoding is
worst-case exponential in the size of the LTLf formula, while
the Poly encoding remains polynomial in the size of the LTLf

goal at the cost of a polynomial increase in the size of solution
plans. On the other hand, the P4P encoding is polynomial in
the size of the PPLTL goal and preserves the plan length.

We evaluated all compilation systems over a set of se-
mantically equivalent LTLf and PPLTL goals. In total, our
benchmark suite features 152 instances across the planning
domains BLOCKSWORLD, ELEVATOR, ROVERS, and OPEN-
STACKS. The instances resulting from each compilation sys-
tem were solved using the LAMA [Richter and Westphal,
2010] classical planner with runtime and memory limits of
1800s and 8GB, respectively.

Table 1 reports on the coverage (number of instances
solved) of all compilations across all domains. We observe
that P4P performs equally to or better than both Poly and
Exp in all domains. In many cases, the Poly encoding forces
LAMA to schedule many spurious actions after each origi-
nal planning action taken. For example, the biggest instance
of BLOCKSWORLD solved by Poly requires 6402 actions, of
which 104 are actions of the original domain. Instead, the

Domain P4P Poly Exp

ROVERS (47) 40 13 28

BLOCKSWORLD (36) 36 16 9

OPENSTACKS (40) 17 15 14

ELEVATOR (29) 29 4 29
Total 122 48 80

Table 1: Number of instances solved by P4P, Poly, and Exp across
all domains. In bold the best performers.

Figure 1: Number of solved instances (left) and compiled instances
(right) versus computation time.

Exp encoding blows up during compilation or produces prob-
lems that cannot be handled by LAMA. The compilation time
seems to be an issue for both LTLf compilations. Indeed, if
we look at Figure 1 (right), P4P compiles 94.7% instances
within 10s, while both Poly and Exp converge much more
slowly. Figure 1 (left) displays the number of benchmark in-
stances solved with a given timeout. All systems achieve their
maximum coverage quite quickly, with P4P leaving the oth-
ers well behind right after the start.

6 Conclusion
This paper summarizes the results presented in Bonassi et
al. [2023b] on classical planning for PPLTL goals. In particu-
lar, our work shows that planning for PPLTL goals can be en-
coded into classical planning for reachability goals with min-
imal overhead and without increasing the plan length. Han-
dling PPLTL goals is remarkably simple and elegant, given the
direct mapping between the theoretical formulation and the
encoding compilation without sacrificing efficiency. More-
over, we practically show that the novel encoding is able to
solve a broader range of problems compared to the state-of-
the-art encodings for LTLf goals. Interestingly, the proposed
encoding can be seamlessly extended to Fully Observable
Non-Deterministic (FOND) planning domains [Bonassi et
al., 2023a]. Also, our findings have already paved the way for
the use of PPLTL in other applications, such as plan selection
through natural language [Fuggitti and Chakraborti, 2023;
Chakraborti et al., 2024], suggesting that PPLTL may defi-
nitely become a promising candidate to be the mainstream
language to express temporal goals in planning. Future work
concerns handling more expressive formalisms such as Pure-
Past Linear Dynamic Logic (PPLDL) [De Giacomo et al.,
2020], developing planners that can natively handle PPLTL
goals, and exploring PPLTL-aware heuristics.

https://github.com/whitemech/Plan4Past

Acknowledgments
This work has been partially supported by the EU H2020
project AIPlan4EU (No. 101016442), the ERC-ADG White-
Mech (No. 834228), the EU ICT-48 2020 project TAILOR
(No. 952215), the PRIN project RIPER (No. 20203FFYLK),
and the PNRR MUR project FAIR (No. PE0000013).

References
[Alechina et al., 2018] Natasha Alechina, Brian Logan, and

Mehdi Dastani. Modeling norm specification and verifica-
tion in multiagent systems. FLAP, 5(2):457–490, 2018.

[Bacchus and Kabanza, 1996] Fahiem Bacchus and Frodu-
ald Kabanza. Planning for temporally extended goals. In
AAAI, pages 1215–1222. AAAI Press, 1996.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search
control knowledge for planning. AIJ, 116(1-2):123–191,
2000.

[Bacchus et al., 1996] Fahiem Bacchus, Craig Boutilier, and
Adam Grove. Rewarding behaviors. In AAAI, pages 1160–
1167, 1996.

[Bacchus et al., 1997] Fahiem Bacchus, Craig Boutilier, and
Adam Grove. Structured solution methods for non-
markovian decision processes. In AAAI, pages 112–117,
1997.

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In AAAI, pages 788–795.
AAAI, 2006.

[Baier et al., 2008a] Christel Baier, Joost-Pieter Katoen, and
Kim Guldstrand Larsen. Principles of Model Checking.
MIT, 2008.

[Baier et al., 2008b] Jorge A. Baier, Christian Fritz, Meghyn
Bienvenu, and Sheila A. McIlraith. Beyond classical
planning: Procedural control knowledge and preferences
in state-of-the-art planners. In AAAI, pages 1509–1512.
AAAI, 2008.

[Barringer et al., 1989] Howard Barringer, Michael Fisher,
Dov M. Gabbay, Graham Gough, and Richard Owens.
METATEM: A framework for programming in temporal
logic. In REX Workshop, volume 430 of LNCS, pages 94–
129. Springer, 1989.

[Bienvenu et al., 2011] Meghyn Bienvenu, Christian Fritz,
and Sheila A. McIlraith. Specifying and computing pre-
ferred plans. Artif. Intell., 175(7-8):1308–1345, 2011.

[Bonassi et al., 2021] Luigi Bonassi, Alfonso Emilio
Gerevini, Francesco Percassi, and Enrico Scala. On
planning with qualitative state-trajectory constraints in
PDDL3 by compiling them away. In ICAPS, pages 46–50.
AAAI Press, 2021.

[Bonassi et al., 2022a] Luigi Bonassi, Alfonso Emilio
Gerevini, and Enrico Scala. Planning with qualitative
action-trajectory constraints in PDDL. In IJCAI, pages
4606–4613. ijcai.org, 2022.

[Bonassi et al., 2022b] Luigi Bonassi, Enrico Scala, and Al-
fonso Emilio Gerevini. Planning with PDDL3 qualitative
constraints for cost-optimal solutions through compilation
(short paper). In IPS/RiCeRcA/SPIRIT@AI*IA, volume
3345 of CEUR Workshop Proceedings. CEUR-WS.org,
2022.

[Bonassi et al., 2023a] Luigi Bonassi, Giuseppe De
Giacomo, Marco Favorito, Francesco Fuggitti, Al-
fonso Emilio Gerevini, and Enrico Scala. FOND planning
for pure-past linear temporal logic goals. In ECAI,
volume 372 of Frontiers in Artificial Intelligence and
Applications, pages 279–286. IOS Press, 2023.

[Bonassi et al., 2023b] Luigi Bonassi, Giuseppe De
Giacomo, Marco Favorito, Francesco Fuggitti, Al-
fonso Emilio Gerevini, and Enrico Scala. Planning for
temporally extended goals in pure-past linear temporal
logic. In ICAPS, pages 61–69. AAAI Press, 2023.

[Bonassi et al., 2024] Luigi Bonassi, Alfonso Emilio
Gerevini, and Enrico Scala. Dealing with numeric and
metric time constraints in PDDL3 via compilation to
numeric planning. In AAAI, pages 20036–20043. AAAI
Press, 2024.

[Chakraborti et al., 2024] Tathagata Chakraborti, Jungkoo
Kang, Francesco Fuggitti, Michael Katz, and Shirin
Sohrabi. Interactive plan selection using linear temporal
logic, disjunctive action landmarks, and natural language
instruction. In AAAI, 2024.

[Cimatti et al., 1997] Alessandro Cimatti, Fausto
Giunchiglia, Enrico Giunchiglia, and Paolo Traverso.
Planning via model checking: A decision procedure for
AR. In ECP, pages 130–142. Springer, 1997.

[Cimatti et al., 2020] Alessandro Cimatti, Luca Geatti,
Nicola Gigante, Angelo Montanari, and Stefano Tonetta.
Reactive synthesis from extended bounded response LTL
specifications. In FMCAD, pages 83–92. IEEE, 2020.

[De Giacomo and Vardi, 1999] Giuseppe De Giacomo and
Moshe Y. Vardi. Automata-theoretic approach to planning
for temporally extended goals. In ECP, pages 226–238.
Springer, 1999.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dy-
namic logic on finite traces. In IJCAI, pages 854–860.
IJCAI/AAAI, 2013.

[De Giacomo et al., 2020] Giuseppe De Giacomo, Antonio
Di Stasio, Francesco Fuggitti, and Sasha Rubin. Pure-past
linear temporal and dynamic logic on finite traces. In IJ-
CAI, pages 4959–4965. ijcai.org, 2020.

[Emerson, 1990] E. Allen Emerson. Temporal and modal
logic. In Handbook of Theoretical Computer Science,
Chapter 16, 1990.

[Fisher and Wooldridge, 2005] Michael Fisher and Michael
Wooldridge. Temporal reasoning in agent-based systems.
In FAI, pages 469–495. Elsevier, 2005.

[Fraga Pereira et al., 2024] Ramon Fraga Pereira, Francesco
Fuggitti, Felipe Meneguzzi, and Giuseppe De Giacomo.

Temporally extended goal recognition in fully observ-
able non-deterministic domain models. Appl. Intell.,
54(1):470–489, 2024.

[Fuggitti and Chakraborti, 2023] Francesco Fuggitti and
Tathagata Chakraborti. NL2LTL - a python package
for converting natural language (NL) instructions to
linear temporal logic (LTL) formulas. In AAAI, pages
16428–16430. AAAI Press, 2023.

[Fuggitti, 2023] Francesco Fuggitti. Efficient Techniques for
Automated Planning for Goals in Linear Temporal Logics
on Finite Traces. PhD Dissertation, Sapienza University
& York University, September 2023.

[Gabbay et al., 1980] Dov M. Gabbay, Amir Pnueli, Saharon
Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. In POPL, pages 163–173. ACM Press, 1980.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. AIJ, 173(5-6):619–668, 2009.

[Giunchiglia and Traverso, 1999] Fausto Giunchiglia and
Paolo Traverso. Planning as model checking. In ECP,
pages 1–20. Springer, 1999.

[Knobbout et al., 2016] Max Knobbout, Mehdi Dastani, and
John-Jules Ch. Meyer. A dynamic logic of norm change.
In ECAI, pages 886–894, 2016.

[Lichtenstein et al., 1985] Orna Lichtenstein, Amir Pnueli,
and Lenore D. Zuck. The glory of the past. In Logic of
Programs, pages 196–218. Springer, 1985.

[Manna, 1982] Zohar Manna. Verification of Sequential Pro-
grams: Temporal Axiomatization, pages 53–102. Springer
Netherlands, 1982.

[Percassi and Gerevini, 2019] Francesco Percassi and Al-
fonso Emilio Gerevini. On compiling away PDDL3 soft
trajectory constraints without using automata. In ICAPS,
pages 320–328. AAAI Press, 2019.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. JAIR, 39:127–177, 2010.

[Röger et al., 2014] Gabriele Röger, Florian Pommerening,
and Malte Helmert. Optimal planning in the presence of
conditional effects: Extending LM-Cut with context split-
ting. In ECAI, pages 765–770, 2014.

[Sohrabi et al., 2011] Shirin Sohrabi, Jorge Baier, and Sheila
McIlraith. Preferred explanations: Theory and generation
via planning. In AAAI, volume 25, pages 261–267, 2011.

[Thiébaux et al., 2005] Sylvie Thiébaux, Jörg Hoffmann,
and Bernhard Nebel. In defense of PDDL axioms. Artif.
Intell., 168(1-2):38–69, 2005.

[Torres and Baier, 2015] Jorge Torres and Jorge A. Baier.
Polynomial-time reformulations of LTL temporally ex-
tended goals into final-state goals. In IJCAI, pages 1696–
1703. AAAI Press, 2015.

	Introduction
	Classical Planning with Pure-Past Linear Temporal Logic Goals
	Handling PPLTL Goals
	Encoding PPLTL Goals in Planning
	Experiments
	Conclusion

