
Lifted Planning: Recent Advances in Planning Using First-Order Representations

Augusto B. Corrêa1 , Giuseppe De Giacomo2

1University of Basel, Switzerland
2University of Oxford, England, UK

augusto.blaascorrea@unibas.ch, giuseppe.degiacomo@cs.ox.ac.uk

Abstract

Lifted planning is usually defined as planning di-
rectly over a first-order representation. From the
mid-1990s until the late 2010s, lifted planning was
sidelined, as most of the state-of-the-art planners
first ground the task and then solve it using a propo-
sitional representation. Moreover, it was unclear
whether lifted planners could scale. But as plan-
ning problems become harder, they also become in-
feasible to ground. Recently, lifted planners came
back into play, aiming at problems where ground-
ing is a bottleneck. In this work, we survey recent
advances in lifted planning. The main techniques
rely either on state-space search or logic satisfiabil-
ity. For lifted search-based planners, we show the
direct connections to other areas of computer sci-
ence, such as constraint satisfaction problems and
databases. For lifted planners based on satisfiabil-
ity, the advances in modeling are crucial to their
scalability. We briefly describe the main planners
available in the literature and their techniques.

1 Introduction
A planning problem consists of the following: an initial state,
a set of actions, and a goal, all formally specified using some
logic vocabulary (predicates, objects, and perhaps functions).
The objective of a planner is to synthesize a strategy/program
– called a plan – to fulfill the goal starting from the initial
state. A particular flavor of planning is classical planning,
where actions are deterministic and states are fully observ-
able. In this case, a plan is a sequence of actions. In this
survey, we focus on classical planning.

There are different ways to represent planning problems,
depending on the logic vocabulary [McDermott et al., 1998;
Pednault, 1989; Bäckström and Nebel, 1995]. In particular,
first-order (FO) languages have been advocated as a conve-
nient way to represent planning problems [Newell and Si-
mon, 1963; Green, 1969b; Fikes and Nilsson, 1971; Lifs-
chitz, 1987; Levesque, 1996; Reiter, 2001; Levesque, 2005].
When finitely many objects and no functions are used, this
FO representation becomes a compact way to represent an ex-
ponentially larger propositional representation, obtained by

grounding, i.e., instantiating all predicates with the available
objects.

In the 1990s, Kautz and Selman [1992] showed that using
propositional satisfiability (SAT) to solve planning problems
was an effective technique. SAT planning translates the plan-
ning task into a SAT formula and uses a SAT solver to find
a model. This encoding bounds the maximum length of a
plan, so if no plan is found with the assumed length, the plan-
ner iteratively increases this bound and produces a new (and
longer) formula, until a model is found. When this happens,
the model is converted into a plan. SAT planning disregards
any FO structure of the problem, and instead works directly
with the grounded propositional representation.

Although the supremacy of SAT planners did not last for-
ever, most of the following works still used propositional rep-
resentations. The dominant paradigm in planning in the last
decades was state-space search [Bonet and Geffner, 2001]:
the planner starts a search from the initial state, expanding
promising successor states in some order, and stops when the
goal is reached or all reachable states have been explored.
The search is guided according to a heuristic to avoid ex-
panding the entire state space [Hoffmann and Nebel, 2001;
Helmert, 2006; Torralba et al., 2014; Francès et al., 2018;
Seipp, 2023].

Despite this dominance of propositional representations,
recently a new class of so-called lifted planners has emerged.
These planners use FO representations, as in most of the
early work in planning [Newell and Simon, 1963; McCarthy,
1963; Green, 1969a; Fikes and Nilsson, 1971; Bibel, 1986;
Levesque, 1996; Reiter, 2001]. However, they are not based
on forms of logical implication but on grounding on-demand
while performing a state-space search. This new generation
of planners is competitive with the state-of-the-art proposi-
tional ones, and can also deal with a number of objects for
which grounding is prohibitive.

In this paper, we survey recent lifted planning techniques
for classical planning. These improvements have direct con-
nections to logic programming, constraint satisfaction prob-
lems, and database theory. We show the two main techniques
used by modern lifted planners, search and satisfiability.

Due to the space limits, we do not go into great detail for
every technique, but we focus on those that have closer rela-
tion to other communities.

a b c

t
To c

Figure 1: Logistics task used as running example. The single truck
t needs to pick the package at a and transport it to c. The truck can
move to adjacent locations.

2 Lifted Planning
Throughout the paper we assume familiarity with basic con-
cepts of first-order logic and classical planning (e.g., heuristic
search, optimal vs satisficing planning). We assume that plan-
ning languages use a function-free logical vocabulary over an
infinite set of variables V , a finite set of constants C, and a
set of predicate symbols P . An atom p(T) is composed of a
predicate symbol p ∈ P and a k-tuple of terms T (variables
or constants), where k is the arity of p. The set of variables in
T is denoted by vars(T). We say that p(T) is a ground atom
if vars(T) = ∅. In the rest of the paper, variables are de-
noted by uppercase letters (X,Y,C1); constants are denoted
by lowercase italic letters (a, b, t); predicate symbols are de-
noted by lowercase upright names (p, at).

For simplicity, we focus on STRIPS planning tasks [Fikes
and Nilsson, 1971]. This is also the minimal fragment that all
planners listed later support. Most of the techniques can be
extended to more expressive formalisms.

A lifted planning task is a tuple Π = ⟨P, C,A, I, G⟩ where
the sets P and C are the predicate symbols and constants of
our first-order language, A is the set of action schemas, I is
the initial state, and G is the goal.

An action schema A ∈ A consists of three sets of atoms:1
a precondition pre(A), an add list add(A), and a delete list
del(A). We use vars(A) for the set of variables occurring in
any atom in one of the three sets. If vars(A) = ∅, we call
A a ground action. It is possible to obtain a ground action
from an action schema A by substituting its variables with
constants from C. A substitution function σ : V → C applied
to A results in the ground action σ(A), where each variable
v ∈ vars(A) is replaced with σ(v) — this is done to all ele-
ments in the precondition, add list, and delete list. We some-
times say that σ(A) instantiates the action A.

A state s is a set of ground atoms (seen as a propositional
interpretation). We assume that all states implicitly contain
c1 ̸= c2 for every pair of distinct constants c1, c2 ∈ C. A
ground action σ(A) is applicable in s if pre(σ(A)) ⊆ s.
Applying action A in state s leads to the successor state
succ(s, σ(A)) = (s \ del(σ(A))) ∪ add(σ(A)). A sequence
of actions π = ⟨σ1(A1), . . . , σn(An)⟩ is applicable in a state
s0 and has succ(s0, π) = sn if there are states s1, . . . , sn−1

where σi(Ai) is applicable in si−1 and succ(si−1, σi(Ai)) =
si for all i ≤ n.

The initial state I of a task is a state and the goal condition
G is a set of ground atoms. We call states s with G ⊆ s (i.e.,

1To simplify the formalism, we do not consider action costs.

s |= G) goal states. We want to find a plan, i.e., a sequence
of ground actions π applicable in I such that succ(I, π) is a
goal state.

We sometimes also refer to propositional planning: plan-
ning over a propositional representation. Both lifted and
propositional planners receive a lifted planning task as input,
but propositional planners ground the task in advance, pro-
ducing a large set of ground actions. Lifted planners can al-
ways skip this grounding step. When we mention lifted or
propositional planning, we refer to the representation only
and not a specific technique used to plan.

Throughout our paper, we use the running example intro-
duced next.
Example 1. Consider the simple logistics problem depicted
in Figure 1. There are three locations a, b and c, a truck t
initially at b, and a package p at a. The package p must be de-
livered to location c. The planning task Π = ⟨P, C,A, I, G⟩
has the elements

P = {at/2,package-at/2, conn/2, loaded/2},
C = {a, b, c, t, p},
A = {move(C1, C2, T),pick(C,P, T),

drop(C,P, T)},
I = {conn(a, b), conn(b, a),

conn(b, c), conn(c, b),

at(t, b),package-at(p, a)},
G = {package-at(p, c)}.

The actions have the following preconditions and
add/delete lists:

pre(move(C1, C2, T)) = {conn(C1, C2), at(T,C1)}
add(move(C1, C2, T)) = {at(T,C2)}
del(move(C1, C2, T)) = {at(T,C1)}

pre(pick(C,P, T)) = {at(T,C),package-at(P,C)}
add(pick(C,P, T)) = {loaded(P, T)}
del(pick(C,P, T)) = {package-at(P,C)}

pre(drop(C,P, T)) = {at(T,C), loaded(P, T)}
add(drop(C,P, T)) = {package-at(P,C)}
del(drop(C,P, T)) = {loaded(P)}

The substitution function σ = {C1 7→ b, C2 7→ a, T 7→
t} produces the ground action σ(move(C1, C2, T)) =
move(b, a, t) where

pre(move(b, a, t)) = {conn(b, a), at(t, b)}
add(move(b, a, t)) = {at(t, a)}
del(move(b, a, t)) = {at(t, b)}.

As pre(move(b, a, t)) ⊆ I , this ground action is applicable
in the initial state I . Its application generates the succes-
sor state succ(s,move(b, a, t)) = {conn(a, b), conn(b, a),
conn(b, c), conn(c, b), at(t, a),package-at(p, a)}.

A plan for this task is

π = ⟨move(b, a, t),pick(a, p, t),move(a, b, t),

move(b, c, t),drop(c, p, t)⟩.

3 Classical Work on FO Representations
Early work on planning and action theory often focused on
first-order representations. In fact, most of the work dealt
with logic vocabularies much more powerful than the one we
consider here (e.g., with infinitely many objects). Planning
on FO representations is not something new and it was the
obvious choice for decades. Our discussion below is not ex-
haustive due to space limitation. We list only the main earlier
“paradigms” of planning that used FO representation.

Newell and Simon [1963] presented the General Problem
Solver (GPS), which can be seen as a prototypical planning
system. GPS could solve problems expressed in FO formulas.
It used means-ends analysis to perform a state-space search:
given the current state and a goal, the planner performs the
action that reduced the difference between the two. For tasks
with too many objects, the means-ends analysis of GPS does
not scale due to the state explosion.

Situation calculus [McCarthy, 1958; McCarthy, 1963] is
also defined on FO representations. It has been used to
study reasoning about action, including the famous frame
problem [McCarthy and Hayes, 1969]. Perhaps the pre-
dominant version of situation calculus nowadays is the for-
malism by Reiter [2001], which has been applied to plan-
ning as well [Levesque, 1996; Reiter, 2001; Levesque, 2005;
De Giacomo et al., 2016]. Moreover, previous work also
studied the recasting of situation calculus as logic program-
ming [Kowalski, 1979; Bibel, 1986]. Besides situation cal-
culus, most of the work on reasoning about actions consid-
ers planning on FO representations, e.g., [Sandewall, 1995;
Shanahan, 1997; Thielscher, 2005].

Another early FO paradigm was planning via theorem
proving [Green, 1969a; Green, 1969b]. In this scenario, a
planning problem is encoded in predicate logic and the goal is
a FO query. The answer to this query, obtained via resolution,
corresponds to a plan. The QA3 system by Green [1969a] is
probably the most well-known (historical) planner using the-
orem proving.

Fikes and Nilsson [1971] combined the insights from GPS
and QA3. They introduced the STRIPS formalism. STRIPS
was not only a logical formalism but actually a full-fledged
planning system. It allowed the user to describe an action the-
ory in FO using a specific syntax. At its core, the STRIPS sys-
tem used techniques from GPS to control the search, and QA3
to unify action preconditions. However, the original STRIPS
formalism was not bulletproof either — see Lifschitz [1987]
for a forceful critique of the semantics of STRIPS. In the
decades following its original publication, the definition of
the “STRIPS formalism” has changed (and it is rather am-
biguous nowadays). Although still FO, STRIPS is less ex-
pressive than situation calculus. In contrast to situation cal-
culus, STRIPS requires a pre-defined finite set of objects.

Pednault [1989] tried to bridge the gap between STRIPS
and situation calculus with the Action Description Language
(ADL). Besides being more expressive than STRIPS (allow-
ing quantified preconditions and effects, for instance), ADL
also presented a solution to the frame problem. ADL was
mainly focused on problems with finitely many objects.

McDermott [1996] introduced Unpop, a state-space search

planner based on means-ends analysis. Unpop’s overall idea
is similar to delete-relaxation heuristics later used in the HSP
planner [Bonet and Geffner, 2001]. Moreover, McDermott’s
algorithm is also similar to those used to compute lifted
delete-relaxed heuristics [Corrêa et al., 2021] nowadays.

Another important paradigm in the 1990s was refine-
ment planning. A refinement planner performs a plan-space
search: it gradually adds actions to a plan, trying to satisfy a
series of goals, and backtracking to refine the plan when some
constraint is violated [Weld, 1994]. A large portion of the
work in refinement planning focused on partial order plan-
ners. A partial order planner can place actions into a plan
without specifying which comes first. In this setting, a plan
is not a sequence of actions, but a partial-order. Successful
implementations included SNLP [McAllester and Rosenblitt,
1991], UCPOP [Penberthy and Weld, 1992], and VHPOP
[Younes and Simmons, 2003]. Younes and Simmons [2002]
investigated the role of ground action in partial order plan-
ners. They showed that ground actions helps in general, but
that some of the benefits of the ground representation (e.g.,
enforcing constraints on the domains of variables) can also
be exploited by the lifted representation. Their work is an ex-
ample of how successes from the ground representation can
be translated to the FO setting.

The Planning Domain Definition Language (PDDL) was
introduced as the standard language during the first edi-
tions of the IPC [McDermott et al., 1998; McDermott, 2000;
Haslum et al., 2019]. PDDL was defined as a common encod-
ing for the competing planners, and it remains so until today.
It also uses a FO representation with a finite set of objects. In
the initial IPCs, most planners only supported a fragment of
PDDL similar to STRIPS. Nowadays, most planners support
fragments closer (or more expressive than) ADL.

4 Lifted Heuristic Search
Recently, lifted planning made its way back into the picture
with heuristic search planners. This was first made possi-
ble by using techniques from constraint satisfaction and from
databases.

Modern lifted heuristic search planners perform a ground
search: while the representation of actions is lifted, the ex-
plored state space is still ground. This is a crucial difference
from previous approaches (e.g., SNLP, UCPOP, VHPOP) that
used partially ground actions and atoms in the plan-space
search – e.g., grounding only the variables of an action that
were relevant to the validate a search node.

Different design factors are important when developing a
planner. Literature on lifted planning has focused on two:
successor generation and heuristic computation. The first one
is challenging because lifted successor generation is the same
as solving first-order queries (i.e., which instantiations of an
action schema are applicable in a given state?). The second
one is also important, as good estimates are crucial to the
performance of heuristic search algorithms.

As these two aspects are orthogonal, we discuss them sep-
arately. A priori, we can choose an arbitrary successor gener-
ator and arbitrary heuristic functions to create our own lifted
search.

4.1 Successor Generation
The successor generation problem is the following: given an
action schema a ∈ A together with a state s, enumerate all
instantiations of vars(a) yielding ground actions that are ap-
plicable in s.

Example 2. In our running example Example 1, given the
action schema move(C1, C2, T) and the initial state I , a suc-
cessor generator should return the following two instantia-
tions of the action: move(b, a, t),move(b, c, t).

There are different ways to solve this problem. All ap-
proaches listed below reduce successor generation to some
well-known combinatorial problem, and then use specialized
algorithms or tools to compute the answers.

Constraint Satisfaction
Francès [2017] was the first to emphasize lifted successor
generation. Francès reduces the successor generation to a
constraint satisfaction problem (CSP). For our purposes, it
is sufficient to consider a CSP as a pair ⟨X,C⟩ of variables
X (each V ∈ X with pre-specified domain DV) and a set C
of constraints. A constraint RV1,...,Vn

⊆ DV1
× · · · × DVn

defines what are the valid value assignments of variables
V1, . . . , Vn in any solution.

Given an action schema A and a state s, we construct a CSP
in which all solutions correspond to instantiations σ such that
σ(pre(A)) ⊆ s, i.e., σ(pre(A)) is applicable in s.

Example 3. Consider the initial state I of our running ex-
ample. Given the action schema A = move(C1, C2, T) from
Example 1, we define the CSP ⟨X,C⟩ for A as

X = vars(A) = {C1, C2, T},
C = {RC1,C2

, RT,C1
}

where

RC1,C2
= {⟨c1, c2⟩ | conn(c1, c2) ∈ I}

RT,C1 = {⟨t1, c2⟩ | at(t1, c2) ∈ I}.

Each variable V ∈ X has domain DV = C. The solution to
this CSP are the assignments:

{⟨C1 7→ b, C2 7→ a, T 7→ t⟩
⟨C1 7→ b, C2 7→ c, T 7→ t⟩}.

Each of the evaluations corresponds to an applicable instan-
tiation of the action in the initial state I .

Once an applicable instantiation is found, producing the
successor state is straightforward: we simply replace the vari-
ables with their respective constants, delete the atoms in the
(ground) delete list, and add those in the (ground) add list.

To solve these CSPs, the planner calls an off-the-shelf
solver. Although our example uses the simple STRIPS for-
malism, the planner by Francès [2017] supports a much richer
logic. It supports functional STRIPS [Geffner, 2000], an ex-
tension where function symbols are allowed, and existential
STRIPS [Francès and Geffner, 2016], a fragment that sup-
ports existentially quantified preconditions.

Conjunctive Queries
The Powerlifted planner, introduced by Corrêa et al. [2020],
considers successor generation as a conjunctive query prob-
lem. A conjunctive query is an FO query that can be written
using only logical conjunction and existential quantifiers. An-
swering a conjunctive query is NP-hard in general [Abiteboul
et al., 1995], however there are cases for which this problem
is tractable [Yannakakis, 1981; Gottlob et al., 2002].

The precondition of an action schema is a conjunctive
query, and the current state is a database. Each answer of
the query corresponds to an applicable instantiation of the ac-
tion schema. Powerlifted deals only with STRIPS extended
with object typing and inequalities.
Example 4. In our running example, the precondition of the
action move(C1, C2, T) can be represented as the following
conjunctive query:

∃C1, C2, T. conn(C1, C2) ∧ at(T,C1).

This is similar to the approach by Francès [2017], as con-
junctive queries are a specific type of CSPs [Chandra and
Merlin, 1977; Kolaitis and Vardi, 2000]. For instance, Ex-
ample 3 is a conjunctive query. However, Powerlifted has
two key differences: first, by focusing exclusively on con-
junctive queries, Powerlifted exploits tractable fragments to
solve these queries faster; second, instead of using a ded-
icated solver, it reimplements all the necessary algorithms
within the planner, which reduces overhead.

While the second point is simply engineering, the first de-
serves more attention. To be efficient, Powerlifted decom-
poses [Yannakakis, 1981; Gottlob et al., 2002] the conjunc-
tive queries. A query decomposition defines the order in
which predicates must be unified. By doing so, we guarantee
that the computation is efficient. In fact, queries that are easy
to decompose (e.g., acyclic queries) are solved in polynomial
time [Abiteboul et al., 1995]. Corrêa et al. [2020] showed
that most of the domains used in the planning literature have
actions that yield acyclic conjunctive queries, and hence the
lifted search only has a polynomial overhead compared to a
ground state-space search. Furthermore, algorithms for solv-
ing acyclic conjunctive queries also take existentially quanti-
fied variables [Yannakakis, 1981] into account. If a query is
not acyclic, Powerlifted uses a heuristic technique to solve it.

Another planner applying database techniques to the lifted
successor generation problem is CPDDL [Horčı́k and Fišer,
2021; Horčı́k et al., 2022; Horčı́k and Fišer, 2023]. In con-
trast to the built-in query solver of Powerlifted, CPDDL uses
SQLite to solve the queries. SQLite uses other optimizations
(not based on query decomposition) that can speed up the
query answering. Moreover, the optimizations from SQLite
work on cyclic queries too, while Powerlifted has to rely on
heuristic methods. But as CPDDL uses SQLite off the shelf,
it is unclear which specific optimizations the solver uses.

CPDDL supports a much more expressive fragment than
the two previous planners. In fact, CPDDL supports the en-
tire PDDL fragment used in the IPCs (quantified effects; con-
ditional effects; disjunctive preconditions). Although there is
no publication systematically comparing the successor gen-
erators of CPDDL and Powerlifted, both planners seem to be
on par in performance [Horčı́k and Fišer, 2021].

Maximum Clique Enumeration
Ståhlberg [2023] introduced another method to implement
successor generation based on maximum clique enumera-
tion. The algorithm works in yet a different extension of
STRIPS that allows for negative preconditions. It first builds
a graph based on the action schema structure and current
state, called the substitution consistency graph. Given an ac-
tion schema A with vars(A) = {v1, . . . , vn} and a set of con-
stants C = {c1, . . . , cm}, the substitution consistency graph
G = (V,E) is defined as follows: for each v ∈ vars(A) and
each c ∈ C, there exists a vertex [v/c] ∈ V (i.e., this vertex
represents instantiation v with c); the set of edges is defined
as E = V 2 \ I, where I are inconsistent edges. An edge
is inconsistent if it either assigns two different constants to
the same variable, violates a positive precondition, or violates
a negative precondition. If all predicates in the precondition
have arity of at most 2, any maximum clique in G corresponds
to an applicable instantiation. Enumerating all the maximum
cliques gives all the applicable instantiations. However, if the
precondition contains predicates with arity higher than 2, the
algorithm only guarantees an overapproximation of the ap-
plicable instantiations. In this case, we must post-process the
answers to check for the satisfiability of the precondition.

Their implementation is on top of Powerlifted. An inter-
esting observation is that the substitution consistency graph
for an action schema with k variables is k-partite. Hence, we
can use specific algorithms for k-partite graphs, which work
better than general algorithms. While it is not clear if their
method dominates the one by Corrêa et al., Ståhlberg shows
that it is easy to predict which one is best for a given domain
based on a few sampled states.

4.2 Heuristic Computation
Most of the recent heuristics in lifted planning are inspired by
a counterpart in propositional planning. We list some lifted
heuristic functions below.

K-ary Relaxation
The first non-trivial heuristic estimate was the k-ary relax-
ation by Lauer et al. [2021]. In the k-ary relaxation of an
atom p(V1, . . . , Vn), the atom is projected on

(
n
k

)
new atoms,

containing all combinations of V1, . . . , Vn with k variables. A
particular case is the unary relaxation, where an n-ary atom
is projected on n new unary atoms.

Example 5. Let p(X,Y, Z) be an atom. Its unary relaxation
p|1 = {p1(X),p2(Y),p3(Z)}.

The same relaxation is done for action schemas2 and states.
For a planning task Π, we denote its unary relaxation by Π|1.
For a given state s, the planner computes a plan from s|1 (the
unary relaxation of s). The length of this relaxed plan can be
used as a heuristic estimate for the original state.

Computing a plan in the unary relaxed task can still take
exponential time. However, it becomes tractable when we
consider delete relaxation. In short, the delete relaxation of
a planning task Π is a relaxation where all delete lists are

2The relaxation is applied to the variables of the action. Atoms in
precondition, add list, or delete list that contain one of the variables
being projected out are removed.

redefined to be empty. This implies that once a fact is true in
a state s, it remains true in all states reachable from s. If a
task has only empty delete lists, we say it is delete-free. For a
planning task Π, its delete-free version is denoted as Π+.

Lauer et al. [2021] proved that, for a delete-free unary re-
laxed task Π+|1, we can compute a plan for Π+|1 in poly-
nomial time in its size. On the flip side, the heuristic is not
much more informative than a heuristic that simply counts the
number of unachieved atoms in the goal. But while it does not
help much as a single heuristic function, this unary-relaxation
heuristic improves the search when used to break ties between
states that have the same f -value in a greedy best-first search.

Lauer et al. [2021] also show that while computing the k-
ary relaxation for k > 1 is challenging, we can use the k-ary
relaxation for a handful of atoms, and use unary relaxation
for the remaining ones. The observation is that some atoms
help the heuristic much more than others. For these “useful”
atoms, we want to keep their information intact.

Classical Delete-Relaxation Heuristics
Delete-relaxation heuristics are a well-established family of
heuristics in classical planning [Bonet and Geffner, 2001;
Hoffmann and Nebel, 2001; Helmert and Domshlak, 2009].
Its typical cycle is: the planner computes the delete-relaxation
of the task, finds a relaxed plan, and uses the length of this re-
laxed plan as a heuristic for the evaluated state.3

Corrêa et al. [2021] showed that we can compute delete-
relaxation heuristics over the lifted representation using Dat-
alog. This extends the idea of using Datalog for grounding of
planning tasks [Helmert, 2009].

A Datalog program is a pair D = ⟨F,R⟩, where F is a set
of ground atoms, called the facts, and R is the set of rules
with the format

h(T)← b1(T1), . . . ,bn(TN).

where the left-hand side is the head, the right-hand side the
body, and T ⊆

⋃n
i=1 Ti. A rule is used to infer new atoms.

By unifying the body of a rule r with a set of facts, we can in-
fer its head (with the same variable substitution as the body).
It is easier to think of Datalog from a fixpoint perspective:
starting from a setM of atoms, infer all possible new atoms
by unifying the rules with M; add these new atoms to M,
and repeat the process until a fixpoint is reached. By starting
withM = F , we compute the canonical model of D.
Example 6. The delete-relaxation of Example 1 can be en-
coded as the Datalog program D = ⟨F,R⟩ where F is the
state being evaluated, and R is as follows:

move(C1, C2, T)← conn(C1, C2), at(T,C1).

at(T,C2)← move(C1, C2, T).

pick(C,P, T)← at(T,C),package-at(P,C).

loaded(P, T)← pick(C,P, T).

drop(C,P, T)← at(T,C), loaded(P, T).

package-at(P,C)← drop(C,P, T).

goal← at(p, c).

3This is true for non-admissible heuristics. Admissible delete-
relaxed heuristics do not compute a relaxed plan.

Rules with action predicates (i.e., predicates with action
schema names) in their heads are called action rules. The last
rule is the goal rule, and goal is a special predicate called the
goal predicate. The other rules (with action predicates in the
body) are called effect rules.

The canonical modelM of this Datalog program contains
all atoms that are relaxed reachable from I .

To compute a heuristic h for a state s, the algorithm by
Corrêa et al. [2021] assigns to each effect rule the weight of
1, and a weight of 0 to all others. It also assigns a value of 0
to every atom in s. During the computation ofM, whenever
inferring a new atom p through a unified rule r, the value of p
is the sum of the values of all body atoms in r plus the weight
of r. Corrêa et al. [2021] prove that the value of the goal
atom is the same as the additive heuristic hadd(s) [Bonet and
Geffner, 2001].

There is a second and more powerful version of this com-
putation, introduced by Corrêa et al. [2022]. This newer ver-
sion can also compute more informed heuristics, like hFF

[Hoffmann and Nebel, 2001]. Instead of using a simple Data-
log program, Corrêa et al. [2022] use annotated Datalog pro-
grams. However, explaining this more approach takes more
space, so we did not include it here. There are also more
sophisticated search algorithms that combine the Datalog-
based heuristics with other techniques [Corrêa and Seipp,
2022], such as width-search [Lipovetzky and Geffner, 2012;
Lipovetzky and Geffner, 2017; Francès et al., 2017], pre-
ferred operators [Richter and Helmert, 2009], and queue-
alternation [Röger and Helmert, 2010].

All these Datalog-based heuristics were implemented on
top of Powerlifted. The hadd implementation is also available
in CPDDL.

Homomorphisms
Datalog-based heuristics compute a lifted heuristic that is
identical to its ground counterpart. A different approach is
to use homomorphisms [Horčı́k and Fišer, 2021; Horčı́k et
al., 2022]. In this context, we are interested in homomor-
phisms between constants, so a homomorphism is a self-map
m : C 7→ C.

The planner first computes a homomorphism between con-
stants of the task. This homomorphism is used to reduce the
number of objects. Then, the algorithm grounds the smaller
task, and uses it to extract a heuristic estimate – computing
the heuristic over the ground representation. Grounding the
task becomes much easier. At the same time, (optimal) plans
are preserved [Horčı́k et al., 2022], which implies that admis-
sible heuristics in the smaller ground task are also admissible
in the original one.

In our running example, a homomorphism m could map
c3 7→ c2, and all other constants to themselves. This reduces
the size of the task while preserving all plans, although with
potentially redundant actions.

The question is how to find good homomorphisms.
The best known method was introduced by Horčı́k and
Fišer [2023], and is based on Gaifman graphs. The Gaifman
graph of a state s is constructed by taking each element of a
structure as a vertex. Two vertices are connected by an edge
if and only if the corresponding elements occur together in

some atom of the structure. An important metric in Gaifman
graphs is their diameter, as it indicates how closely related
two elements are.

We can create Gaifman graphs for states and action
schemas. For states, the elements are the constants C and
the state itself is the structure. So two constants c1, c2 (corre-
sponding to vertices in the Gaifman graph) are connected in
the graph iff there is an atom in the state containing c1 and
c2. For an action schema A, the elements are the variables in
vars(A) and the structure is pre(A). Two variables have an
edge iff they appear in a same atom in pre(A).

Horčı́k and Fišer [2023] prove that the difference in di-
ameter between a state s and its successor succ(s, σ(A)) is
bounded by the diameter of A. They combine this informa-
tion to compute which constants should be mapped to each
other. Intuitively, one does not want to collapse constants that
are distant to each, as they are unrelated.

Finding homomorphisms using Gaifman graphs is limited
to action schemas with bounded diameters and it is sensitive
to the problem formulation (e.g., unary predicates). The ho-
momorphisms by Horčı́k et al. [2022] are randomly selected,
and do not have such limitations. However, they perform only
moderately worse than the method using Gaifman graphs.
Overall, heuristics based on homomorphisms perform simi-
larly to the Datalog-based ones.

Ridder and Fox [2014] had a similar idea to approximate
hFF in a lifted representation. However, they used equiva-
lence classes. Their empirical results with the L-RPG planner
show that the equivalence classes creates a lot of “shortcuts”
in the plans, and so the search becomes uninformed. In fact,
Corrêa et al. [2020] showed that L-RPG is not competitive
with modern lifted planners.4

Homomorphisms in lifted planning are similar to domain-
abstractions in non-ground answer set programs [Saribatur et
al., 2021]. Both aim at reducing the set of constants by using
self-maps, while over-approximating the set of solutions to
their problems. It is still open how to translate the methods
from answer set programming (e.g., domain-abstractions via
CEGAR) to lifted planning.

Landmarks
Landmarks are atoms or actions that must occur in every plan.
Landmarks are a long-standing feature in planning [Porte-
ous et al., 2001; Hoffmann et al., 2004; Richter et al., 2008;
Helmert and Domshlak, 2009]. They have also been trans-
lated to lifted planning. In our running example, at(t, a) and
at(t, c) are fact landmarks; pick(a, p, t) and drop(c, p, t) are
action landmarks.

Wichlacz et al. [2022] introduced two methods to extract
fact landmarks, i.e., disjunctive sets of atoms that must occur
in every plan. Their definition of lifted landmarks accounts
for partially grounded atoms. A single partially grounded
landmark can correspond to different ground landmarks.

The first method is based on necessary subgoals: it uses
a backchaining process, starting from the goal atoms, to
identify landmarks. Initially, it obtains all action schemas

4In the previous section, we did not discuss L-RPG’s successor
generator because it is a brute-force instantiation.

that could add a goal atom. In other words, for a predi-
cate p(c1, . . . , cm) ∈ G it collects all action schemas adding
atoms with predicate symbol p. These are action schemas
that could be instantiated to achieve p(c1, . . . , cm). It then
partially grounds the action schemas (consistently with the
constants used in p(c1, . . . , cm)) and intersects the precondi-
tions of the collected action schemas. Atoms in this intersec-
tion are necessary subgoals, which are treated as landmarks.
The process continues iteratively with the newly found land-
marks, until a fixpoint is reached.

The second method is slightly more elaborate, and uses
cuts on lifted fact-alternating mutexes (FAM-groups) [Fišer,
2020]. Due to space reasons, we omit its details.

Wichlacz et al. [2022] used these methods to compute
lifted landmark count heuristics [Richter et al., 2008; Richter
and Westphal, 2008]. The idea is to evaluate states based on
the number of satisfied landmarks, preferring states that sat-
isfy more.

Recently, Wichlacz et al. [2023] introduced a way to com-
pute the landmark cut (LMC) heuristic [Helmert and Domsh-
lak, 2009] in the lifted setting. The LMC heuristic generates
disjunctive action landmarks also backchaining from the goal.
During the backchaining procedure, it relies on sequential
computation of the hmax heuristic — a delete-relaxed heuris-
tic that is admissible. However, this is expensive in the lifted
setting, so Wichlacz et al. [2023] showed different ways to
circumvent this problem.

All the landmark-based methods described here were im-
plemented on top of Powerlifted only.

5 Lifted Planning as Satisfiability
Not all recent advances on lifted planning use search. Some
of the most successful methods were based on satisfiability.
Instead of performing a state-space search, we encode the
lifted planning task into a logical formula and check if the
formula is satisfiable. A model of the formula encodes a plan.

This is similar to the planning as satisfiability approach by
Kautz and Selman [1992]. However, the encodings we refer
to below are lifted encodings. They do not refer to specific
ground states or ground actions but use variables to encode
action instantiations.

5.1 SAT
SAT encodings for lifted planning were first proposed by
Ernst et al. [1997]. Later, Robinson et al. [2009] proposed an
approach that does not require full grounding. They split up
the action schemas and only partially ground actions. Their
approach also exploited parallel execution of actions to make
the encoding more compact.

More recently, Höller and Behnke [2022] presented a state-
less encoding of lifted planning into propositional logic called
LiSAT. The only state explicitly encoded is the initial state.
The inspiration for their encoding comes from partial order
planning [Penberthy and Weld, 1992], discussed in Section 3.

Roughly speaking, given a bound L to the plan length,
the propositional formula encodes the L possible steps of the
plan. A step is simply the selection of an action schema and
its instantiations. The encoding does not keep track of the

state at each step but it keeps track of what has been deleted
and added at each step. This is a key difference to the ap-
proach by Robinson et al. [2009], which had to represent
states explicitly and so required grounding.

The intuition is that if an atom is needed (e.g., in the goal),
then it must be added by some previous step, and must not
be deleted until the step where it is required. This can be
done using a propositional encoding that is quadratic on the
size of the lifted task. (See Höller and Behnke [2022] for an
example.)

The encoding by Höller and Behnke together with state-of-
art SAT solvers yields a performance on-par with the heuristic
search planners. To the best of our knowledge, LiSAT is the
state-of-the-art lifted algorithm for optimal planning. Höller
and Behnke note that, although they use propositional logic,
any other encoding — e.g., CSP — would suffice.

LiSAT uses Powerlifted as a wrapper for translation and in-
ternal representation. It supports STRIPS with negative pre-
conditions and types. While we do not consider costs in this
survey, all previous methods did indeed support action costs.
LiSAT, however, does not.

5.2 QBF
Shaik and van de Pol [2022] propose an encoding of lifted
planning problems to quantified Boolean formula (QBF).
Their encoding is linear in the number of action schemas,
predicates, and plan length, and logarithmic in the number
of constants.

The QBF lifted planner, Q-planner, achieves remarkable
performance in certain domains [Matloob and Soutchanski,
2016]. Q-planner is able to solve several tasks that other plan-
ners cannot due to high memory consumption. Their encod-
ing also deals with STRIPS with negative preconditions.

6 Future Directions
Our paper provides an overview of the recent advances in
lifted planning. But some areas still need further research.
We list some ideas of future work next.

So far, a lot of effort was put into the question of how to
translate classical planning heuristics from the propositional
to the lifted case. Most of the work, however, focused on
delete-relaxation and landmark heuristics. It is still an open
question how to translate other families of heuristics [Helmert
and Domshlak, 2009] to the lifted setting.

In particular, abstraction [Sievers and Helmert, 2021] and
operator-counting heuristics [Pommerening et al., 2014] are
prominent in optimal planning, but there is no work on how
to use them in lifted planning.

In more expressive fragments of PDDL, such as FOND
planning [Muise et al., 2012] or numeric planning [Helmert,
2002] grounding can also become an obstacle. Lifted plan-
ning has potential to also help in these cases.

Another interesting future direction is handling infinitely
many objects. Most of the current work uses PDDL, where
all objects are defined in advance. However, earlier works
[Green, 1969b; Reiter, 2001] considered infinitely many ob-
jects already at the initial state. In this direction, there
has been some recent work in bounded situation calculus

[De Giacomo et al., 2016; Calvanese et al., 2018]. In this
special case, we have infinitely many objects but at any
given state only a bounded number of them occur simulta-
neously in any reachable state. This is related to the prob-
lem of planning with object creation [Hoffmann et al., 2009;
Fuentetaja and de la Rosa, 2016; Edelkamp et al., 2019;
Corrêa et al., 2024].

It would be interesting to revisit some approaches — such
as partial order planning and situation calculus — discussed
in Section 3 considering the progresses of modern lifted plan-
ners. Perhaps some of these previous approaches are compet-
itive with the newest planners. For example, Younes and Sim-
mons [2002] showed that lifted partial-order planners outper-
form ground planners in a few domains. With newer lifted
planners, it would be interesting to study how effective these
least-commitment techniques are in the FO setting and the
current used benchmarks.

Acknowledgments
We thank Remo Christen and Sasha Rubin for their comments
on earlier versions of this paper.

Augusto B. Corrêa was funded by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Lifted and
Generalized Representations for Classical Planning” (LGR-
Plan). Giuseppe De Giacomo was partially supported by the
ERC Advanced Grant WhiteMech (No. 834228). Further-
more, this work was also partially supported by TAILOR, a
project funded by EU Horizon 2020 research and innovation
programme under grant agreement no. 952215.

References
[aaa, 2022] Proc. AAAI 2022, 2022.
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[aip, 2002] Proc. AIPS 2002, 2002.
[Bäckström and Nebel, 1995] Christer Bäckström and Bern-

hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Bibel, 1986] Wolfgang Bibel. A deductive solution for plan
generation. New Generation Computing, 4(2):115–32,
1986.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.
Planning as heuristic search. AIJ, 129(1):5–33, 2001.

[Calvanese et al., 2018] Diego Calvanese, Giuseppe De Gi-
acomo, Marco Montali, and Fabio Patrizi. First-order µ-
calculus over generic transition systems and applications
to the situation calculus. Inf. Comput., 259(3):328–347,
2018.

[Chandra and Merlin, 1977] Ashok K. Chandra and
Philip M. Merlin. Optimal implementation of con-
junctive queries in relational databases. In Proc. STOC
1977, pages 77–90, 1977.

[Corrêa and Seipp, 2022] Augusto B. Corrêa and Jendrik
Seipp. Best-first width search for lifted classical planning.
In Proc. ICAPS 2022 [2022], pages 11–15.

[Corrêa et al., 2020] Augusto B. Corrêa, Florian Pommeren-
ing, Malte Helmert, and Guillem Francès. Lifted successor
generation using query optimization techniques. In Proc.
ICAPS 2020, pages 80–89, 2020.

[Corrêa et al., 2021] Augusto B. Corrêa, Guillem Francès,
Florian Pommerening, and Malte Helmert. Delete-
relaxation heuristics for lifted classical planning. In Proc.
ICAPS 2021 [2021], pages 94–102.

[Corrêa et al., 2022] Augusto B. Corrêa, Florian Pommeren-
ing, Malte Helmert, and Guillem Francès. The FF heuristic
for lifted classical planning. In Proc. AAAI 2022 [2022],
pages 9716–9723.

[Corrêa et al., 2024] Augusto B. Corrêa, Giuseppe De Gia-
como, Malte Helmert, and Sasha Rubin. Planning with
object creation. In Proc. ICAPS 2024, 2024. To appear.

[De Giacomo et al., 2016] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories. AIJ, 237:172–203, 2016.

[eca, 2023] Proc. ECAI 2023, 2023.
[Edelkamp et al., 2019] Stefan Edelkamp, Alberto Lluch-

Lafuente, and Ionut Moraru. Introducing dynamic object
creation to PDDL planning. https://openreview.net/forum?
id=rkxRj58y5N, 2019.

[Ernst et al., 1997] Michael D. Ernst, Todd D. Millstein, and
Daniel S. Weld. Automatic sat-compilation of planning
problems. In Proc. IJCAI 1997, pages 1169–1177, 1997.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nils-
son. STRIPS: A new approach to the application of theo-
rem proving to problem solving. AIJ, 2:189–208, 1971.

[Fišer, 2020] Daniel Fišer. Lifted fact-alternating mutex
groups and pruned grounding of classical planning prob-
lems. In Proc. AAAI 2020, pages 9835–9842, 2020.

[Francès and Geffner, 2016] Guillem Francès and Héctor
Geffner. ∃-STRIPS: Existential quantification in planning
and constraint satisfaction. In Proc. IJCAI 2016, pages
3082–3088, 2016.

[Francès et al., 2017] Guillem Francès, Miquel Ramı́rez, Nir
Lipovetzky, and Héctor Geffner. Purely declarative action
representations are overrated: Classical planning with sim-
ulators. In Proc. IJCAI 2017, pages 4294–4301, 2017.

[Francès et al., 2018] Guillem Francès, Hector Geffner, Nir
Lipovetzky, and Miquel Ramiréz. Best-first width search
in the IPC 2018: Complete, simulated, and polynomial
variants. In IPC-9 Planner Abstracts, pages 23–27, 2018.

[Francès, 2017] Guillem Francès. Effective Planning with
Expressive Languages. PhD thesis, Universitat Pompeu
Fabra, 2017.

[Fuentetaja and de la Rosa, 2016] Raquel Fuentetaja and
Tomás de la Rosa. Compiling irrelevant objects to
counters. special case of creation planning. AI Communi-
cations, 29(3):435–467, 2016.

[Geffner, 2000] Héctor Geffner. Functional Strips: A more
flexible language for planning and problem solving. In
Jack Minker, editor, Logic-Based Artificial Intelligence,

https://openreview.net/forum?id=rkxRj58y5N
https://openreview.net/forum?id=rkxRj58y5N

volume 597 of Kluwer International Series In Engineering
And Computer Science, chapter 9, pages 187–209. Kluwer,
Dordrecht, 2000.

[Gottlob et al., 2002] Georg Gottlob, Nicola Leone, and
Francesco Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sci-
ences, 64(3):579–627, 2002.

[Green, 1969a] Cordell Green. Application of theorem prov-
ing to problem solving. In Proc. IJCAI 1969, pages 219–
239, 1969.

[Green, 1969b] Cordell Green. Theorem-proving by resolu-
tion as a basis for question-answering systems. In Bernard
Meltzer and Donald Michie, editors, Machine Intelligence
4, pages 183–205. Edinburgh University Press, 1969.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky,
Daniele Magazzeni, and Christian Muise. An Introduction
to the Planning Domain Definition Language, volume 13
of Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2019.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. ICAPS 2009
[2009], pages 162–169.

[Helmert, 2002] Malte Helmert. Decidability and undecid-
ability results for planning with numerical state variables.
In Proc. AIPS 2002 [2002], pages 303–312.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for PDDL planning tasks. AIJ, 173:503–535,
2009.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. JAIR, 14:253–302, 2001.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered landmarks in planning. JAIR,
22:215–278, 2004.

[Hoffmann et al., 2009] Jörg Hoffmann, Piergiorgio Bertoli,
Malte Helmert, and Marco Pistore. Message-based web
service composition, integrity constraints, and planning
under uncertainty: A new connection. JAIR, 35:49–117,
2009.

[Höller and Behnke, 2022] Daniel Höller and Gregor
Behnke. Encoding lifted classical planning in propo-
sitional logic. In Proc. ICAPS 2022 [2022], pages
134–144.

[Horčı́k and Fišer, 2021] Rostislav Horčı́k and Daniel Fišer.
Endomorphisms of lifted planning problems. In Proc.
ICAPS 2021 [2021], pages 174–183.

[Horčı́k and Fišer, 2023] Rostislav Horčı́k and Daniel Fišer.
Gaifman graphs in lifted planning. In Proc. ECAI 2023
[2023], pages 1052–1059.

[Horčı́k et al., 2022] Rostislav Horčı́k, Daniel Fišer, and
Álvaro Torralba. Homomorphisms of lifted planning tasks:

The case for delete-free relaxation heuristics. In Proc.
AAAI 2022 [2022], pages 9767–9775.

[ica, 2009] Proc. ICAPS 2009, 2009.
[ica, 2014] Proc. ICAPS 2014, 2014.
[ica, 2021] Proc. ICAPS 2021, 2021.
[ica, 2022] Proc. ICAPS 2022, 2022.
[Kautz and Selman, 1992] Henry Kautz and Bart Selman.

Planning as satisfiability. In Proc. ECAI 1992, pages 359–
363, 1992.

[Kolaitis and Vardi, 2000] Phokion G. Kolaitis and Moshe Y.
Vardi. Conjunctive-query containment and constraint sat-
isfaction. Journal of Computer and System Sciences,
61(2):302–332, 2000.

[Kowalski, 1979] Robert A. Kowalski. Logic for Problem
Solving, volume 7 of The Computer Science Library: Ar-
tificial Intelligence Series. North-Holland, 1979.

[Lauer et al., 2021] Pascal Lauer, Álvaro Torralba, Daniel
Fis̆er, Daniel Höller, Julia Wichlacz, and Jörg Hoffmann.
Polynomial-time in PDDL input size: Making the delete
relaxation feasible for lifted planning. In Proc. IJCAI
2021, pages 4119–4126, 2021.

[Levesque, 1996] Hector J. Levesque. What is planning in
the presence of sensing? pages 1139–1146, 1996.

[Levesque, 2005] Hector J. Levesque. Planning with loops.
In Proc. IJCAI 2005, pages 509–515, 2005.

[Lifschitz, 1987] Vladimir Lifschitz. On the semantics of
STRIPS. In M. Georgeff and A. Lansky, editors, Reason-
ing about Actions and Plans, pages 1–9. Morgan Kauf-
mann, 1987.

[Lipovetzky and Geffner, 2012] Nir Lipovetzky and Hector
Geffner. Width and serialization of classical planning
problems. In Proc. ECAI 2012, pages 540–545, 2012.

[Lipovetzky and Geffner, 2017] Nir Lipovetzky and Hector
Geffner. Best-first width search: Exploration and exploita-
tion in classical planning. In Proc. AAAI 2017, pages
3590–3596, 2017.

[Matloob and Soutchanski, 2016] Rami Matloob and
Mikhail Soutchanski. Exploring organic synthesis with
state-of-the-art planning techniques. In ICAPS 2016
Scheduling and Planning Applications woRKshop, pages
52–61, 2016.

[McAllester and Rosenblitt, 1991] David A. McAllester and
David Rosenblitt. Systematic nonlinear planning. In Proc.
AAAI 1991, pages 634–639, 1991.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In Bernard Meltzer and Donald
Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969.

[McCarthy, 1958] John McCarthy. Programs with common
sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pages 75–91. Her
Majesty’s Stationary Office, London, 1958.

[McCarthy, 1963] John McCarthy. Situations, actions, and
causal laws. Memo 2, Stanford University Artificial Intel-
ligence Project, Stanford, California, 1963.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL –
The Planning Domain Definition Language – Version 1.2.
Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Uni-
versity, 1998.

[McDermott, 1996] Drew McDermott. A heuristic estimator
for means-ends analysis in planning. In Proc. AIPS 1996,
pages 142–149, 1996.

[McDermott, 2000] Drew McDermott. The 1998 AI Plan-
ning Systems competition. AI Magazine, 21(2):35–55,
2000.

[Muise et al., 2012] Christian J. Muise, Sheila A. McIlraith,
and J. Christopher Beck. Improved non-deterministic
planning by exploiting state relevance. In Proc. ICAPS
2012, pages 172–180, 2012.

[Newell and Simon, 1963] Allen Newell and Herbert A. Si-
mon. GPS: A program that simulates human thought. In
E. A. Feigenbaum and J. Feldman, editors, Computers and
Thought, pages 279–293. Oldenbourg, 1963.

[Pednault, 1989] Edwin P. D. Pednault. ADL: Exploring the
middle ground between STRIPS and the situation calculus.
In Proc. KR 1989, pages 324–332, 1989.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S.
Weld. UCPOP: A sound, complete, partial order planner
for ADL. In Proc. KR 1992, pages 103–114, 1992.

[Pommerening et al., 2014] Florian Pommerening, Gabriele
Röger, Malte Helmert, and Blai Bonet. LP-based heuris-
tics for cost-optimal planning. In Proc. ICAPS 2014
[2014], pages 226–234.

[Porteous et al., 2001] Julie Porteous, Laura Sebastia, and
Jörg Hoffmann. On the extraction, ordering, and usage
of landmarks in planning. In Proc. ECP 2001, pages 174–
182, 2001.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Richter and Helmert, 2009] Silvia Richter and Malte
Helmert. Preferred operators and deferred evaluation in
satisficing planning. In Proc. ICAPS 2009 [2009], pages
273–280.

[Richter and Westphal, 2008] Silvia Richter and Matthias
Westphal. The LAMA planner — Using landmark count-
ing in heuristic search. IPC 2008 short papers, http:
//ipc.informatik.uni-freiburg.de/Planners, 2008.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and
Matthias Westphal. Landmarks revisited. In Proc. AAAI
2008, pages 975–982, 2008.

[Ridder and Fox, 2014] Bram Ridder and Maria Fox.
Heuristic evaluation based on lifted relaxed planning
graphs. In Proc. ICAPS 2014 [2014], pages 244–252.

[Robinson et al., 2009] Nathan Robinson, Charles Gretton,
Duc Nghia Pham, and Abdul Sattar. SAT-based parallel
planning using a split representation of actions. In Proc.
ICAPS 2009 [2009], pages 281–288.

[Röger and Helmert, 2010] Gabriele Röger and Malte
Helmert. The more, the merrier: Combining heuristic
estimators for satisficing planning. In Proc. ICAPS 2010,
pages 246–249, 2010.

[Sandewall, 1995] Erik Sandewall. Features and Fluents.
Clarendon Press, 1995.

[Saribatur et al., 2021] Zeynep G. Saribatur, Thomas Eiter,
and Peter Schüller. Abstraction for non-ground answer set
programs. AIJ, 300:103563, 2021.

[Seipp, 2023] Jendrik Seipp. Scorpion 2023. In IPC-10
Planner Abstracts, 2023.

[Shaik and van de Pol, 2022] Irfansha Shaik and Jaco van de
Pol. Classical planning as QBF without grounding. In
Proc. ICAPS 2022 [2022], pages 329–337.

[Shanahan, 1997] Murray Shanahan. Solving the Frame
Problem. MIT Press, 1997.

[Sievers and Helmert, 2021] Silvan Sievers and Malte
Helmert. Merge-and-shrink: A compositional theory of
transformations of factored transition systems. JAIR,
71:781–883, 2021.

[Ståhlberg, 2023] Simon Ståhlberg. Lifted successor genera-
tion by maximum clique enumeration. In Proc. ECAI 2023
[2023], pages 2194–2201.

[Thielscher, 2005] Michael Thielscher. Reasoning Robots.
Springer, 2005.

[Torralba et al., 2014] Álvaro Torralba, Vidal Alcázar,
Daniel Borrajo, Peter Kissmann, and Stefan Edelkamp.
SymBA*: A symbolic bidirectional A* planner. In IPC-8
Planner Abstracts, pages 105–109, 2014.

[Weld, 1994] Daniel S. Weld. An introduction to least com-
mitment planning. AI Magazine, 15(4):27–61, 1994.

[Wichlacz et al., 2022] Julia Wichlacz, Daniel Höller, and
Jörg Hoffmann. Landmark heuristics for lifted classical
planning. In Proc. IJCAI 2022, pages 4665–4671, 2022.

[Wichlacz et al., 2023] Julia Wichlacz, Daniel Höller,
Daniel Fišer, and Jörg Hoffmann. A landmark-cut
heuristic for lifted optimal planning. In Proc. ECAI 2023
[2023], pages 2623–2630.

[Yannakakis, 1981] Mihalis Yannakakis. Algorithms for
acyclic database schemes. In Proc. VLDB 1981, pages 82–
94, 1981.

[Younes and Simmons, 2002] Håkan L. S. Younes and
Reid G. Simmons. On the role of ground actions in refine-
ment planning. In Proc. AIPS 2002 [2002], pages 54–62.

[Younes and Simmons, 2003] Håkan L. S. Younes and
Reid G. Simmons. VHPOP: Versatile heuristic partial or-
der planner. JAIR, 20:405–430, 2003.

http://ipc.informatik.uni-freiburg.de/Planners
http://ipc.informatik.uni-freiburg.de/Planners

	Introduction
	Lifted Planning
	Classical Work on FO Representations
	Lifted Heuristic Search
	Successor Generation
	Constraint Satisfaction
	Conjunctive Queries
	Maximum Clique Enumeration

	Heuristic Computation
	K-ary Relaxation
	Classical Delete-Relaxation Heuristics
	Homomorphisms
	Landmarks

	Lifted Planning as Satisfiability
	SAT
	QBF

	Future Directions

