Principled Composition of Function Variants for Dynamic
Software Diversity and Program Protection

Giacomo Priamo
priamo.1701568@studenti.uniromal.it
Sapienza University of Rome
Italy

ABSTRACT

Artificial diversification of a software program can be a versatile
tool in a wide range of software engineering and security scenarios.
For example, randomizing implementation aspects can increase the
costs for attackers as it prevents them from benefiting of precise
knowledge of their target. A promising angle for diversification can
be having two runs of a program on the same input yield inherently
diverse instruction traces. Inspired by on-stack replacement designs
for managed runtimes, in this paper we study how to transform a
C program to realize continuous transfers of control and program
state among function variants as they run. We discuss the technical
challenges toward such goal and propose effective compiler tech-
niques for it that enable the re-use of existing techniques for static
diversification with no modifications. We implement our approach
in LLVM and evaluate it on both synthetic and real-world subjects.

CCS CONCEPTS

« Security and privacy — Software and application security;
« Software and its engineering — Compilers.

KEYWORDS
Software diversity, hardening, obfuscation, on-stack replacement.

ACM Reference Format:

Giacomo Priamo, Daniele Cono D’Elia, and Leonardo Querzoni. 2022. Prin-
cipled Composition of Function Variants for Dynamic Software Diversity
and Program Protection. In 37th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE "22), October 10-14, 2022, Rochester, ML, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3551349.3559553

1 INTRODUCTION

Software diversity is a research field broadly investigated by dif-
ferent communities. At its essence, diversity can be regarded as
the key to obtain properties such as resilience, performance, or
novelty in heterogeneous contexts such as fault tolerance, software
testing, performance tuning, and security [5, 15]. While natural
diversity may spontaneously emerge in a software development
ecosystem [5], automated diversity techniques can create and ex-
ploit diversity in existing code bases for different goals and scales.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3559553

Daniele Cono D’Elia
delia@diag.uniromal.it
Sapienza University of Rome

Italy

Leonardo Querzoni
querzoni@diag.uniromal.it
Sapienza University of Rome
Italy

Recent years have seen extensive applications of automated di-
versity at different software-stack levels, tackling problems involv-
ing code reuse attacks, information leaks, memory corruptions, and
reverse engineering, among others [15]. According to their effects,
automated techniques for diversification can be termed static when
alternative versions of a program are produced and dynamic when
a program is kept in a single version but its executions are diverse.
Instruction substitution and stack frame layout randomization are
two examples of static diversification techniques, whereas address
space layout randomization and randomized heap allocators are
examples of dynamic diversification techniques.

The attentive reader may have noticed that the static examples
above alter the program structure, while the dynamic ones act on the
runtime to obtain execution diversity indirectly. With the exception
of just-in-time compilation scenarios, techniques that diversify
program instructions at execution time can be difficult to design
due to compatibility, complexity, performance, and other practical
factors, especially if only the binary code can be distributed.

In this paper, we pursue a general-purpose design for dynamic
diversity schemes for programs written in an imperative language.
For a function hosting one or more regions that may benefit from
diversification, we generate multiple function clones and make the
corresponding regions in them be preceded by a query to an oracle,
which can conditionally transfer control and program state to any
clone. We then apply different static diversification transformations
to each clone. In this design, multiple executions over the same
input can bring highly diverse execution traces according to the run-
time choices of the oracle and the compile-time transformations
over the clones. Being general-purpose, this design may then be
tailored to the specific needs of scenarios that naturally benefit from
diversity, such as code obfuscation, information leakage mitigation,
multi-variant execution systems, and tamper prevention [15].

Unfortunately, when it comes to real-world code, the potential
benefits of such a “radical” design are naturally at odds with compat-
ibility, implementation complexity, and performance aspects. For
instance, two variants may substantially differ in the layout and val-
ues of their variables, requiring special-purpose compensation code
to support state transfers between them. We note that similar issues
are extensively studied in the Programming Language (PL) com-
munity for dynamic compilers, so as to support execution transfers
between code variants compiled with different optimizations.

By revisiting PL concepts like on-stack replacement [8], we show
how to realize the design above in a principled way, resulting in
high compatibility with existing static transformations, limited im-
plementation complexity, and satisfying performance. We suggest
that one way to make run-time composition of function variants
practical is to preserve the live variables and the memory storage

https://orcid.org/0000-0003-4358-976X
https://orcid.org/0000-0002-8711-4216
https://doi.org/10.1145/3551349.3559553
https://doi.org/10.1145/3551349.3559553

ASE 22, October 10-14, 2022, Rochester, MI, USA

of a program. To this end, we insert function calls acting simul-
taneously as barriers that preserve functional equivalence during
transformations and as a means to transfer control and program
state. We then show that by promoting stack variables to global
memory, we can do away with explicit program state transfer, turn-
ing execution transfers into simple and efficient tail calls!.

Contributions. This paper claims the following contributions:

e a principled approach to run-time composition of function
variants for general software diversity and protection tasks;
o the identification of a careful combination of compiler tech-
niques to ease its implementation in a mainstream compiler;
e apreliminary evaluation on compiler testing [28] and bench-
marking [10] programs and on 5 real-world crypto subjects.

2 BACKGROUND AND RELATED WORKS

Experiments with software diversity date back the *70s for fault
tolerance, followed eventually by a surge of interest for security
applications since the *90s [5]. Several surveys attempt to cover the
many facets of this body of works, e.g., recently [5, 15, 23]. The
place (e.g., instructions, loops, functions, system) and the software
life-cycle point (e.g., implementation, compilation, installation, exe-
cution) where artificial diversity is introduced can vary significantly
among techniques [15]. This paper focuses on code diversification
transformations applicable up to a function-level granularity.

Examples of static diversifications include instruction reordering
and substitution, garbage code insertion, opaque predicate inser-
tion, function parameter randomization, and randomization of data
at different levels (e.g., structure layout, heap layout) [3, 15]. Some
literature considers as such also transformations of the likes of con-
trol flow flattening, which are usually studied as program protection
techniques. Obfuscation shares many analogies with diversity, with
many used transformations being the same [15], and is sometimes
seen as different to diversity research because obfuscated program
instances do not have to be kept private from adversaries [15].

As mentioned in Section 1, dynamic diversifications for binary
instructions are presently scarce. We are aware of special-purpose
embodiments for varying bytecode scheduling in virtualization
obfuscation [13] and of in-place randomizations for crypto code [6].
The goal and contributions of this paper are different, as we study
a general solution to accommodate arbitrary diversification tech-
niques and support their composition in a sound and simple way.

Our approach produces programs where diversification tech-
niques are stacked at run-time in arrangements every time different.
Some of the challenges toward this goal have been studied in PL
research. On-stack replacement (OSR) [8] techniques allow runtimes
for managed languages (e.g., JVMs) to adaptively replace a function
while it executes with a more (or less) optimized variant of it. Such
runtimes normally enact OSR at favorable program points (e.g.,
loop back-edges) where state realignment is simpler and rely on
glue code, stack frame replacement/extension, and other implemen-
tation devices to support execution transfers [7]. Loose analogies
with our approach may also be recognized for research on dynamic
software updating [11] and product programs [4].

3 APPROACH

This section details our principled approach for supporting the

G. Priamo, D.C. D’Elia, L. Querzoni

int foo(int a, int b) { int variant1 (,){
int loc1, loc2;
int a, b, loc1, loc2; fptr f;
loct =a+b;

printf("%d\n", loc1); a=_a;b=_b;loct =_loct;loc2 = _loc2;
if (L != NULL) goto *L;

loc2 =loc1 * 4;
OSR1: f=oracle(); if (f) return f(L1, a, b, 0, 0);
loc1 =0; loc1 =a+b;

while (loc1 <loc2) loc1++; printf("%d\n", loc1);

return (a + loc2) * loct; OSR2: f=oracle(); if (f) return f(L2, a, b, loc1, 0);

) (a) loc2 = loc1 * 4;
OSR3: f=oracle(); if (f) return f(L3, a, 0, 0, loc2));
typedef int (*fptr)(void*, loc1 =0;
int, int, int, int); while (loc1 < loc2) loc1++;

int foo(int a, int b) {
fptr f = oracle(); OSR4: f=oracle(); if (f) return f(L4, a, 0, loc1, loc2);
return f(NULL, a, b, 0, 0); return (a + loc2) * loc1;

} (b) } ©

Figure 1: Running example. The figure parts are: (a) original
target function foo, (b) modification of foo for call redirec-
tion, (c) template for dynamic variant composition over foo.

general-purpose design for dynamic diversity anticipated in Sec-
tion 1. After discussing the main technical challenges behind the
design, we illustrate a careful combination of compiler techniques
that can significantly ease the realization of concrete embodiments
of the design. We use the code in Figure 1 as running example.

Function foo from Figure 1(a) comes with 4 code regions delim-
ited by annotations in the form of C labels. Let us suppose we are
interested in dynamically diversifying each such region: ideally,
every time the control flow reaches an annotated region entry point,
we seek a different variant of a region to be selected and executed.
The choice of which variant to use at a given moment is delegated
to an oracle. The granularity for diversification is fine-grained:
annotations can delimit arbitrary portions of basic blocks and com-
positions thereof (e.g., the region starting at L3 includes a basic
block with a single predecessor and a loop), but possibly also leave
out regions that would not benefit from diversity.

Challenges. A critical choice in the design is what scope one
may allow in diversification transformations. On one end, simple
embodiments can apply special-purpose local transformations to
individual regions, so that no side-effect escapes such scope (i.e., the
instructions and data of other regions are unaffected) and control
transfers among regions is greatly simplified. However, there are
obvious limitations in the extent of the diversity that such a choice
may allow. For instance, in code obfuscation, an adversary may
quickly learn from multiple executions that the sequences are inter-
changeable and thwart their diversity with syntactic replacements.

On the opposite end of the spectrum, complex embodiments
could support heavy-duty diversifications that alter the control
and/or data dependencies among regions, for instance by hoisting
or sinking portions of computations to other regions and by merg-
ing whole regions. While this choice could bring obvious benefits in
the dynamic diversity of execution traces, supporting program state
realignment between deeply diverse variants is a daunting prospect,
since the effects of each diversification should be tracked, under-
stood, and possibly compensated for, across control flow transfers.

!We make available a prototype in LLVM at: https://github.com/gpriamo/osr-diversity.

https://github.com/gpriamo/osr-diversity

Principled Composition of Function Variants for Dynamic Software Diversity and Program Protection

Call Barriers and Live Variables. In this paper, we show that vari-
ants obtained with generic diversification transformations can be
composed in a principled way without requiring a runtime compo-
nent that logs program state or assists with transfers. To this end,
we revisit two key concepts from the dynamic compilers literature.

The first concept are live variables. D’Elia and Demetrescu proved
in [8] that reasoning only about the live variables that two semanti-
cally equivalent functions have in common at a program point can
suffice to allow for transferring execution between them at it.

The second concept are barriers. Pioneered in [12] for debugging
optimized code in SELF, a barrier is a construct that forces a dynamic
compiler to track and (optionally) preserve program state values at
specific places. As an example, the Jikes RVM uses barriers when
lowering the bytecode for an interruptible method, for instance to
hold live variables before an inlined call [9, 20]. Barriers are not
strictly limiting for the work of an optimizer, which is allowed to
make semantics-preserving code changes also across barriers.

For imperative languages, we can effectively combine the two
concepts as shown in Figure 1(c). We first identify the variables that
are live when entering each region to diversify. We create a variant
template as a clone of the target function and modify it as follows:

o we edit its prototype to receive a destination label and a value
for every variable in the superset of live variables of interest;

o before the start of each region, we add OSR points to condi-
tionally transfer execution to a variant chosen by the oracle,
an operation done by calling a function that receives the
label of such region and the current values for the variables
live at it (using, e.g., a zero value for the remaining variables);

e we edit its entry block such that it assigns the incoming
values to the corresponding live-variable storage and, when
the incoming destination label is valid, it jumps to it.

Finally, we modify the original function to ask the oracle for a
variant instance and transfer control to it, passing as arguments its
own call parameters and a void destination block—see Figure 1(b).

Properties. The advantages of our approach are several. First, it
comes with high compatibility properties: existing static diversifi-
cation techniques can be used off the shelf on each variant and, as
we detail next, it can see platform-independent embodiments in the
intermediate representation of a compiler. Moreover, the approach
is arguably simple, as it does not require a runtime component to
handle program state but only leverages the semantics of impera-
tive languages like C. After compilation, each variant can even be
further manipulated with binary-level methods, including complex
ones such as commercial-strength virtualization obfuscation [24].

The correctness of the approach follows from using function
calls not only as a control transfer technique, but also as barriers: to
preserve the observable behavior of the code, a semantics-preserving
code transformation cannot alter function call argument values if
the call target is uncertain (e.g., external). These effects are similar to
using the C volatile keyword for global storage accesses to prevent
heavy-duty code optimizations from altering visible values. Indeed,
to preserve the memory model, we opt for conservatively marking
as volatile all pointer values in a variant template’s prototype.

Finally, the approach is flexible in several respects. The oracle can
model policies for different deployment scenarios. In its simplest
form, it can choose with a probability whether, and to which variant,

ASE ’22, October 10-14, 2022, Rochester, MI, USA

to transfer execution. However, it may also dictate transitions be-
tween specific variants according to particular execution conditions.
Our approach also enables subsequent edits on variants such as
removing specific OSR points or even entire regions, producing par-
tially functional variants. We continue this discussion in Section 5.

Making it Practical. We faced several challenges to implement
our approach in a practical and efficient way. Without loss of gen-
erality, we discuss solutions in the context of the LLVM compiler
and its intermediate representation (IR). For starters, using clas-
sic calls to transfer program state can be expensive when done
frequently and lead to stack frame proliferation. Furthermore, live
variables can substantially differ across multiple OSR points, leading
to potentially many values to transfer during calls—yellow boxes in
Figure 1(c). Those, in turn, would need heavy-duty IR manipulations
upon their assignment—compensation code block in Figure 1(c)—to
comply with the SSA form [21] in use to the variants.

To mitigate the burden of transferring live variables as call argu-
ments, one could opt for spilling variables to global storage as in
early LLVM OSR schemes [14]. However, this operation can still
be costly (and conspicuous) if done frequently. We choose instead
to promote all local variables to volatile global storage, effectively
translating the function frame away from the stack. By doing so,
the compiler can reuse the stack frame of the currently executing
variant, emitting a tail call that becomes an indirect jump in binary
code. Two main benefits follow: the program keeps the contents
of such locations up to date as part of its normal operation and we
can avoid bookkeeping costs for OSR stack frames altogether.

Implementation. In our prototype, we take as input the IR file
generated at any optimization level for the C function(s) to di-
versify and a list of basic blocks for OSR point insertion. After
creating a template variant by cloning the original code, we apply
the reg2mem pass on it to expose its local variables as alloca in-
structions and promote them to global memory. Upon entering a
basic block, there are no live path-dependent variables (i.e., ¢-nodes)
in the transformed code, hence the global storage suffices to support
transitions between variants?. We now add OSR machinery at each
basic block of interest to invoke an oracle and, if the oracle returns
a code pointer, make a tail call to it followed by a ret, so as to chain
the propagation of return values among each invoked variants.

These implementation choices reduce spatial and temporal man-
agement overheads for state keeping and execution transfers, mak-
ing the implementation of our approach in a mainstream compiler
practical. We wrote the current prototype using 830 C++ LOC.

As for the oracle, we populate at run-time a table of function
pointers and at each OSR point we choose with a probability value
p whether to make a transition, drawing uniformly at random from
N available variants for each diversified function. For simplicity,
we currently rely on the C library function rand() to model p.

Limitations. Our prototype uses fixed locations for stack variable
promotion. This implies that we cannot diversify functions that may
be used concurrently or be involved in direct or mutual recursion. A
solution can be maintaining a per-thread stack of structures hosting
instances of promoted variables and having each active instance of
a diversified function access its stack entry to retrieve the storage.

2 Alternatively, one could spill ¢-nodes to global storage and use LLVM’s SSAUpdater
to make them reached by values from compensation code. We avoided this complexity.

ASE 22, October 10-14, 2022, Rochester, MI, USA

G. Priamo, D.C. D’Elia, L. Querzoni

i Top: heatmap for 3 distinct executions of AES |

i Left: heatmap for 3 distinct executions of ARC2 |
i Right: legend for heatmaps

Figure 2: Heatmap of normalized execution frequencies for basic blocks of diversified variants of a core aes and arc2 function.

4 PRELIMINARY EXPERIMENTAL ANALYSIS

We conduct three sets of experiments for: a) stressing our implemen-
tation by diversifying Csmith programs, b) measuring overheads
on performance-critical code, and c) exploring dynamic diversity
when applying our approach to real-world subjects. As code trans-
formations, we draw from 12 LLVM intra and inter-procedural
optimizations (e.g., loop rotation, loop unrolling, SCCP [19]) and
5 obfuscations (basic block splitting, bogus control flow insertion,
function call wrapping, instruction substitution, variable substitu-
tion) that we extracted from LLVM-based obfuscators [1, 2]. For
simplicity, we apply them to the whole code of variant instances.
a) We build an automated pipeline to insert OSR points at ran-
dom locations in compiler stress-testing code and generate up to
8 variants for each diversified function. We choose different sets of
transformations on each variant and vary the optimization settings
when compiling the IR to binary code. We use 500 Csmith [28] pro-
grams as seeds for the pipeline and repeatedly tested them in differ-
ent assortments. For a subset of them, we also verify that VMProtect
(a heavy-duty, state-of-the-art [27] commercial obfuscator) manip-
ulates our diversified compiled code correctly. No error occurred.
b) We consider a worst-case scenario where we apply our ap-
proach to performance-critical code. To isolate the impact of our
machinery for variant composition, we generate 8 identical variants.
We study the Computer Language Benchmark Game (clbg) [10]
subjects that are available in a single-threaded C version. We ran the
tests using OSR probability values p € {0.1,0.25,0.5} and two op-
timization levels on a Linux machine with an Intel i7-10875H CPU
and negligible background activity. For OSR point insertion, we
target basic blocks in loops with high trip counts and in frequently
executed functions as fall-back. Table 1 reports the OSR points and
rate and the average slowdown on 10 runs of each subject. We omit
95% confidence intervals as we observed insignificant deviations.
In short, the slowdown is hardly noticeable when OSR transi-
tions are not excessively frequent (OSRy4se column): this is impacted
by the probability p of making an execution transfer and predomi-
nantly by the program-specific characteristics of the regions where
OSR points are placed. While follow-up research should study trade-
offs between overheads and resulting diversity from OSR point
selection, we find these performance numbers already promising.
By analyzing the executions with perf, we found that typically
over half of the additional execution time is spent in the rand()
function. This time may be reduced by, e.g., using an own PRNG [6]
or inlining the oracle (we measured average saves of ~20%), or be
used to accommodate more complex oracles, e.g., using dynamic
opaque predicates [17] that see execution-dependent truth values.
¢) We consider a recurrent code obfuscation scenario where the
target resembles a license key validation sequence. We diversify 5
crypto programs used in other security literature [25, 26]: aes and
anubis from the Chronos library, the 1oki91 cipher reference, and
arc2 and blowfish from the pycrypto toolkit. We take a core func-

Table 1: Statistics on clbg programs. Modified functions are
reported in “()” in Points. OSR events are counted per psec.

OSR;ate Slowdown (%) at -00 Slowdown (%) at -01

Program Points p=0.5 p=0.1 p=0.25 p=0.5 p=0.1 p=0.25 p=0.5

bintrees 2(1) ~107° -1.74 -3.49 -5.00 -2.33 -3.45 -3.59
fannkuch 4(2) 6-107° 3.26 2.32 2.34 9.54 10.42 9.65
fasta 4(4) 1056 10.44 18.77 37.03 66.15 7942 106.99
mbrot 2(2) 186 4.21 7.14 8.55 58.29 63.26 63.04
n-body 4(3) 1354 28.03 50.12 77.63 97.10 134.60 192.14
pidigits 3(1) 3-1072 1.47 3.43 2.65 -2.74 -2.83 0.76
regex 3(3) 8-107° 1.21 1.53 4.29 -1.49 -0.91 -2.02
revcomp 2(1) 6.15 3.66 5.51 7.73 1152 17.93 30.69

tion in them and diversify it using optimization and obfuscation
transformations different across variants. We add a testing driver to
realize 100 end-to-end crypto cycles and use DBI [16] to profile the
executed basic blocks. We normalize the counters in a [0, 1] value
first by using the highest count in the enclosing function and then
globally by using the call count of the mostly invoked variant.

For space reasons, in Figure 2 we report heatmaps only for 3 runs
of aes and arc? diversified using 4 variants and p=0.25. A heatmap
visualizes how these runs covered each basic block (sorted by ad-
dress) with varying frequencies. As for performance, crypto cycles
completed in a bounded time of the same order of magnitude of
the original code, suggesting that our scheme can be practical (and
possibly even amenable for using heavy-duty static obfuscations,
some of which can induce two-digit slowdowns [22]).

5 FUTURE PLANS

Alongside the above-mentioned trade-offs in OSR point insertion,
a compelling question to investigate next involves the oracle logic.
Different usage scenarios of our methods may demand different
strategies to harness diversity. A probability-based model may work
fairly well in certain information leakage scenarios or in multi-
variant systems. In program protection scenarios where adversaries
have full execution visibility (e.g., trace recording), the oracle could
be strengthened in different ways. For instance, adding classic [3]
and, better yet, dynamic opaque predicates or MBA expressions [3]
to the oracle’s logic may induce state explosion in state-of-the-art
trace deobfuscation methods [27] that try to reconstruct a simplified
program representation by merging multiple simplified traces.
More interestingly, an oracle may be programmed to check pro-
gram state conditions and decree transitions only for specific com-
binations of variants and program locations. With adversaries un-
aware of such logic, one may then alter the semantics of specific re-
gions in some variants, inducing bogus executions whenever adver-
saries try to force their exploration as in some attack methods [18].
Finally, to extend the methodology, one may explore new diversi-
fications that alter observable storage values (or scramble its layout)
and synthesize realignment code for when entering other variants.

Acknowledgements. This work has been partially supported by
the IoT-STYLE project RG12117A7CE68848.

Principled Composition of Function Variants for Dynamic Software Diversity and Program Protection

REFERENCES

(1]
(2]
(3]

[4

[12

[13

=
it

[15]

2019. Hikari Rebooted. https://github.com/HikariRebooted/HikariCore.

2022. Pluto Obfuscator. https://github.com/bluesadi/Pluto-Obfuscator.
Sebastian Banescu and Alexander Pretschner. 2018. Chapter Five - A Tutorial
on Software Obfuscation. Advances in Computers 108 (2018), 283-353. https:
//doi.org/10.1016/bs.adcom.2017.09.004

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification
Using Product Programs. In Proc. of the 17th International Conference on Formal
Methods (FM’11). Springer-Verlag, 200-214.

Benoit Baudry and Martin Monperrus. 2015. The Multiple Facets of Software
Diversity: Recent Developments in Year 2000 and Beyond. ACM Comput. Surv.
48, 1, Article 16 (sep 2015), 26 pages. https://doi.org/10.1145/2807593

Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. 2015. Thwarting Cache Side-Channel Attacks Through Dynamic Soft-
ware Diversity. In 22nd Annual Network and Distributed System Security Sympo-
sium, NDSS. The Internet Society. https://www.ndss-symposium.org/ndss2015/
thwarting- cache-side- channel-attacks- through-dynamic- software- diversity
Daniele Cono D’Elia and Camil Demetrescu. 2016. Flexible On-stack Replacement
in LLVM. In Proc. of the 2016 International Symposium on Code Generation and
Optimization (CGO ’16). Association for Computing Machinery, 250-260. https:
//doi.org/10.1145/2854038.2854061

Daniele Cono D’Elia and Camil Demetrescu. 2018. On-Stack Replacement, Dis-
tilled. In Proc. of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). Association for Computing Machinery,
166-180. https://doi.org/10.1145/3192366.3192396

Stephen J. Fink and Feng Qian. 2003. Design, Implementation and Evaluation of
Adaptive Recompilation with On-Stack Replacement. In Proc. of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (CGO ’03). IEEE Computer Society, 241-252.

Isaac Gouy. 2018. The Computer Language Benchmarks Game. https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/ (accessed: May 27,
2022).

Michael Hicks, Jonathan T. Moore, and Scott Nettles. 2001. Dynamic Software
Updating. In Proc. of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation (PLDI °01). Association for Computing Machinery,
13-23. https://doi.org/10.1145/378795.378798

Urs Holzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized Code
with Dynamic Deoptimization. In Proc. of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation (PLDI 92). Association for
Computing Machinery, 32-43. https://doi.org/10.1145/143095.143114

Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen,
and Zheng Wang. 2018. Enhance Virtual-Machine-Based Code Obfuscation
Security through Dynamic Bytecode Scheduling. Comput. Secur. 74, C (may 2018),
202-220. https://doi.org/10.1016/j.cose.2018.01.008

Nurudeen A. Lameed and Laurie J. Hendren. 2013. A Modular Approach to
On-Stack Replacement in LLVM. In Proc. of the 9th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE ’13). Association for
Computing Machinery, 143-154. https://doi.org/10.1145/2451512.2451541

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In Proc. of the 2014 IEEE Symposium on Security

[16

(17

[19

[20

[21

[22

[23

[28

]
]

ASE ’22, October 10-14, 2022, Rochester, MI, USA

and Privacy (SP ’14). IEEE Computer Society, 276-291. https://doi.org/10.1109/
SP.2014.25

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proc. of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI "05). Association for Computing Machinery, 190-200.
https://doi.org/10.1145/1065010.1065034

J. Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma, Qiuyun Shao, and Y. Zhang.
2000. Experience with Software Watermarking. In Proc. of the 16th Annual
Computer Security Applications Conference (ACSAC °00). IEEE Computer Society,
308.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-Force: Force-Executing Binary Programs for Security Applications.
In Proc. of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX
Association, 829-844.

LLVM Project. 2022. LLVM’s Analysis and Transform Passes. https://llvm.org/
docs/Passes.html (accessed: May 27, 2022).

Feng Qian. 2005. Runtime Techniques and Inteprocedural Analysis in Java Virtual
Machines. Ph.D. Dissertation. McGill University.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers and
Redundant Computations. In Proc. of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL '88). Association for Computing
Machinery, 12-27. https://doi.org/10.1145/73560.73562

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic Deob-
fuscation: From Virtualized Code Back to the Original. In Detection of Intrusions

and Malware, and Vulnerability Assessment, Cristiano Giuffrida, Sébastien Bardin,
and Gregory Blanc (Eds.). Springer International Publishing, 372-392.

Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
Diversity: State of the Art and Perspectives. Int. §. Softw. Tools Technol. Transf.
14, 5 (oct 2012), 477-495. https://doi.org/10.1007/s10009-012-0253-y
VMProtect Software. 2017. VMProtect. https://vmpsoft.com/.

Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Man-
gard, and Georg Sigl. 2018. DATA-Differential Address Trace Analysis: Finding
Address-Based Side-Channels in Binaries. In Proc. of the 27th USENIX Conference
on Security Symposium (SEC’18). USENIX Association, 603-620.

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating
Timing Side-Channel Leaks Using Program Repair. In Proc. of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018).
Association for Computing Machinery, 15-26. https://doi.org/10.1145/3213846.
3213851

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015.
A Generic Approach to Automatic Deobfuscation of Executable Code. In Proc. of
the 2015 IEEE Symposium on Security and Privacy (SP '15). IEEE Computer Society,
674-691. https://doi.org/10.1109/SP.2015.47

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Proc. of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’11). Association for
Computing Machinery, 283-294. https://doi.org/10.1145/1993498.1993532

https://github.com/HikariRebooted/HikariCore
https://github.com/bluesadi/Pluto-Obfuscator
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1145/2807593
https://www.ndss-symposium.org/ndss2015/thwarting-cache-side-channel-attacks-through-dynamic-software-diversity
https://www.ndss-symposium.org/ndss2015/thwarting-cache-side-channel-attacks-through-dynamic-software-diversity
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/3192366.3192396
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://doi.org/10.1145/378795.378798
https://doi.org/10.1145/143095.143114
https://doi.org/10.1016/j.cose.2018.01.008
https://doi.org/10.1145/2451512.2451541
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1145/1065010.1065034
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://doi.org/10.1145/73560.73562
https://doi.org/10.1007/s10009-012-0253-y
https://vmpsoft.com/
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Background and Related Works
	3 Approach
	4 Preliminary Experimental Analysis
	5 Future Plans
	References

