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Abstract

To help it achieve its goal, an agent exploits assumptions it
has about the behavior of its environment. The common view
in planning and reactive synthesis is that such assumptions
are sets of traces. This trace-centric view has the advantage
of having well-understood specification formalisms, such as
linear-time temporal logic. An alternative view, that we have
promoted as being conceptually superior, is strategy-centric:
assumptions are non-empty sets of environment strategies. In
this work we relate these views and show that the strategy-
centric view is a refinement of the trace-centric view. We thus
address the following fundamental question: when should a
set of traces be considered an assumption that the agent has
about the environment’s behavior? Our answer is in terms
of coverability: every trace in the set should be consistent
with some environment strategy that enforces it. We call
such sets “proper environment specifications”. Typical ex-
amples are given by (the traces consistent with a given) plan-
ning domain, and fairness constraints, but not arbitrary trace
constraints. We provide an algorithm that, given a specifi-
cation in linear-time temporal logic (LTL) decides whether
or not it is a proper environment specification. Furthermore,
we show that every set of traces has a “proper environment
core”, which excludes traces that the agent can ignore when
devising its plan. We provide an algorithm for computing a
representation of the core of an LTL formula, and prove that
the core of an LTL-definable property is itself LTL-definable.

1 Introduction
In reasoning about actions, the agent has some knowl-
edge about the possible behaviors of its environment. Such
knowledge is often represented in planning in an action de-
scription language (Haslum et al. 2019), and in reactive syn-
thesis in a linear-time temporal logic (Pnueli and Rosner
1989). In devising its plans, the agent takes advantage of
this knowledge: the agent assumes that the world behaves in
a certain way, and exploits such an assumption in devising
its plans. Thus, a specific plan of the agent is encapsulated
by a function that describes, for every history of interaction
between the agent and its environment, which action to do.
Such functions are called strategies in reactive synthesis and
(history-dependent) policies in planning.

While interacting with the agent, the environment
(whether it is composed of other agents, nature, or a com-
bination) is also constrained by the uni-directional flow of

time in the sense that what it does at every moment in time
can only depend on the history of the interaction so far,
but not on the future. In other words, the environment can
also be viewed as employing a function from histories to
effects (Aminof et al. 2018).1 We call such a function an
environment strategy (note that by doing so we do not nec-
essarily ascribe rationality/sentience to the environment).

In some cases, the agent’s assumptions about its environ-
ment are precise enough to pin down a single strategy that
the environment must use. This is the case with classical
planning where the domain is deterministic: such a domain
can be considered to be a single environment strategy that,
for every history of interaction that ends with an agent ac-
tion, updates the fluents. In other cases, the agent’s knowl-
edge is not enough to pinpoint a single environment strategy,
and the agent must consider a set S of possible environment
strategies. This is the case with planning in nondeterminis-
tic domains: the agent takes S to be the set of environment
strategies that respect the domain’s allowed effects. In gen-
eral, the agent’s knowledge of its environment is captured
(naturally and generally) by a set of environment strategies
it considers possible (Aminof et al. 2018). This strategy-
centric view, in which assumptions are non-empty sets
of environment strategies (Berwanger 2007; Faella 2009;
Brenguier, Raskin, and Sassolas 2014), has been shown to
be rich enough to describe general forms of nondeterminis-
tic planning, e.g., planning for temporally-extended goals
under fairness (Aminof et al. 2018; Aminof et al. 2019),
and is argued as being formally better suited, especially for
advanced solution concepts such as best-effort synthesis or
dominant-synthesis (Aminof, De Giacomo, and Rubin 2021;
Aminof et al. 2022; Aminof et al. 2023; Aminof, De Gia-
como, and Rubin 2023).

On the other hand, the common view of the agent’s as-
sumptions about its environment involves much simpler ob-
jects than sets of environment strategies. It is trace-centric:
an assumption that the agent has about its environment is a
set of traces, often expressed in a specification logic such as
linear-time temporal logic (LTL). This view is found in plan-
ning (Gerevini and Long 2005; Bacchus and Kabanza 2000;

1Functions with randomness (for the agent, environment, or
both) do not change the basic picture in this paper, and we focus on
the case without randomness.



Bonet et al. 2017; Camacho, Bienvenu, and McIlraith 2019;
Bonet and Geffner 2020; Rodriguez et al. 2022) (the plan-
ning domain itself can be recast as a set of traces definable
in LTL), and in reactive synthesis (Pnueli and Rosner 1989;
Bloem et al. 2014; Klein and Pnueli 2010; Li, Dworkin,
and Seshia 2011; Bloem et al. 2012; D’Ippolito et al. 2013;
Alur, Moarref, and Topcu 2013; Camacho, Bienvenu, and
McIlraith 2018; Kress-Gazit, Lahijanian, and Raman 2018).

Thus, there is a fundamental tension between the trace-
centric view and the strategy-centric one: when is a set E of
traces representing the agent’s knowledge about the environ-
ment a faithful proxy for a set S of environment strategies?
The motivation for our work is to resolve this tension. We
thus ask, for a set E of traces:

Q1: Does E exactly capture the possible interactions of
the agent with its environment?

Q2: If no, which traces in E should the agent consider
possible?

Contributions To answer Q1, we call a setE of traces en-
vironment coverable if it is the set of traces consistent with
some set of environment strategies. If E is also non-empty,
we call it a proper environment specification. Not surpris-
ingly, planning typically considers proper environment spec-
ifications, e.g., the set E of traces consistent with a given
nondeterministic planning domain is a proper environment
specification, as is the subset that admits fairness of effects.
However, refining E by arbitrary trajectory constraints need
not result in a proper environment specification.

To answer Q2, we show that there is a unique largest sub-
set of E that itself is environment coverable, that we call
the core of E. Thus, if the agent thinks that E is an over-
approximation of the true environment, then it may consider
the core of E to be the true specification of the environment.
Thus, to answer Q2, the agent should only consider as possi-
ble the traces that are in the core of E. Said differently, even
though a trace may be specified by E, if it is not in the core
of E, the agent can deduce that it cannot possibly arise out
of an interaction it has with the environment, and thus it can
ignore such traces when devising its plans.

For algorithmic purposes, we consider the case that E is
definable in LTL. We provide algorithms for three problems:
(A) deciding if a given LTL formula ϕ is a proper environ-
ment specification; (B) computing a representation of the
core of a given LTL formula; (C) computing a trace that wit-
nesses that ϕ is not a proper environment specification. As
a by product, we show the interesting result that the core of
an LTL formula ϕ is also LTL definable. Our algorithms
take an automata-theoretic approach, first compiling ϕ into
certain deterministic automata that operate on infinite traces.

2 Preliminaries
For a sequence x = x0x1x2 · · · , the length of x is denoted
|x| ∈ N ∪ {∞}. For 0 ≤ i ≤ |x|, we denote the prefix
x0x1 · · ·xi−1 of x by x<i or x≤i−1, and we denote the suffix
xixi+1 · · ·x|x|−1 of x by x≥i. By convention, ∞ − 1 =
∞. Thus |x| − 1 is the last index of x if x is finite, and∞
otherwise. The empty string is denoted λ. For a finite set

AP of atomic propositions, sequences over Σ = 2AP are
called traces. A trace property (aka property) is a set E of
infinite traces. If τ ∈ E we say that τ satisfies E. If E is
non-empty we say that it is satisfiable.

Unless stated otherwise, we fix a setAP of atomic propo-
sitions for the rest of this paper. We will use lower-case
letters to denote atoms, e.g., x ∈ AP , and upper-case letters
to denote evaluations, e.g., X ⊆ AP .

Linear-time temporal logic The formulas of LTL over
AP are defined by the following BNF (where p ∈ AP ):
ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ. Here X is called the next
operator, and U the until operator. We use the usual abbrevi-
ations, ϕ ⊃ ϕ′

.
= ¬ϕ ∨ ϕ′, true .

= p ∨ ¬p, Fϕ .
= trueUϕ

(read eventually), Gϕ .
= ¬F¬ϕ (read always), etc. The size

|ϕ| of a formula ϕ is the number of symbols in it. Given an
infinite trace τ , an integer n ≥ 0, and an LTL formula ϕ,
the satisfaction relation (τ, n) |= ϕ, stating that ϕ holds at
step n of τ , is defined as follows: (τ, n) |= p iff p ∈ τn;
(τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2; (τ, n) |=
¬ϕ iff it is not the case that (τ, n) |= ϕ; (τ, n) |= Xϕ iff
(τ, n+ 1) |= ϕ; (τ, n) |= ϕ1 Uϕ2 iff (τ,m) |= ϕ2 for some
m ≥ n, and (τ, j) |= ϕ1 for all j with n ≤ j < m. Write
τ |= ϕ if (τ, 0) |= ϕ, read τ satisfies ϕ (Alternatively, τ is a
model of ϕ). The set of traces that satisfy ϕ is denoted L(ϕ);
we will usually overload notation and write ϕ to denote the
trace property L(ϕ).

Reactive synthesis Let X and Y be disjoint finite sets of
Boolean variables, called the agent variables and environ-
ment variables, respectively. Then 2X (resp. 2Y) is the set
of agent (resp. environment) moves. Let AP = X ∪ Y
and Σ = 2X∪Y. Then a trace (X0 ∪ Y0)(X1 ∪ Y1) · · · over
Σ is also called a joint trace to emphasize that it includes
the moves of both the agent and the environment. A play
π = X0 · Y0 ·X1 · Y1 · · · is an element of (2X · 2Y)ω . Plays
are an alternative representation of joint-traces (Assuming,
as we do, that the agent moves first) and it will be techni-
cally convenient to sometimes blur the distinction between
them, e.g., if E is a set of traces and π is a play, we may say
that π is in E to mean that the trace induced by π is in E.

A history h is a finite prefix of a play. Let H be the set of
histories ending in environment moves including the empty-
history, i.e.,H .

= (2X ·2Y)∗. An agent strategy is a function
σag : H → 2X that maps histories ending in environment
moves (including, since the agent moves first, the empty his-
tory) to agent moves. An environment strategy is a function
σenv : H · 2X → 2Y that maps histories ending in agent
moves to environment moves. For an agent (resp. environ-
ment) strategy σ and a play/history ρ, say that ρ is consistent
with σ if, for every prefix ρ<i in the domain of σ, we have
that ρi = σ(ρ<i). Let PLAY(σag, σenv) be the unique play
consistent with both σag and σenv.

A play π satisfies a trace property E if the trace induced
by π is in E. An agent strategy σag enforces (aka, real-
izes) E if PLAY(σag, σenv) satisfies E for every environment
strategy σenv, and in this case we say that ϕ is agent en-
forceable. Similarly, an environment strategy σenv enforces
(aka, realizes) E if PLAY(σag, σenv) satisfies E for every
agent strategy σag, and in this case we say that ϕ is environ-



ment enforceable. We write enf(E) for the set of environ-
ment strategies enforcing E. Observe that E′ ⊆ E implies
enf(E′) ⊆ enf(E). For a set S of environment strategies, let
con(S) denote the set of plays consistent with some strategy
in S. Note that S ⊆ S′ implies that con(S) ⊆ con(S′).

The LTL synthesis problem is: given an LTL formula ϕ
and a player (agent or environment), return a strategy for that
player that enforces ϕ, or say there is none. This problem is
2EXPTIME-complete (Pnueli and Rosner 1990).

Deterministic transition systems A deterministic transi-
tion system D = (Σ, Q, ι, δ) consists of a finite input alpha-
bet Σ (typically Σ = 2AP ), a finite set Q of states, an initial
state ι ∈ Q, and a transition function δ : Q × Σ → Q. The
size of D is the number of its states. Let α = α0α1 · · · be
a finite or infinite sequence of letters in Σ. The run/path
induced by α (AKA the run of D on α) is the sequence
q0q1 · · · of states where q0 = ι and qi+1 = δ(qi, αi) for
every i < |α|. We extend δ to range over Q×Σ∗ as follows:
δ(q, λ) = q, and for n > 0, if qn = δ(q, α0 · · ·αn−1) then
δ(q, α0α1 · · ·αn) = δ(qn, αn).

Automata A Deterministic Parity Word automaton (DPA)
A = (D, c) consists of a deterministic transition system
D = (Σ, Q, ι, δ) and a coloring function c : Q → Z. The
index of A is the number of integers in the image of c, i.e.,
|{n ∈ Z | c−1(n) 6= ∅}|. An infinite run ρ = q0q1 · · ·
in D satisfies c (aka accepted) iff the smallest n such that
c(qi) = n for infinitely many i is even. An infinite string
α ∈ Σω is accepted by A iff the run induced by it satisfies
c. The set of infinite strings accepted by A is the language
ofA, which we denote by L(A). A state q ∈ Q is reachable
iff there is a run q0q1 · · · qn with q0 = ι and q = qn.

Theorem 1 (Formulas to Automata). cf. (Vardi 1995) One
can build a DPAAϕ, accepting exactly the models of an LTL
formula ϕ, whose size is at most 2EXP in |ϕ| and whose
index is at most EXP in |ϕ|.

Games on deterministic automata Solving synthesis for
an LTL goal can be reduced to solving a two-player game
played on the DPA for the formula. We recall the relevant
definitions and results on automata games, adapted to our
setting (Apt and Grädel 2011). Informally, the current posi-
tion in the game is a state q of the automaton, first the agent
moves by setting X ′ ⊆ X, then the environment follows by
setting Y ′ ⊆ Y, and the position in the game is updated
to the state δ(q, (X ′ ∪ Y ′)). This interaction generates an
infinite run, and the environment is declared the winner if
the run is accepting, i.e., the environment is the protagonist.
Formally, a DPA-game is played on a DPA A = (D, c) by
two players: agent and environment. The transition system
D = (2X∪Y, Q, ι, δ) is called the arena, and the acceptance
condition c is called the objective. An environment strategy
σenv is winning if for every agent strategy σag, we have that
PLAY(σag, σenv) satisfies c (i.e., the objective is from the en-
vironment’s point of view). The environment’s winning re-
gion in the game onA is the set of states q for which the en-
vironment has a winning strategy in the game with the same
objective but on the arena (2X∪Y, Q, q, δ), i.e., starting from
q. The relevant computational problem, called solving the

DPA-game, is to compute the environment’s winning region
W . DPA-games can be solved in time polynomial in the
size, and exponential in the index, of the given DPA (Apt and
Grädel 2011). We also consider the case where the agent and
environment co-operate. The co-operative winning region
W ′ of a DPA-gameA is the set of states q for which there is
a pair of strategies σag, σenv for which PLAY(σag, σenv) sat-
isfies c in the arena (2X∪Y, Q, q, δ), i.e., starting from q (we
call such a pair of strategies co-operatively winning from q).
Solving a co-operative DPA-game on A means to find W ′.
Co-operative DPA-games can be solved in time polynomial
in the size and index of the DPA (Apt and Grädel 2011).

Counter-free automata A Deterministic Rabin Automa-
ton (DRA) A = (D,Ω) consists of a deterministic transition
system D = (Σ, Q, ι, δ) and a Rabin acceptance condition
Ω = {(B1, G1), . . . , (Bk, Gk)}, with Bi, Gi ⊆ Q, where
k is called the index of the Rabin automaton. An infinite
run ρ = q0q1 · · · in D satisfies Ω (aka is accepted) iff there
is an 1 ≤ i ≤ k such that qj ∈ Bi for finitely many qj ,
and qj ∈ Gi for infinitely many qj . A DRA A is counter-
free if for every state q, every word w, and every k ≥ 1,
we have that D returns from q to q reading w iff D returns
from q to q reading wk; for references to counter-free au-
tomata and their relationship to logic, see (Thomas 1981;
Diekert and Gastin 2008; Boker, Lehtinen, and Sickert
2022). We use the following result:
Theorem 2. (Thomas 1981) A set L of infinite words is rep-
resentable by an LTL formula iff L is accepted by a counter-
free DRA. Moreover, there are effective procedures for both
conversions.

3 Proper specifications
Definition 1. A trace property E is an environment cov-
erable specification (aka, environment coverable) if there is
some set S of environment strategies such that a trace is in
E iff it is consistent with a strategy in S. If, in addition E is
satisfiable, then call E a proper environment specification.

Proposition 3. The following are equivalent for a trace
property E:

1. E is environment coverable,
2. E ⊆ con(enf(E)), i.e., every trace inE is consistent with

some environment strategy that enforces E.
3. E = con(enf(E)).

Proof. To see that 1 implies 2 note that E is environment
coverable means that E = con(S) for some S and thus S ⊆
enf(E); conclude that E = con(S) ⊆ con(enf(E)). To see
that 2 implies 3 use the fact that con(enf(E)) ⊆ E for all
E. Item 3 implies 1 by taking S = enf(E).

If a play π is consistent with an environment strategy σ
enforcingE then π satisfiesE, and we call σ a witness strat-
egy to π satisfyingE. Thus, Proposition 3 (item 2) states that
every trace in E has a witness strategy.
Remark 1. If E is not satisfiable then it is trivially environ-
ment coverable (take S = ∅). If E is satisfiable, but not en-
vironment enforceable (i.e., ∅ 6= E and ∅ = enf(E)), then it



is not a proper environment specification (by Proposition 3).
However, not every satisfiable and environment-enforceable
set E is a proper environment specification (see Example 1).

An important example of environment coverable specifi-
cations are those induced by planning domains, as we now
explain. A state-based representation of a planning domain
consists of a set S = 2F of states that are the evaluations
of a finite set of Boolean variables called fluents; an initial
state ι ∈ S; a finite set A of actions; and a transition rela-
tion δ : S × A → 2S . We assume that for every s there
is some a such that δ(s, a) 6= ∅. An execution in the plan-
ning domain is an infinite sequence s0, a0, s1, a1, · · · such
that s0 = ι and δ(si, ai) = si+1 for all i. We can encode
the domain into the setting of reactive synthesis as follows:
let X be large enough so that |A| ≤ |2X |, i.e., so that it can
encode each agent action as an evaluation of the variables in
X , and let Y = F . Then, every execution is encoded by a
play, i.e., a0 · s1 · a1 · s2 · a2 · s3 · · · · (for technical con-
venience we omit the initial state). If E is the property con-
sisting of all such plays (technically, of the traces induced
by such plays) then E is a proper environment specification.
To see this we apply Proposition 3 (Item 2): the environ-
ment strategies that enforce E are those that respect δ, i.e.,
on a history a0 · s1 · a1 · s2 · · · · sn · an respond with some
sn+1 ∈ δ(sn, an), and every play in E is consistent with
some such strategy. Similarly, the subset of E consisting of
the fair traces is a proper environment specification.

We now provide some technical examples of trace prop-
erties E, given by an LTL formula ϕ, that are (resp. are not)
proper environment specification. The justifications follow
from Proposition 3.
Example 1. Say X = {x} and Y = {y}; so, the agent
moves are {x} and ∅ (called ”doing x” and ”not doing x”,
respectively), and the environment moves are {y} and ∅
(called ”doing y” and ”not doing y”, respectively).

1. If ϕ only contains environment variables (e.g., ϕ = y, or
ϕ = G y), thenE is environment coverable. Indeed, every
play π = X0 · Y0 · X1 · Y1 · · · satisfying ϕ is consistent
with the environment strategy σenv enforcing ϕ defined
by: σenv(h) = Y(|h|−1)/2, for every h.

2. If ϕ is satisfiable but not enforceable (e.g., ϕ = x, or ϕ =
x ∧ y) then, by Remark 1, it is not a proper environment
specification.

3. ϕ = x ↔ y is a proper environment specification. In-
deed, every play π = X0 · Y0 ·X1 · Y1 · · · that satisfies E
is consistent with the following environment strategy that
enforces E: for h = {x} (resp. h = ∅) respond with {y}
(resp. ∅), and for every other h respond with Y(|h|−1)/2.
Similar reasoning shows that E = x ∨ y is a proper envi-
ronment specification.

4. ϕ = (Fx) ⊃ (G y) is not a proper environment specifica-
tion. Indeed, the play in which the agent never does x and
the environment never does y satisfies E but is not con-
sistent with any environment strategy enforcing ϕ since
these must do y in case the agent ever does x in the fu-
ture.

5. ϕ = (XFx)∨y is not a proper environment specification:
the play ({x} · {})ω satisfies ϕ but is not in con(enf(ϕ))

since every environment strategy that enforces ϕ does y
on its first move.

6. ϕ = (yW¬x) ∧ G(¬x ⊃ G¬y) is a proper environment
specification. Indeed, every play satisfying E is consis-
tent with the following environment strategy that enforces
E: the environment does y as long as the agent has only
done x, and if ever the agent doesn’t do x then from that
point on the environment never does y.

The next result shows us how we may or may not build
new environment coverable specifications, and proper envi-
ronment specification, from old ones. We overload notation
and apply temporal operators to sets of traces too, e.g., XE
is the set of traces π such that π≥1 satisfies E, and GE is
the set of traces π such that π≥n satisfies E for every n ≥ 0.

Proposition 4 (Closure properties). The set of environment
coverable specifications (resp. proper environment speci-
fications) is closed under (arbitrary) ∪, X, and F, but not
closed under ¬, ∩, U nor G.

Proof. Note that, since ∪, X, and F preserve satisfiability,
it is enough to prove the closure properties for environment
coverable specifications. For the non-closure properties, ob-
serve that it is enough to show counter-examples where we
start with proper environment specifications, but the opera-
tion yields a set that is not environment coverable.

For union, let F be a family of environment coverable
sets of traces. To see that the union ∪F is environment
coverable, observe that a play π satisfies ∪F iff it satis-
fies some E ∈ F and thus (since E is environment cov-
erable and by Proposition 3 item 2) the trace induced by
π is in con(enf(E)). Finally, recall that E ⊆ ∪F implies
con(enf(E)) ⊆ con(enf(∪F)), and use Proposition 3 item
2 applied to ∪F.

The closures under X and F are similar, so we treat them
at the same time. Suppose E is environment coverable and
consider a play π satisfying FE (resp. XE). Hence, for
some n ≥ 0 (resp. for n = 1) we have that π≥2n sat-
isfies E. By Proposition 3 item 2 applied to E, there ex-
ists σ ∈ enf(E) such that π≥2n ∈ con(σ). Define σ′ to
mimic the first n environment moves on π and then fol-
low σ. Formally, given h = X ′0 · Y ′0 · · ·X ′m: if m < n
then define σ′(h) = π2m+1, and if m ≥ n then define
σ′(h) = σ(X ′n · Y ′n · · ·X ′m). This ensures that π is con-
sistent with σ′, and that σ′ enforces FE (resp. XE). Now
use Proposition 3 item 2 applied to FE (resp. XE).

To handle the non-closure properties, we use the same sets
of variables (and associated language to describe moves) as
in Example 1, and we express properties in LTL.

For the non-closure under negation, let ϕ = x ⊃ G y. It is
a proper environment specification since every play π = X0·
Y0·X1·Y1 · · · that satisfies ϕ is consistent with the following
environment strategy σenv that enforces ϕ: If X0 = {x},
then σenv(h) = {y} for every h; if X0 = ∅, then σenv(h) =
Y(|h|−1)/2 for every h. Now consider ϕ′ = ¬ϕ. Then the
play π = ({x}·{})ω satisfies ϕ′ but no environment strategy
enforces ϕ′ since the agent can simply not do x on its first
move.



For the non-closure under intersection, recall from Exam-
ple 1 that ϕ .

= (yW¬x) ∧ G(¬x ⊃ G¬y) and ϕ′ .= G¬y
are proper environment specifications. But their conjunc-
tion ϕ ∧ ϕ′ is not environment coverable. Indeed, the only
play that satisfies the conjunction is ({} · {})ω . But no en-
vironment strategy can enforce this play since the agent can
simply do x on its first move.

For the non-closure under U, recall from Example 1 that
ϕ′

.
= x ↔ y is a proper environment specification. Also,

ϕ′′
.
= (¬x) ⊃ G y is a proper environment specifica-

tion (as argued in the case for negation, simply replace x
with ¬x). Consider ϕ .

= ϕ′′ Uϕ′. Then the play π =
{}·{y}·({x}·{y})ω satisfies ϕ. But π is not consistent with
any environment strategy enforcing ϕ: Indeed, if the agent
doesn’t do x on its first move, then the environment can ei-
ther respond with not doing y on its first move (in order to
satisfy ϕ′) or by doing y for all its moves (in order to satisfy
ϕ′′). However, if in the later case the agent never does x,
the resulting play does not satisfy ϕ; thus, the environment
is forced to respond with not doing y on its first move.

For the non-closure under G, note that ϕ = y ∧ (x ⊃
¬X y) is a proper environment specification since every play
π = X0 · Y0 ·X1 · Y1 · · · that satisfies ϕ is consistent with
the following environment strategy that enforces ϕ: The en-
vironment does y on its first move; if the agent does x on
its first move, the environment does not do y on it second
move, and otherwise it does Y1 on its second move; it does
Yi on its ith move for all i ≥ 2. Now consider ϕ′ = Gϕ.
Then the play π = ({} · {y})ω satisfies ϕ′. However, ϕ′ is
not environment enforceable (since if the agent does x on its
first move, then the environment is required to respond on
its second move with y and with ∅). Now use Proposition 3
item 2 applied to ϕ′.

3.1 Proper environment core
If E is not environment coverable then it is natural to ask for
the largest set of traces contained in E that is environment
coverable.
Definition 2. The environment coverable core (aka, core) of
E, denoted core(E), is the maximum (wrt set containment)
subset of E that is environment coverable. If E is also satis-
fiable, then core(E) is called a proper environment core.

To see that the core is well-defined (i.e., that a maximum
set exists), recall that the environment coverable specifica-
tions are closed under arbitrary unions (Proposition 4), and
thus the core of E is the union of all its environment cov-
erable subsets. Obviously, E is environment coverable iff
core(E) = E.
Remark 2. One might also ask if there is a minimum (wrt
set containment) superset of E that is environment cover-
able. Unfortunately, such a set does not always exist. Being
a minimum, such a set would contain E and be contained
in every superset of E that is environment coverable. How-
ever, Proposition 4 gives an example where E is not envi-
ronment coverable, but it is equal to the intersection of two
environment coverable specifications E′, E′′. Thus, there is
no minimum superset of E that is environment coverable.

The following characterization is useful.

Proposition 5. The core of E is equal to the set of traces
consistent with some environment strategy that enforces E,
i.e., core(E) = con(enf(E)).

Proof. To see that con(enf(E)) ⊆ core(E) note that
con(enf(E)) is environment coverable (by Definition 1)
and a subset of E. For the reverse containment, note that
by Proposition 3 core(E) = con(enf(core(E))), and that
core(E) ⊆ E implies that enf(core(E)) ⊆ enf(E). Hence,
core(E) = con(enf(core(E))) ⊆ con(enf(E)).

Example 2. Say X = {x} and Y = {y}. We give the core
for some properties shown in Example 1 not to be environ-
ment coverable.

1. Consider E = x. Since enf(E) = ∅, the core of E is
empty, expressible by the LTL formula false.

2. Consider E = (XFx) ∨ y. Since the only environment
strategies that enforce E do y on their first move, we have
that core(E) is expressible by the LTL formula y.

3. Consider E = (Fx) ⊃ (G y). Since enf(E) only consists
of the environment strategy that does y for every move,
the core E is expressible by the LTL formula G y.
We now provide two history-based characterizations: one

for core(E), and one for when E is environment coverable.
The following terminology from (Berwanger 2007; Aminof,
De Giacomo, and Rubin 2021) is useful.
Definition 3. Fix a trace property E. Call a history h:

• winning if there is an environment strategy σ winning
from h, i.e., such that h is consistent with σ and every
play extending h that is consistent with σ satisfies E;

• pending if it is not winning, but there is a play extending
h satisfying E;

• losing if it is neither winning nor pending, i.e., no play
extending h satisfies E.

We may write, e.g., winning wrt E to emphasize E.

The following is a useful characterization of core(E).
Theorem 6. Let E be a trace property, and let π be a play.
Then π ∈ core(E) iff: (i) π satisfies E and (ii) every prefix
of π is winning wrt E.

Proof. Say π = X0 · Y0 · X1 · Y1 · · · . If π ∈ core(E) =
con(enf(E)) (the equality is by Proposition 3), then obvi-
ously conditions (i) and (ii) hold. For the converse, sup-
pose (i) and (ii) hold. We construct an environment strategy
σ enforcing E with which π is consistent. For i ≥ 0, let
hi = X0 · Y0 · · ·Xi · Yi, and let h−1 = λ (the empty his-
tory). By (ii), for every i ≥ −1 there is an environment
strategy σi winning from hi. Define σ as follows. For ev-
ery history h ending in an agent move: if h is a prefix of π,
say h = X0 · Y0 · · ·Xi−1 · Yi−1 · Xi for some i ≥ 0, then
define σ(h)

.
= Yi; otherwise, define σ(h)

.
= σi(h), where

i ≥ −1 is such that hi is the longest common prefix of h and
π. Clearly, π is consistent with σ. To see that σ enforces E,
note that every trace π′ consistent with σ is either equal to π
and thus satisfies E by (i); or it satisfies E since it extends
hi and is consistent with the strategy σi that is winning from
hi, where hi is the longest common prefix of π′ and π.



The following characterization says thatE is environment
coverable iff, no matter what the history is, the environment
never needs the help of the agent to achieve E — this is
either impossible, or it can be enforced by the environment
regardless of what the agent does.
Theorem 7. A trace propertyE is environment coverable iff
no history is pending.

Proof. Assume that some history h is pending. Hence, there
is play π extending h that satisfies E, but since h is not win-
ning then π 6∈ con(enf(E)). Conclude, by Proposition 3,
that E is not environment coverable. Conversely, suppose
that no history is pending. If π is a play that satisfies E then,
by definition, no prefix of π is losing and thus, every prefix
of π is winning. Hence, by Theorem 6, π ∈ core(E), i.e.,
E ⊆ core(E), and so E is environment coverable.

Corollary 8. A trace property E is environment coverable
iff no history ending in an environment move is pending.

Proof. The “only if” direction follows immediately. For the
“if” direction, assume no history ending in an environment
move is pending. We show that every history h · X ending
in an agent move is also not pending. Indeed, if h is losing
then all its extensions are losing, and if h is winning then a
strategy that wins from h also wins from h ·X .

We illustrate Theorem 7 with some examples.
Example 3. 1. E = (XFx) ∨ F y is environment coverable

because every history h is winning: the strategy that re-
sponds to h by doing y wins from h.

2. E = (Fx) ⊃ (G y) is not environment coverable because,
e.g., the history h = {} · {} is pending since it is not
winning (no environment strategy is winning from h since
the agent can eventually do x), but some play extending h
satisfies E, e.g., ({} · {})ω .

3.2 Discussion of trace-view and strategy-view
Recall from the introduction that there are two views of the
agent’s assumptions about its environment. In this section
we relate the two views: we show that they coincide if one
restricts the trace view to proper environment specifications
E. We then discuss some anomalies that may arise if one
takes the trace view but does not require E to be a proper
environment specification. We do this in the context of re-
active synthesis. Here G stands for the agent’s goal, i.e., the
set of traces that the agent is trying satisfy.

In the strategy-view, the agent’s assumption about its en-
vironment is a non-empty set S of environment strategies. In
this case, the reactive synthesis problem asks, given a goal
G and such a set S, to find an agent strategy σag such that for
every environment strategy σenv from S, the resulting inter-
action PLAY(σag, σenv) satisfies G. We say that σag enforces
G under the assumption S.

On the other hand, in the trace-view, the agent’s assump-
tion about its environment is encapsulated as a set E of
traces, and the reactive synthesis problem asks, given a goal
G and such a set E, to find an agent strategy σag that en-
forces E ⊃ G, i.e., such that every play consistent with σag
and satisfies E also satisfies G.

What is the relationship between these two notions?

1. On the one hand, the strategy view with a (non-empty) set
of strategies S can be seen as a special case of the trace
view — restricted to proper environment specifications—
by taking E = con(S). Indeed, it is not hard to see that
the set con(S) is a proper environment specification, and
that a strategy σag enforces G under the assumption S iff
it enforces con(S) ⊃ G.

2. On the other hand, if E is a proper environment specifica-
tion, then the trace view with E can be seen as a special
case of the strategy view by taking S = enf(E). To see
this, first note that E = con(enf(E)) by Proposition 3.
Then, observe that, by definition, an agent strategy σag
realizes con(enf(E)) ⊃ G iff for every play π consistent
with σag we have that: if π satisfies con(enf(E)) then it
also satisfies G. Finally, observe that this is equivalent to
σag enforces G under the assumption enf(E).

In summary, the strategy view coincides with the trace
view restricted to proper environment specifications.

We remark that the standard definition of the strategy-
view is usually given with respect to any environment en-
forceable trace property E as follows (Aminof et al. 2019):
given E and G, say that σag enforces G under the assump-
tion E iff for every σenv ∈ enf(E) we have that the play
PLAY(σag, σenv) satisfies G. In other words, the standard
definition implicitly substitutes the set of traces E with the
set of strategies that enforce E. As noted in item 2 above,
if E is a proper environment specification then this sub-
stitution simply transforms the trace view with respect to
E to an equivalent strategy view. However, if E is not
a proper environment specification, then this substitution
amounts to switching to a strategy view that is equivalent
to the trace view for core(E), since for such E we do not
have that E = con(enf(E)), but rather (by Proposition 5)
that core(E) = con(enf(E)).

We now discuss some anomalies that arise when taking
the trace-view without requiring E to be a proper environ-
ment specification. Intuitively, the anomalies arise since the
trace view considers every trace in E as possible, while the
strategy-view only considers traces in core(E) as possible.

One well-known anomaly is that if the environment can-
not enforceE then a synthesis algorithm may return an agent
strategy that enforcesE ⊃ G by sometimes, or even always,
falsifying E instead of satisfying G. This may obviously be
undesirable. For instance, if the goal G consists of traces
that have the agent drive a car from one city to another, and
the assumption E that the agent has about the environment
consists of traces where the car does not crash, then the agent
can enforce E ⊃ G by simply crashing the car into a wall.
This anomaly has been ameliorated in a variety of differ-
ent ways, including requiring that the set E be environment
enforceable, e.g., (Bloem et al. 2014; Aminof et al. 2018;
Camacho, Bienvenu, and McIlraith 2018).

However, even if, in order to avoid this anomaly, we re-
quire that E be environment enforceable — and the agent
assumes that the environment uses a strategy enforcing E
(otherwise, what is the meaning of requiring that E be envi-
ronment enforceable?) — synthesizing for E ⊃ G presents



a new anomaly. Namely, it implicitly considers every trace
that satisfies E to be possible, even though that trace may
not be consistent with any environment strategy enforcing
E (i.e., may not be in core(E)), and thus, by the agent’s
assumption, is in fact impossible!

How serious is this anomaly? It turns out that for clas-
sic reactive synthesis it does not pose a practical problem
since it does not prevent the synthesis algorithm from pro-
ducing an agent strategy just because it considers as possible
more traces than it should. This follows from the following
“equi-realizability” result: if E is environment enforceable,
then there is an agent strategy that enforces E ⊃ G iff there
is an agent strategy that enforces G under the assumption
enf(E) (Aminof et al. 2019). However, if one steps out
of the comfort zone of this setting then — unless similar
extenuating circumstances, like the equi-realizability result
above, can be shown to exist — the trace-view may prove in-
adequate: supplying no solutions, or only supplying anoma-
lous ones, in cases where the strategy-view supplies mean-
ingful solutions. We illustrate this with two examples.

First, the scenario in (Aminof, De Giacomo, and Rubin
2021, Section 6) shows that when taking the trace-view to
synthesize a best-effort strategy (because, e.g., there are no
enforcing strategies), one can get anomalous solution strate-
gies that are guaranteed to never achieve the goal G on any
trace that satisfies E! (the strategy-view rules these out as
solutions). Looking at that example one sees that the reason
for that is that the environment specification is not environ-
ment coverable (even though it is environment enforceable).
Second, consider the case of synthesizing enforcing strate-
gies under partial observability. The next example provides
a set E that is not a proper environment specification (but
is environment enforceable), and a goal G, where the trace-
view does not supply a solution, but the strategy-view does.
Example 4. Let X = {x},Y = {y}, and consider E =
y ∨ ¬(y ↔ Xx) and G = y ↔ Xx. Informally, the agent’s
goal G says to do x on its second move iff the environment
did y on its first move (“matching pennies”). Suppose that
the environment’s moves are hidden from the agent, and thus
the agent’s strategy is simply a function that maps the cur-
rent time step to a move. Observe that no agent strategy can
realize E ⊃ G. Indeed, if the agent does x (resp. ¬x) as its
second move, thenE∧¬G holds if the environment does ¬y
(resp. y) on its first move. On the other hand, the only en-
vironment strategies that enforce E do y on their first move
(since, at this time, they do not have access to the agent’s
second move). And thus, any agent strategy that does x in
the second move enforces G under the assumption E.

4 Algorithmic problems
In this section we discuss the following natural algorithmic
problems. Given a trace property E, represented by an LTL
formula ϕ or a DPA A:

Problem 1: Decide if E is environment coverable.
Problem 2: Compute a representation of core(E).
Problem 3: Compute a representation of a trace that sat-
isfies E but not core(E), if there is one (i.e., a trace wit-
nessing that E is not a proper environment specification).

We now give an overview of our algorithms for solving
these problems. When starting with ϕ, we take an automata-
theoretic approach and start by translating ϕ into an equiva-
lent deterministic automaton A.

For Problem 1, we use the characterization in Corollary 8.
Since the states of A represent equivalent histories, it is suf-
ficient to determine if there are any reachable pending states,
which we do by computing the winning regions of 2-player
and 1-player games on A, as in (Aminof, De Giacomo, and
Rubin 2021).

For Problem 2, we compute the winning region of 2-
player game on A, then make all states not in the winning
region into rejecting sinks. The language of the resulting au-
tomatonA′ is the core of L(A). In caseA is equivalent to an
LTL formula ϕ, by Theorem 2 it can be taken to be counter-
free, and the translation fromA toA′ preserves this. Hence,
A′ can be transformed into an equivalent LTL formula. This
gives a representation of the core of ϕ as an LTL formula.
We note that it is not a priori obvious that the core of an LTL
formula is LTL definable.

For Problem 3, we use a solution of Problem 2 to produce
a witnessing trace (if there is one). The trace is ultimately
periodic and finitely represented.

4.1 Algorithms for DPA specifications
In this section we assume that the specification is given by a
DPA A = (D, c) over the alphabet Σ = 2X∪Y. The follow-
ing Algorithm decides if L(A) is environment coverable.

Algorithm 1: Let A = (D, c) be a DPA with D =
(2X∪Y, Q, ι, δ). Decide if L(A) is environment cov-
erable.
1. W.l.o.g., we assume that every state in A is reach-

able (otherwise restrict A to its reachable states).
2. Solve the DPA-game (D, c), and compute the win-

ning region W ⊆ Q for the environment.
3. Solve the cooperative DPA-game (D, c) and com-

pute the co-operative winning region W ′ ⊆ Q.
4. Output “L(A) is environment coverable” iff W =
W ′.

Theorem 9. Given a DPA A, we can decide whether L(A)
is environment coverable in time polynomial in the size, and
exponential in the index, of A.

Proof. For a history h ending in an environment move, let
state(h) be the state reached byA starting in the initial state
and reading h. Correctness of Algorithm 1 easily follows
from Corollary 8, and the following two claims:

1. h is not losing wrt L(A) iff state(h) ∈W ′ — this follows
from the definitions;

2. h is winning wrt L(A) iff state(h) ∈W .

We prove 2. Assume h is winning, and let σ be a strat-
egy winning from h. Observe that the strategy σ′ defined by
σ′(h′) = σ(h · h′) wins the DPA game from state(h). Con-
versely, let σ′ be a strategy that wins the DPA game from
state(h). Define the strategy σ to follow h and then to mimic



q0 q1q2

{¬x,¬y}{x, y} {¬x, y} {¬x, y}

{¬x,¬y}

{x, y}

{¬x, y}

Figure 1: Automaton from Example 5

σ′. Formally, for a history h′: if h′ is a proper prefix of h,
then σ(h′) = a where a is the next symbol on h follow-
ing h′; if h′ is a proper extension of h, say h′ = h · h′′, then
σ(h′) = σ′(h′′); otherwise, σ′(h′) is defined arbitrarily. Ob-
viously, h is consistent with σ′. Let π = hζ be any play con-
sistent with σ that extends h, and observe that ζ is consistent
with σ′, and thus the run ρ′ of A on ζ (starting in state(h))
satisfies the acceptance condition c. The run ρ of A on π is
the concatenation of the run of A on h (starting at the initial
state and ending in state(h)) with the suffix of ρ′ (without its
first state state(h)). Since the acceptance condition is prefix
independent, also ρ satisfies it, i.e., π ∈ L(A).

Example 5. Figure 1 shows the DPA for the LTL formula
ϕ = (Fx) ⊃ (G y) — all shown states have color 0, miss-
ing transitions go to a rejecting sink state (not shown) with
color 1. Note that the winning region W is {q0, q2}, and
the co-operative winning region W ′ is {q0, q1, q2}. Thus,
Algorithm 1 returns that ϕ is not environment coverable.

For Problem 2, the following algorithm computes a DPA
representation of core(L(A)) for a given DPA A.

Algorithm 2: Let A = (D, c) be a DPA with
D = (2X∪Y, Q, ι, δ). Compute a representation of
core(L(A)).

1. Solve the DPA-game (D, c) and compute the win-
ning region W ⊆ Q of the environment.

2. Obtain a DPA A′ = (D′, c′) by removing all states
that do not belong to W and redirecting all transi-
tions that leave W to a fresh rejecting sink state.
Formally, D′ = (2X∪Y,W ∪{sink}, ι′, δ′) where:
ι′

.
= ι if ι ∈ W , and ι′

.
= sink otherwise;

δ′(q, a)
.
= δ(q, a) if q ∈ W and δ(q, a) ∈ W , and

δ(q, a)
.
= sink otherwise; Finally, let c′(q) = c(q)

for q ∈W , and c(sink) = 1.

Theorem 10. Given a DPA A, one can compute a DPA A′
with L(A′) = core(L(A)) in time polynomial in the size,
and exponential in the index, of A. Moreover, the size (resp.
index) ofA′ is bounded by 1 plus the size (resp. index) ofA.

Proof. Let A′ = (D′, c′) be the DPA returned by Algo-
rithm 2. We prove that core(L(A)) = L(A′): it is easy
to verify that, by the definition of A′, there are no pending
histories for L(A′). Hence, by Theorem 7, L(A′) is envi-
ronment coverable. L(A′) ⊆ L(A) by the definition of A′
and thus, by the definition of core, L(A′) ⊆ core(L(A)).
For the reverse inclusion, given a trace τ ∈ core(L(A)), ap-
ply Proposition 3 item 2 to core(L(A)) to obtain a strategy
σ enforcing L(A) with which τ is consistent. It follows that

the run of A on any trace consistent with σ (and in particu-
lar its run r on τ ) satisfies c and only visits states in W . It
follows that r is also the run of A′ on τ and, since c′ agrees
with c on states in W , conclude that τ ∈ L(A′).

Remark 3. The algorithm for computing core(L(A)) pro-
vides an alternative algorithm for deciding whether L(A)
is environment coverable: first compute A′ = core(L(A)),
and then check the language equivalence L(A′) = L(A).
However, computing the winning region of the cooperative
game is easier than deciding language equivalence, and thus
our earlier algorithm is preferable.

For Problem 3, since we can obtain from Algorithm 2 a
DPA for core(E), standard closure properties of DPAs yield:

Proposition 11. Given a DPA A, let E = L(A). We can
compute a DPA whose language isE\core(E), and, in case
of E 6= core(E), some trace τ = τ1(τ2)ω ∈ E \ core(E);
both computations can be done in time polynomial in the
size, and exponential in the index, of A.

4.2 Algorithms for LTL specifications
In this section we assume that the specification is given by
an LTL formula ϕ. For Problem 1 (deciding if ϕ is environ-
ment coverable) the algorithm extends the earlier algorithm
for DPAs, by a pre-processing step: first build the DPA Aϕ

which accepts exactly the models of ϕ, and then apply Al-
gorithm 1. This gives the following result:

Theorem 12. Given an LTL formula ϕ, we can decide in
double-exponential time in |ϕ| whether ϕ is environment
coverable.

Proof. By Theorem 1, the size (resp. index) ofAϕ is at most
2EXP (resp. EXP) in |ϕ|. Conclude using Theorem 9.

For Problem 2, computing a representation of the core of
a given LTL formula ϕ, we provide two results.

1. We give an algorithm that computes a DPA for core(ϕ),
a DPA for L(ϕ) \ core(ϕ), and a trace that witnesses
L(ϕ) 6= core(ϕ) in case there is such a trace.

2. We prove that core(ϕ) is in fact representable by an LTL
formula, demonstrating the LTL formulas are closed un-
der the operation of taking the core! The procedure used
in the proof is effective, however, maybe not optimal. We
leave it as an open problem to find a better procedure.

The algorithms for the first result extend the earlier algo-
rithms for DPAs, by a pre-processing step: first build the
DPAAϕ, which accepts exactly the models of ϕ, then apply
the algorithms from Section 4.1. We obtain the following:

Theorem 13. For an LTL formula ϕ, we can compute a
DPAA such thatL(A) = core(ϕ). In addition, we can com-
pute a DPA A′ with L(A′) = L(ϕ) \ core(ϕ), and, in case
L(ϕ) 6= core(ϕ), some trace τ = τ1(τ2)ω ∈ L(ϕ)\core(ϕ).
This can all be done in double-exponential time in |ϕ|.

Proof. By Theorem 1, the size (resp. index) of Aϕ is at
most double-exponential (resp. exponential) in |ϕ|. We then
conclude by applying Theorem 10 and Proposition 11.



We now come to the problem of computing an LTL for-
mula for core(ϕ). We note that it is a priori unclear whether
core(ϕ) can be represented as an LTL formula. We prove
so in the following. The proof makes use of Theorem 2,
and thus begins by constructing a deterministic counter-free
Rabin automata.

Theorem 14. Given an LTL formula ϕ, the core of ϕ is it-
self LTL definable, and an LTL formula for core(ϕ) can be
computed from ϕ.

Proof. By Theorem 2, construct a counter-free DRA Aϕ

with L(Aϕ) = L(ϕ). The definitions and algorithms of
Section 4.1 also work, with trivial changes, when DPA
are replaced by DRA. In particular, we apply the algo-
rithm from Section 4.1 for extracting the core of Aϕ.
That is, we consider the DRA-game played by the agent
and the environment on Aϕ = (D,Ω), where D =
(Σ, Q, ι, δ) is a deterministic transition system and Ω =
{(B1, G1), . . . , (Bk, Gk)} is a Rabin acceptance condition.
We solve the DRA-game and compute the winning region
W ⊆ Q of the environment. We now obtain the DRA
A′ = (D′,Ω′), by removing all states not in W and redi-
recting all transitions that leave W to a fresh rejecting sink
state, called sink . Formally, the deterministic transition sys-
temD′ is defined as in Algorithm 2, and the acceptance con-
dition is defined by setting Ω′ = {(B′1, G′1), . . . , (B′k, G

′
k)},

where B′i = Bi ∩W and G′i = Gi ∩W . By the same proof
as for Theorem 10, we obtain that L(A′) = core(L(Aϕ)).

We now show that D′ is counter-free. For every word w,
and every k ≥ 1, we have the following. Let q ∈ W , and
assume that the run r of D′ from q reading wk ends back in
q. Hence, (*) the run r (and thus also its prefix run from q
on w) does not leave W (since otherwise it would not return
to q). Consequently, r is also the run of D from q reading
wk. Since we assumed that D is counter-free we conclude
thatD returns from q to q readingw, which together with (*)
implies that D′ also returns from q to q reading w. For the
case q = sink , obviously D′ returns from q to q reading any
word. Combining the last two observations we get thatA′ is
counter-free. Hence, by Theorem 2, there in an LTL formula
ψ with L(ψ) = L(A′) = core(L(Aϕ)) = core(L(ϕ)).

5 Lower bounds
We provide lower bounds for the decision problem of
whether a given trace property, given by an LTL formula ϕ,
is environment coverable. We first give an auxiliary result:

Proposition 15. Deciding if a given LTL formula of the form
Fψ is environment enforceable is 2EXPTIME-hard.2

Proof. We will reduce from the fact that deciding if a given
LTL formula ϕ is environment enforceable is 2EXPTIME-
hard (Pnueli and Rosner 1990). Say AP = X ∪Y and let
p be a new variable. So, given an LTL formula ϕ over AP ,
define ψ .

= ϕ ∧ p ∧ XG¬p, X′ = X, and Y′ = Y ∪ {p}
(thus, the environment controls p). We now show that ϕ

2An almost identical proof shows that deciding if such a for-
mula is agent enforceable is also 2EXPTIME-hard.

is environment enforceable iff Fψ is environment enforce-
able. Clearly, if ϕ is environment enforceable, then so is Fψ
(since every strategy that enforces ϕ also enforces Fψ if the
it additionally does p in the first round, and then ¬p for all
later rounds).

Conversely, take a strategy σ that enforces Fψ. We first
prove that: (*) there is a history h consistent with σ such
that for any trace τ = h · ξ that is consistent with σ, we
have that p ∈ ξ0 and p 6∈ ξi for all i > 0. Take a history h
consistent with σ such that p ∈ σ(h). Such a history must
exist because σ enforces Fψ. Now, we check if there is a
history h′ consistent with σ that strictly extends h such that
p ∈ σ(h′). If so, we set h = h′ and iterate this procedure.
We claim that after a finite number of steps we must have
found a history h such that no history h′ consistent with σ
that strictly extends h satisfies p ∈ σ(h′). Indeed, if this is
not the case then the sequence of histories above induces an
infinite trace τ = z0z1 · · · consistent with σ such that p ∈ zi
for infinitely many i ≥ 0. However, this is a contradiction to
the assumption that σ enforces Fψ. Hence, (*) holds. Now,
we define a strategy σ′ that enforces ϕ as follows: for every
history h′ ending in an agent move, let σ′(h′) .

= σ(h · h′) \
{p}. It is not hard to see that, by (*) and the assumption that
σ enforces F(ϕ ∧ p ∧ XG¬p), σ′ indeed enforces ϕ.

We can now give the promised lower bound.
Theorem 16. Checking whether a given LTL formula ϕ is
environment coverable is 2EXPTIME-hard.

Proof. We will reduce from the problem in Proposition 15.
SayAP = X∪Y and let q be a new variable. Given an LTL
formula of the form Fψ, define ϕ .

= Fψ ∨ q, X′ = X∪{q}
(so q is controlled by the agent), and Y′ = Y. We show that
Fψ is environment enforceable iff ϕ is environment cov-
erable. First, assume that Fψ is environment enforceable.
Thus, every history h is winning wrt Fψ (indeed, have the
environment strategy follow h as long as possible, and once
this is no longer possible, either because the agent left h or
all of h has been seen, mimic the given strategy that enforces
Fψ). Hence, also every history is winning wrt ϕ, so ϕ is en-
vironment coverable by Theorem 7.

Conversely, suppose Fψ is not environment enforceable.
Then, the empty history must be losing or pending wrt Fψ.
If it is losing wrt Fψ then it is pending wrt ϕ (since the agent
can do q on its first move). If it is pending wrt Fψ then it is
pending wrt ϕ (it is not losing since the agent can do q on its
first move, and it is not winning since then the environment
could use that strategy to win Fϕ because q is not mentioned
in ϕ). Either way, the empty string is pending wrt ϕ. So, ϕ
is not environment coverable by Theorem 7.

We remark that similar proofs can be given for specifi-
cations given by DPA instead of LTL. Here, we get that
checking whether a trace property given by a DPA is envi-
ronment coverable is at least as hard as deciding the winner
of DPA-games.

6 Outlook
The standard approach to synthesis is, given sets E,G of
traces (specified, e.g., in LTL), to find an agent strategy that



enforces the implicationE ⊃ G. Although this trace-centric
view of synthesis is common in assume-guarantee reasoning
in the formal methods literature, it is not satisfactory for all
applications for the following reasons. First, E here is not
a real specification of the environment, but rather it is an
assumption that the agent can use to achieve its goalG. This
conflicts with the view, common in planning and reasoning
about actions, that the agent has a model of the world, i.e., a
model of its environment. Second, if E is not environment
enforceable, well-known anomalies arise (Section 3.2).

The strategy-centric view was identified to address these
issues (Aminof et al. 2018; Aminof et al. 2019). In this view:
E is considered as a specification of the strategies that the
environment can choose, i.e., those environment strategies
that enforce E; the caveat that E should be enforceable be-
comes a natural consistency condition, i.e., there must be
at least one enforcing environment strategy for E; the equi-
realizability theorem for classical reactive synthesis still al-
lows one to solve synthesis, i.e., to find an agent strategy that
satisfies G against every environment strategy enforcing E,
by instead finding an agent strategy that enforces E ⊃ G.

In this paper we show how to relate both these views. That
is, given a trace property E, we show that not all traces that
satisfy E are relevant when using E to specify the environ-
ment strategies that enforce E. In fact, only the set core(E)
of traces is relevant. This means that E contains some spu-
rious traces that are not relevant for the specification of E,
and if we get rid of these spurious traces we get the essence
of the specification, i.e., core(E). Thus, an agent strategy
satisfies G against every environment strategy that enforces
E iff it enforces core(E) ⊃ G.

Finally, this paper provides an explanation of why, despite
the problems mentioned above, the trace-centric view has
proved successful in many settings: it is either because E is
a proper environment specification (e.g., in nondeterministic
planning), or since E ⊃ G and core(E) ⊃ G are equi-
realizable (as in strategic reasoning in the standard setting).
In such cases we do not need to compute core(E) and can
work with E instead. However, as one advances to more
sophisticated settings such as best-effort synthesis, partial
observability, etc., the situation changes.

Acknowledgments
This work is partially supported by the ERC Advanced
Grant WhiteMech (No.834228) and by PRIN project RIPER
(No.20203FFYLK). We thank the reviewers for their careful
reading.

References
Alur, R.; Moarref, S.; and Topcu, U. 2013. Counter-strategy
guided refinement of GR(1) temporal logic specifications. In
FMCAD.
Aminof, B.; De Giacomo, G.; Murano, A.; and Rubin, S.
2018. Synthesis under assumptions. In KR.
Aminof, B.; De Giacomo, G.; Murano, A.; and Rubin, S.
2019. Planning under LTL environment specifications. In
ICAPS.

Aminof, B.; De Giacomo, G.; Rubin, S.; and Zuleger, F.
2022. Beyond strong-cyclic: Doing your best in stochastic
environments. In IJCAI.
Aminof, B.; De Giacomo, G.; Rubin, S.; and Zuleger, F.
2023. Stochastic best-effort strategies for Borel goals. In
LICS.
Aminof, B.; De Giacomo, G.; and Rubin, S. 2021. Best-
effort synthesis: Doing your best is not harder than giving
up. In IJCAI.
Aminof, B.; De Giacomo, G.; and Rubin, S. 2023. Reactive
synthesis of dominant strategies. In AAAI.
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