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Abstract
On-Stack Replacement (OSR) is a technique for dynami-
cally transferring execution between different versions of a
function at run time. OSR is typically used in virtual ma-
chines to interrupt a long-running function and recompile it
at a higher optimization level, or to replace it with a different
one when a speculative assumption made during its compi-
lation no longer holds.

In this paper we present a framework for OSR that intro-
duces novel ideas and combines features of existing tech-
niques that no previous solution provided simultaneously.
New features include OSR with compensation code to adjust
the program state during a transition and the ability to fire an
OSR from arbitrary locations in the code. Our approach is
platform-independent as the OSR machinery is entirely en-
coded at a compiler’s intermediate representation level.

We implement and evaluate our technique in the LLVM
compiler infrastructure, which is gaining popularity as Just-
In-Time (JIT) compiler in virtual machines for dynamic lan-
guages such as Javascript, MATLAB, Python, and Ruby. As
a case study of our approach, we show how to improve the
state of the art in the optimization of the feval instruction,
a performance-critical construct of the MATLAB language.

Categories and Subject Descriptors D.3 [Processors]:
Compilers

Keywords On-stack replacement, just-in-time compilation,
code optimization, deoptimization, LLVM.

1. Introduction
The LLVM compiler infrastructure [11] provides a Just-In-
Time compiler called MCJIT that is currently being used for
generating optimized code at run-time in virtual machines

for dynamic languages. MCJIT is employed in both indus-
trial and research projects, including Webkit’s Javascript en-
gine, the open-source Python implementation Pyston, the
Rubinius project for Ruby, Julia for high-performance tech-
nical computing, McVM for MATLAB, CXXR for the R
language, Terra for Lua, and the Pure functional program-
ming language. The MCJIT compiler shares the same opti-
mization pipeline with static compilers such as clang, and
it provides dynamic features such as native code loading and
linking, as well as a customizable memory manager.

A piece that is currently missing in MCJIT is a fea-
ture to enable on-the-fly transitions between different ver-
sions of a running program’s function. This feature is com-
monly known as On-Stack-Replacement (OSR) and is typ-
ically used in high-performance virtual machines, such as
HotSpot and the Jikes RVM for Java, to interrupt a long-
running function and recompile it at a higher optimization
level. OSR can be a powerful tool for dynamic languages,
for which most effective optimization decisions can typi-
cally be made only at run-time, when critical information
such as type and shape of objects becomes available. In this
scenario, OSR becomes useful also to perform deoptimiza-
tion, i.e., when the running code has been speculatively op-
timized and the assumption used for the optimization does
not hold anymore, the optimized function is interrupted and
the execution continues in a safe version of the code.

Currently VM builders using MCJIT are required to have
a deep knowledge of the internals of LLVM in order to
mimic a transitioning mechanism. In particular, they can rely
on two experimental intrinsics, Stackmap and Patchpoint, to
inspect the details of the compiled code generated by the
back-end and to patch it manually with a sequence of assem-
bly instructions. In particular, a Stackmap records the loca-
tion of live values at a particular instruction address and dur-
ing the compilation it is emitted into the object code within
a designated section; a Patchpoint instead allows to reserve
space at an instruction address for run-time patching and can
be used to implement an inline caching mechanism [14].

Lameed and Hendren propose McOSR [10], a technique
for OSR that stores the live values in a global buffer, recom-
piles the current function, and then loads in it the saved state
when the execution is resumed. McOSR was designed for
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the legacy JIT – no longer included in LLVM since release
3.6 – and has several limitations that we discuss in Section 3.

Contributions. In this paper we propose a general-purpose,
target-independent implementation of on-stack replacement.
Specific goals of our approach include:

• The ability for a function reached via OSR to fire an OSR
itself: this would allow switching from a base function
f to an optimized function f ′, and later on to a further
optimized version f ′′, and so on.

• Supporting deoptimization, i.e., transitions from an opti-
mized function to a less optimized function from which
it was derived.

• Supporting transitions at arbitrary points, including those
that would require adjusting the transferred program state
to resume the execution in the OSR target function.

• Supporting OSR targets either generated at run-time
(e.g., using profiling information) or already known at
compilation time.

• Hiding from the front-end that generates the different
function versions all the implementation details for han-
dling OSR transitions between them at specific points.

We implemented the proposed approach in OSRKit, a pro-
totype library for LLVM IR manipulation based on MCJIT
with the following design goals:

• Encoding OSR transitions in terms of pure IR code only,
avoiding manipulations at machine-code level.

• Providing a front-end with a clean interface to specify
glue code for OSR transitions requiring adjustments to
the program state.

• Incurring a minimal level of intrusiveness in terms of
both the instrumentation of the code generated by the
front-end and the impact of OSR points on native code
quality.

• Relying on LLVM’s compilation pipeline to generate the
most efficient native code for an instrumented function.

While the general ideas we propose have been prototyped
in LLVM, we believe that they could be applied to other
toolchains as well. To investigate the potential of our ap-
proach, we show how to optimize the feval construct –
a major source of inefficiency in MATLAB execution en-
gines [9, 15]. We present an extension of the MATLAB
McVM runtime [3] based on OSRKit to enable aggressive
specialization mechanisms for feval that were not sup-
ported by extant techniques [9]. An experimental evaluation
of our technique reveals that the OSR machinery injected by
OSRKit has a small level of intrusiveness and the optimiza-
tions enabled by our approach can yield significant speedups
in practical scenarios. We devise an artifact1, endorsed by

1 Our artifact is available in the ACM Digital Library and also at
http://www.dis.uniroma1.it/~demetres/artifacts/cgo2016/.

OSR

T f(param){
   A
L:
   B
}    

base variant

T f'(param){
   A'
L':
   B'
}    

Figure 1. On-stack replacement dynamics: control is trans-
ferred via OSR from a point L of a base function f to a point
L’ in a variant f’ of f.

the joint PPoPP-CGO 2016 Artifact Evaluation committee,
that will allow the interested reader to repeat the experiments
presented in this work and to get acquainted with OSRKit2.

Structure of the paper. The remainder of this paper is
organized as follows. In Section 2 we present our OSR
technique and in Section 3 we outline its implementation
in LLVM. Section 4 illustrates our feval case study in
McVM. In Section 5, we present our experimental study
and discuss implications of injecting OSR points in LLVM
IR programs. Related work is discussed in Section 6 and
concluding remarks are given in Section 7.

2. Overview
In this section we provide an overview of our ideas. The
key to platform independence in our work is to express the
entire OSR machinery at intermediate code representation
level, without resorting to machine-level code manipulation
or special intrinsics of the intermediate language such as
Stackmap and Patchpoint in LLVM IR.

Consider the generic OSR scenario shown in Figure 1. A
base function f is executed and it can either terminate nor-
mally (dashed lines), or an OSR event may transfer control
to a variant f’, which resumes the execution. The decision
of whether an OSR should be fired at a given point L of
f is based on an OSR condition. A typical example in JIT-
based virtual machines is a profile counter reaching a cer-
tain hotness threshold, which indicates that f is taking longer
than expected and is worth optimizing. Another example is
a guard testing whether f has become unsafe and execution
needs to fall back to a safe version f’. This scenario includes
deoptimization of functions generated with aggressive spec-
ulative optimizations.

Several OSR implementations adjust the stack so that
execution can continue in f’ with the current frame [2, 8, 19].
This requires manipulating the program state at machine-
code level and is highly ABI- and compiler-dependent. A
simpler approach, which we follow in this article, consists in
creating a new frame every time an OSR is fired, essentially
regarding an OSR transition as a function call [10, 14].

Our implementation targets two general scenarios: 1) re-
solved OSR: f’ is known before executing f as in the de-
optimization example discussed above; 2) open OSR: f’ is
generated when the OSR is fired, supporting deferred and

2 OSRKit is available at https://github.com/dcdelia/tinyvm.
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T ffrom(param){

    A

    if (osr_cond)

        return f'to(live vars@L)

    B

}

T f'to(live vars@L){

    comp_code 

    goto L'

    A'

L':

    B'

}

base, OSR-instrumented variant, OSR-instrum.

L: O
S
R

Figure 2. Resolved OSR scenario.

profile-guided compilation strategies. In both cases, f is in-
strumented before its execution to incorporate the OSR ma-
chinery. We call such OSR-instrumented version ffrom.

In the resolved OSR scenario (see Figure 2), instrumenta-
tion consists of adding a check of the OSR condition and, if
it is satisfied, a tail call that fires the OSR. The called func-
tion is an instrumented version of f’, which we call f’to. We
refer to f’to as the continuation function for an OSR tran-
sition. The assumption is that f’to produces the same side-
effects and return value that one would obtain by f if no OSR
was performed. Differently from f’, f’to takes as input all live
variables of f at L, executes an optional compensation code
to fix the computation state (comp code), and then jumps to
a point L’ from which execution can continue.

Compensation code adds flexibility to our framework, as
it extends the range of points where OSR transitions can be
fired. In fact, the OSR practice often makes the conservative
assumption that execution can always continue with the very
same program state as the base function. This assumption
can however be restrictive, as it may reduce the number of
program locations eligible for OSR (i.e., one has to wait to a
point where the states would realign). Our solution provides
a front-end with means to encode a glue code, tailored to
the specific optimizations involved between two function
versions, to adjust the program state and perform an OSR
transition. This code can be used, for instance, to modify the
heap, or to compute variables that are live at L’ but not at L.

T ffrom(param){

    A

    if (osr_cond)

        return fstub(live vars@L)

    B

}

T f'to(live vars@L){

    comp_code 

    goto L'

    A'

L':

    B'

}

base, OSR-instrumented variant, OSR-instrum.

L:

T fstub(live vars@L){

    f'to=gen(f, L) 

    return f'to(live vars@L)

}

code generation stub

O
S
R

Figure 3. Open OSR scenario.

The open OSR scenario is similar, with one main difference
(see Figure 3): instead of calling f’to directly, ffrom calls a
stub function fstub, which first creates f’to and then calls it.
Function f’to is generated by a function gen that takes the
base function f and the OSR point L as input. The reason
for having a stub in the open OSR scenario, rather than di-
rectly instrumenting f with the code generation machinery,
is to minimize the extra code injected into f. Indeed, instru-
mentation may interfere with optimizations, e.g., by increas-
ing register pressure and altering code layout and instruction
cache behavior.

int isord(long* v, long n, int (*c)(void*,void*)) {

   for (long i=1; i<n; i++) 

       if (c(v+i-1,v+i)>0) return 0;

   return 1;

}

Figure 4. Example for OSR instrumentation in LLVM.

Discussion. Instrumenting functions for OSR at a higher
level than machine code yields several benefits:

1. Platform independence: the OSR instrumentation code is
lowered to native code by the compiler back-end, which
handles the details of the target ABI.

2. Global optimizations: lowering OSR instrumentation
code along with application code can generate faster
code than local binary instrumentation. For instance,
dead code elimination can suppress from f’to portions
of code that would no longer be needed when jumping to
the landing pad L’, producing smaller code and enabling
better register allocation and instruction scheduling.

3. Debugging and Profiling: preserving ABI conventions in
the native code versions of ffrom, fstub, and f’to helps de-
buggers and profilers to more precisely locate the current
execution context and collect more informative data.

4. Abstraction: being entirely encoded using high-level lan-
guage constructs (assignments, conditionals, function
calls), the approach is amenable to a clean instrumenta-
tion API that abstracts the OSR implementation details,
allowing a front-end to focus on where to insert OSR
points independently of the final target architecture.

A natural question is whether encoding OSR at a higher
level of abstraction can result in poorer performance than
binary code approaches. We address this issue in Section 3,
where we analyze the OSR machine code generated for an
x86-64 target, and in Section 5, where OSR performance is
measured on classic benchmarks.

3. OSR in LLVM
In this section we discuss one possible embodiment of the
OSR approach of Section 2 in LLVM. Our discussion is
based on a simple running example that illustrates a profile-
driven optimization scenario. We start from a simple base
function (isord) that checks whether an array of numbers
is ordered according to some criterion specified by a com-
parator (see Figure 4). Our goal is to instrument isord so
that, whenever the number of loop iterations exceeds a cer-
tain threshold, control is dynamically diverted to a faster ver-
sion generated on the fly by inlining the comparator.

The IR code shown in this section3 has been generated
with clang and instrumented with OSRKit, a library we
prototyped to help VM builders deploy OSR in LLVM. OS-

3 Virtual register names and labels in the LLVM-produced IR code shown
in this paper have been refactored to make the code more readable.
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define i32 @isordfrom( 

  i64* %v, i64 %n, i32 (i8*, i8*)* nocapture %c) {

entry:

  %t0 = icmp sgt i64 %n, 1

  br i1 %t0, label %loop.body, label %exit

loop.header:

  %t1 = icmp slt i64 %i1, %n

  br i1 %t1, label %loop.body, label %exit

loop.body:

  %i = phi i64 [%i1, %loop.header], [1,%entry]

  %p.osr = phi i64 [%p.osr1, %loop.header], 

                   [1000, %entry]

  %p.osr1 = add nsw i64 %p.osr, -1

  %osr.cond = icmp eq i64 %p.osr, 0

  br i1 %osr.cond, label %osr, 

                   label %loop.body.cont

loop.body.cont:

  %t2 = getelementptr inbounds i64* %v, i64 %i

  %t3 = add nsw i64 %i, -1

  %t4 = getelementptr inbounds i64* %v, i64 %t3

  %t5 = bitcast i64* %t4 to i8*

  %t6 = bitcast i64* %t2 to i8*

  %t7 = tail call i32 %c(i8* %t5, i8* %t6)

  %t8 = icmp sgt i32 %t7, 0

  %i1 = add nuw nsw i64 %i, 1

  br i1 %t8, label %exit, label %loop.header

exit: 

  %res = phi i32 [1, %entry], [1, %loop.header] 

                 [0, %loop.body.cont], 

  ret i32 %res

osr:

  %val = bitcast i32 (i8*, i8*)* %c to i8*

  %osr.res = call i32 @isordstub(i8* %val,

      i64* %v, i64 %n, i32 (i8*, i8*)* %c, i64 %i)

  ret i32 %osr.res

}

Figure 5. LLVM IR version of base function isord (Fig-
ure 4) instrumented for open OSR. The OSR is fired at the
beginning of the loop body after 1000 iterations. Additions
resulting from the instrumentation are in grey.

RKit provides a number of useful abstractions that include
open and resolved OSR instrumentation of IR base functions
without breaking the SSA (Static Single Assignment) form,
liveness analysis, generation of OSR continuation functions,
and mapping of LLVM values between different versions of
a program along with compensation code generation.

OSR Instrumentation in IR. To defer the compilation of
the continuation function until the comparator is known at
run time, we used OSRKit to instrument isord with an open
OSR point at the beginning of the loop body, as shown in
Figure 5. Portions added to the original code by OSR in-
strumentation are highlighted in grey. New instructions are
placed at the beginning of the loop body to increment a hot-
ness counter p.osr and jump to an OSR-firing block if the
counter reaches the threshold (1000 iterations in this exam-
ple). The OSR block contains a tail call to the target gener-
ation stub, which receives as parameters the four live vari-
ables at the OSR point (v, n, c, i). OSRKit allows the stub

define i32 @isordstub(

  i8* %val, i64* %v_osr, i64 %n_osr, 

  i32 (i8*, i8*)* nocapture %c_osr, i64 %i_osr) {

entry:

 %cont.func = call

    ; generator returns ptr to isordto

    i32 (i64*, i64, i32 (i8*, i8*)*, i64)* 

     (i8*, i8*, i8*, i8*)* inttoptr 

    ; generator function address is 4357824

    (i64 4357824 to 

          i32 (i64*, i64, i32 (i8*, i8*)*, i64)* 

              (i8*, i8*, i8*, i8*)*)

    ; hard-coded parameters passed to generator:

    ;  46993664 = addr of isord IR function

    ;  46995056 = addr of basic block at loop.body

    ;  47005408 = addr of code generation env

    (i8* inttoptr (i64 46993664 to i8*),

     i8* inttoptr (i64 46995056 to i8*), 

    i8* inttoptr (i64 47005408 to i8*), i8* %val) 

 %osr.res = call i32 %cont.func(i64* %v_osr, 

   i64 %n_osr, i32 (i8*, i8*)* %c_osr, i64 %i_osr)

 ret i32 %osr.res

}

Figure 6. IR stub that generates the continuation function
when an open OSR is fired by isordfrom (Figure 5).

to receive the run-time value val of an IR object that can be
used to produce the continuation function – in our example,
the pointer to the comparator function to be inlined. The stub
(see Figure 6) calls a code generator that: 1) builds an opti-
mized version of isord by inlining the comparator, and 2)
uses it to create the continuation function isordto shown in
Figure 7. The stub passes to the code generator four param-
eters: 1) a pointer to the isord IR code, 2) a pointer to the
basic block in isord from which the OSR is fired, 3) a user-
defined object to support code generation in MCJIT, and 4)
the stub’s val parameter (the first three are hard-wired by
OSRKit). The stub terminates with a tail call to isordto.
To generate the continuation function from the optimized
version created by the inliner, OSRKit replaces the func-
tion entry point, removes dead code, replaces live variables
with the function parameters, and fixes φ-nodes accordingly.
Additions resulting from the IR instrumentation are in grey,
while removals are struck-through.

x86-64 Lowering. Figure 8 shows the x86-64 code gener-
ated by the LLVM back-end for isordfrom and isordto.
For the sake of comparison with the native code that would
be generated for the original non-OSR versions, additions
resulting from the IR instrumentation are in grey, while re-
movals are struck-through. Notice that the OSR intrusive-
ness in isordfrom is minimal, consisting of just two assem-
bly instructions with register and immediate operands. As a
result of induction variable canonicalization in the LLVM
back-end, loop index i and hotness counter p.osr are fused
in register %r12. We also note that tail call optimization is
applied in the OSR-firing block, resulting in no stack growth
during an OSR. The continuation function isordto is iden-
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define i32 @isordto(

  i64* nocapture readonly %v_osr, 

  i64 %n_osr, i32 (i8*, i8*)* %c_osr, i64 %i_osr) {

osr.entry: ; no compensation code needed...

  br label %loop.body

entry:

  %t1 = icmp sgt i64 %n_osr, 1

  br i1 %t1, label %loop.body, label %exit

loop.header:

  %t2 = icmp slt i64 %i1, %n_osr

  br i1 %t2, label %loop.body, label %exit

loop.body:

  %i = phi i64 [ %i1, %loop.header ], 

               [ 1, %entry ], 

               [ %i_osr, %osr.entry ]

  %t3 = add nsw i64 %i, -1

  %t4 = getelementptr inbounds i64* %v_osr, i64 %t3

  %t5 = load i64* %t4, align 8, !tbaa !1

  %t6 = getelementptr inbounds i64* %v_osr, i64 %i

  %t7 = load i64* %t6, align 8, !tbaa !1

  %t8 = icmp sgt i64 %t5, %t7

  %i1 = add nuw nsw i64 %i, 1

  br i1 %t8, label %exit, label %loop.header

exit:

  %res = phi i32 [ 1, %entry ], 

                 [ 0, %loop.body ], 

                 [ 1, %loop.header ]

  ret i32 %res

}

Figure 7. Faster variant of isord (Figure 4) in LLVM IR
with comparator inlining, instrumented as OSR continuation
function. Instrumentation additions are in grey. The original
function entry block is unreachable after instrumentation and
is eliminated (struck-through code fragments).

tical to the specialized version of isord with inlined com-
parator, except that the loop index is passed as a parameter in
%rdx and no preamble is needed since OSR jumps directly
in the loop body.

Comparison with McOSR. McOSR [10] is a library for in-
serting open OSR points designed specifically for the legacy
LLVM JIT, and encodes the OSR machinery entirely in IR
as OSRKit does. When an OSR is fired, live variables are
stored into a pool of globals allocated by the library. McOSR
then invokes a user-defined method to transform f into f’ and
calls f with empty parameters. The new entrypoint inserted
by McOSR in f checks a global flag to discriminate if the
function is being invoked in an OSR transition or as a regu-
lar call: in the first case, the state is restored from the pool of
global variables before jumping to the OSR landing pad.

OSRKit improves upon McOSR in a number of aspects.
The presence of a new entrypoint has the potential to disrupt
many optimizations: McOSR tries to mitigate this issue by
promptly recompiling f again once the execution is resumed
and f has returned, but only future invocations of f would
benefit from it. In contrast, OSRKit generates an optimized,
dedicated OSR continuation function to resume the execu-

isordfrom: 

   pushq %r15

  pushq %r14

  pushq %r12

  pushq %rbx

  pushq %rax

  movq %rdx, %r14 #c

  movq %rsi, %r15 #n

  movq %rdi, %rbx #v

  movl $1, %r12d  #i

  cmpq $1, %r15

  jle .LBB0_1

.LBB0_4: # %loop.body

  cmpq $1001, %r12

  je .LBB0_7

  movq %rbx, %rdi

  leaq 8(%rbx), %rbx

  movq %rbx, %rsi

  callq *%r14

  movl %eax, %ecx

  xorl %eax, %eax

  testl %ecx, %ecx

  jg .LBB0_6

  incq %r12

  cmpq %r15, %r12

  jl .LBB0_4

  movl $1, %eax

  jmp .LBB0_6

.LBB0_1:

  movl $1, %eax

.LBB0_6: # %exit

   addq $8, %rsp

   popq %rbx

isordto:

  movl $1, %edx

  cmpq $1, %rsi

  jle .LBB0_1

.LBB0_4: # %loop.body

  movq -8(%rdi,%rdx,8),%rcx

  xorl %eax, %eax

  cmpq (%rdi,%rdx,8),%rcx

  jg .LBB0_5

  incq %rdx

  cmpq %rsi, %rdx

  jl .LBB0_4

.LBB0_1:

  movl $1, %eax

.LBB0_5: # %exit

  retq

  popq %r12

  popq %r14

  popq %r15

  retq

.LBB0_7: # %osr

  movq %r14, %rdi # c

  movq %rbx, %rsi # v

  movq %r15, %rdx # n

  movq %r14, %rcx # c

  movq %r12, %r8  # i

  addq $8, %rsp

  popq %rbx

   popq %r12

   popq %r14

   popq %r15

   jmp isordstub

Figure 8. OSR-instrumented functions isordfrom (base)
and isordto (faster continuation) after IR-to-x86-64 lower-
ing in LLVM. Additions resulting from the IR instrumenta-
tion are in grey, while removals are struck-through.

tion: lessons from the Jikes RVM [6] suggest that our ap-
proach is likely to yield better performance. Also, we trans-
fer live variables as arguments to the continuation function,
possibly using registers, which is likely to be more efficient
than spilling them to a pool of globals. Due to the complexity
in preserving the SSA form when updating the IR, McOSR
allows the insertion of OSR points only at loop headers (in
particular, those with exactly two predecessor blocks), while
OSRKit can encode them at arbitrary program locations.

Notice also that OSRKit introduces a number of features
that are absent from McOSR, including: support for com-
pensation code and resolved OSR points; compatibility with
MCJIT’s design; support for maintaining multiple versions
of the same function, which can be very useful in the pres-
ence of speculative optimizations and deoptimization.

4. Optimizing feval in McVM
In this section we show how OSRKit can be used in a pro-
duction VM to implement aggressive optimizations for dy-
namic languages. We focus on MATLAB’s feval construct,
a widely used built-in higher-order function that applies the
function passed as first parameter to the remaining argu-
ments (e.g., feval(g,x,y) computes g(x,y)). This fea-
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ture is used in many classes of numerical computations that
benefit from having functions as parameters.

A previous study by Lameed and Hendren [9] shows that
the overhead of an feval call is significantly higher than a
direct call, especially in JIT-based execution environments
such as McVM [3] and the proprietary MATLAB JIT accel-
erator by Mathworks. In fact, the presence of an feval in-
struction can disrupt the results of intra- and inter-procedural
level for type and array shape inference analyses, which are
key factors for efficient code generation. Furthermore, since
feval invocations typically require a fallback to an inter-
preter, parameters passed to an feval are typically boxed to
make them more generic.

Our case study presents a novel technique for optimizing
feval in the McVM virtual machine, a complex research
project developed at McGill University. McVM is publicly
available [21] and includes: a front-end for lowering MAT-
LAB programs to an intermediate representation called IIR
that captures the high-level features of the language; an in-
terpreter for running MATLAB functions and scripts in IIR
format; a manager component to perform analyses on IIR;
a JIT compiler based on LLVM for generating native code
for a function, lowering McVM IIR to LLVM IR; a set of
helper components to perform fast vector and matrix opera-
tions using optimized libraries such as ATLAS, BLAS and
LAPACK. McVM implements a function versioning mech-
anism based on type specialization, which is the main driver
for generating efficient code [3].

4.1 Current Approaches
Lameed and Hendren [9] proposed two dynamic techniques
for optimizing feval instructions in McVM: JIT-based and
OSR-based specialization. Both attempt to optimize a func-
tion f that contains instructions of the form feval(g, ...),
leveraging information about g and the type of its arguments
observed at run-time. The optimization produces a special-
ized version f ′ where feval(g, x, y, z, ...) instructions are
replaced with direct calls of the form g(x, y, z, ...).

The two approaches differ in the points where code spe-
cialization is performed. In JIT-based specialization, f ′ is
generated when f is called. In contrast, the OSR-based
method interrupts f as it executes, generates a specialized
version f ′, and resumes from it.

Another technical difference, which has substantial per-
formance implications, is the representation level at which
optimization occurs in the two approaches. When a function
f is first compiled from MATLAB to IIR, and then from IIR
to IR, the functions it calls via feval are unknown and the
type inference engine is unable to infer the types of their
returned values. Hence, these values must be kept boxed
in heap-allocated objects and handled with slow generic in-
structions in the IR representation of f (suitable for handling
different types). The JIT method works on the IIR represen-
tation of f and can resort to the full power of type analysis to
infer the types of the returned values of g, turning the slow

generic instructions of f into fast type-specialized instruc-
tions in f ′. On the other hand, OSR-based specialization op-
erates on the IR representation of f , which prevents the op-
timizer from exploiting type inference. As a consequence,
for f ′ to be sound, the direct call to g must be guarded by
a condition that checks if the type of its parameters remain
the same as observed at the time when f was interrupted. If
the guard fails, or the feval target g changes, the code falls
back to executing the original feval instruction.

JIT-based specialization is less general than OSR-based
specialization, as it only works if the feval argument g is
one of the parameters of f , but is substantially faster due to
the benefits of type inference.

4.2 A New Approach
In this section, we present a new approach that combines the
flexibility of OSR-based specialization with the efficiency of
the JIT-based method, answering an open question raised by
Lameed and Hendren [9]. The key idea is to lift the f -to-
f ′ optimization performed by the OSR-based specialization
from IR to IIR level. This makes it possible to perform type
inference in f ′, generating a much more efficient code. The
main technical challenge of this idea is that the program’s
state in f at the OSR point may be incompatible with the
state of f ′ from which execution continues. Indeed, some
variables may be boxed in f and unboxed in f ′. Hence, com-
pensation code is needed to adjust the state by performing
live variable unboxing during the OSR.

Implementation in McVM. We implemented our approach
in McVM4, extending it with four main components:

1. An analysis pass to identify optimization opportunities
for feval instructions in the IIR of a function.

2. An extension for the IIR compiler to track the variable
map between IIR and IR objects at feval sites.

3. An OSR inserter based on OSRKit to inject open OSR
points in the IR for IIR locations annotated during the
analysis pass.

4. An feval optimizer triggered at OSR points, which uses:
(a) a profile-driven IIR generator to replace feval calls

with direct calls;
(b) a helper component to lower the optimized IIR func-

tion to IR and construct a state mapping;
(c) a code caching mechanism to handle the compilation

of the continuation functions.

We remark that our implementation heavily depends on OS-
RKit’s ability to handle compensation code.

Optimizer. The optimizer is called as gen function in the
open OSR stub (see Figure 3) created by the OSR inserter. It
receives the IR version f IR of function f, the basic block of

4 As a by-product of our project, we ported the MATLAB McVM virtual
machine from the LLVM legacy JIT to the new MCJIT toolkit. Our code is
available at https://github.com/dcdelia/mcvm.
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define void @odeEuler_OSR( 

  i64 %0, i64 %1, i8* %2, i8* %3, i8* %4,

  i64 %5, i8* %6, double %7,

  { i8*, i8*, i64 }* %8, i8* %9) {  

osr.entry:

  %castUNKtoMF64 = call double

      @"MatrixF64Obj::getScalarVal"(i8* %2)

  %castUNKtoMF64_2 = call double

      @"MatrixF64Obj::getScalarVal"(i8* %4)

  %envLookupFory = call i8*

      @"Environment::lookup"(i8* %9, i8* inttoptr

      (i64 32152960 to i8*))

  %10 = alloca [16 x i8]

  %11 = alloca [24 x i8]

  br label %31

Figure 9. Compensation code for odeEuler benchmark.
McVM-specific instructions are highlighted in grey.

f IR where the OSR was fired, and the native code address
of the feval target function g. As a first step, the optimizer
looks up the IR code of g by its address and checks whether
a previously compiled version of f specialized with g was
previously cached. If not, a new function f IIRopt is generated
by cloning the IIR representation f IIR of f and by replacing
all feval calls to g in f IIRopt with direct calls.

As a next step, the optimizer asks the IIR compiler to
lower f IIRopt to f IRopt. During the process, the compiler stores
the variable map between IIR and IR objects at the direct call
replacing the feval instruction that triggered the OSR.

Using this map and the one stored during the lowering
of f IIR, the optimizer constructs a state mapping between
f IR and f IRopt. In particular, for each value in f IRopt live at the
continuation block we determine whether we can assign to it
a live value passed at the OSR point, or a compensation code
is required to set its value.

Notice that, since the type inference engine yields more
accurate results for f IIRopt compared to f IIR, the IIR com-
piler can in turn generate efficient specialized IR code for
representing and manipulating IIR variables, and compensa-
tion code is typically required to unbox or downcast some of
the live values passed at the OSR point.

Once a state mapping has been constructed, the optimizer
asks OSRKit to generate the continuation function for the
OSR transition and then executes it.

An example of compensation code is reported in Figure 9.
In order to correctly resume the execution at the first instruc-
tion in basic block %31, the entrypoint of odeEuler’s con-
tinuation function executes a sequence of instructions that:
1) convert to double two live variables – i.e., function argu-
ments %2 and %4 – that are represented as boxed values in the
unoptimized function, 2) look up in McVM’s environment at
%9 the pointer to the object instantiated for the symbol de-
scription stored at address 0x32152960, and 3) allocate on
the stack two buffers of 16 and 24 bytes, respectively.

Discussion. The ideas presented in this section advance
the state of the art of feval optimization in MATLAB run-

Benchmark Description

b-trees Adaptation of a GC bench for binary trees
fannkuch Fannkuch benchmark on permutations

fasta Generation of DNA sequences
fasta-redux Generation of DNA sequences (with lookup table)

mbrot Mandelbrot set generation
n-body N-body simulation of Jovian planets

rev-comp Reverse-complement of DNA sequences
sp-norm Eigenvalue calculation with power method

Table 1. Description of the shootout benchmarks.

times. Similarly to OSR-based specialization, we do not
place restrictions on the functions that can be optimized. On
the other hand, we work at IIR (rather than IR) level as in
JIT-based specialization, which allows us to perform type
inference on the code with direct calls. Working at IIR level
eliminates the two main sources of inefficiency of OSR-
based specialization: 1) we can replace generic instructions
with specialized instructions, and 2) the types of g’s argu-
ments do not need to be cached or guarded as they are stati-
cally inferred. These observations are confirmed in practice
by experiments on benchmarks from the MATLAB commu-
nity, as we will show in Section 5.2.

5. Experimental Evaluation
In this section we present a preliminar experimental study of
OSRKit aimed at addressing the following questions:

Q1 How much does a never-firing OSR point impact code
quality? What kind of slowdown should we expect?

Q2 What is the run-time overhead of an OSR transition, for
instance to a clone of the running function?

Q3 What is the overhead of OSRKit for inserting OSR
points and creating a stub or a continuation function?

Q4 What kind of benefits can we expect by using OSR in a
production environment based on LLVM?

5.1 Benchmarks and Setup
We address questions Q1-Q3 by analyzing the performance
of OSRKit on a selection of the shootout benchmarks [7]
running in a proof-of-concept virtual machine we developed
in LLVM. In particular, we focus on single-threaded bench-
marks that do not rely on external libraries to perform their
core computations. Benchmarks and their description are re-
ported in Table 1; four of them (b-trees, mbrot, n-body
and sp-norm) are evaluated against two workloads of differ-
ent size.

We generate the IR modules for our experiments with
clang starting from the C version of the shootout suite.
To cover scenarios where OSR machinery is inserted in pro-
grams with different optimization levels, we consider two
versions: 1) unoptimized, where the only LLVM optimiza-
tion we perform is mem2reg to promote stack references to
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registers and construct the SSA form; 2) optimized, where
we apply opt -O1 to the unoptimized version.

For question Q4, we analyze the impact of the opti-
mization technique presented in Section 4.2 on the run-
ning time of a few numeric benchmarks, namely odeEuler,
odeMidpt, odeRK4, and sim anl. The first three bench-
marks [16] solve an ordinary differential equation for heat
treating simulation using the Euler, midpoint, and Range-
Kutta method, respectively; the last benchmark minimizes
the six-hump camelback function with the method of simu-
lated annealing5.

All the experiments were performed on an octa-core 2.3
Ghz Intel Xeon E5-4610 v2 with 256+256KB of L1 cache,
2MB of L2 cache, 16MB of shared L3 cache and 128 GB
of DDR3 main memory, running Debian Wheezy 7, Linux
kernel 3.2.0, LLVM 3.6.2 (Release build, compiled using gcc
4.7.2), 64 bit.

For each benchmark we analyze CPU time performing
10 trials preceded by an initial warm-up iteration; reported
confidence intervals are stated at 95% confidence level.

5.2 Results
Q1: Impact on Code Quality. In order to measure how
much a never-firing OSR point might impact code quality,
we analyzed the source-code structure of each benchmark
and profiled its run-time behavior to identify performance-
critical sections for OSR point insertion. The distinction be-
tween open and resolved OSR points is nearly irrelevant in
this context: we choose to focus on open OSR points, pass-
ing null as the val argument for the stub (see Section 3).

For iterative benchmarks, we insert an OSR point in the
body of their hottest loops. We classify a loop as hottest
when its body is executed for a very high cumulative number
of iterations (e.g., from millions up to billions) and it either
calls the method with the highest self time in the program,
or it performs the most computational-intensive operations
for the program in its own body. These loops are natural
candidates for OSR point insertion: for instance, the Jikes
RVM inserts yield points on backward branches to trigger
method recompilation through OSR or thread preemption
for garbage collection. In the shootout benchmarks, the
number of such loops is typically 1 (2 for spectral-norm).

For recursive benchmarks, we insert an OSR point in the
body of the method that accounts for the largest self execu-
tion time in the program. Such an OSR point might be useful
to trigger recompilation of the code at a higher degree of op-
timization, enabling for instance multiple levels of inlining
for non-tail-recursive functions. The only analyzed bench-
mark showing a recursive pattern is b-trees.

Results for the unoptimized and optimized versions of the
benchmarks are reported in Figure 10 and Figure 11, respec-
tively. For both scenarios we observe that the overhead is

5 http://www.mathworks.com/matlabcentral/fileexchange/

33109-simulated-annealing-optimization
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Figure 10. Q1: Impact on running time of never-firing OSR
points inserted inside hot code portions (unoptimized code).
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Figure 11. Q1: Impact on running time of never-firing OSR
points inserted inside hot code portions (optimized code).

very small, i.e., less than 1% for most benchmarks and less
than 2% in the worst case. For some benchmarks, code might
run slightly faster after OSR point insertion due to instruc-
tion cache effects. The number of times the OSR condition
is checked for each benchmark is reported in Table 2.

Q2: Overhead of OSR Transitions. Table 2 reports esti-
mates of the average cost of performing an OSR transition
to a clone of the running function. For each benchmark we
compute the time difference between the scenarios in which
an always-firing and a never-firing resolved OSR point is in-
serted in the code, respectively; we then normalize this dif-
ference against the number of fired OSR transitions.

Hot code portions for OSR point insertion have been
identified as in Q1. Depending on the characteristics of the
hot loop, we either transform its body into a separate func-
tion and instrument its entrypoint, or, when the loop calls a
method with a high self time, we insert an OSR point at the
beginning of that method.

Normalized differences reported in the table represent a
reasonable estimate of the average cost of firing an OSR
transition. Reported numbers are in the order of nanosec-
onds, and might be negative due to instruction cache effects.

Q3: OSR Machinery Generation. We now discuss the
overhead of the OSRKit library for inserting OSR machinery
in the IR of a function. Table 3 reports for each benchmark
the number of IR instructions in the instrumented function
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Unoptimized code Optimized code

Benchmark
Fired

OSRs (M)
Live

values
Avg

time (ns)
Live

values
Avg

time (ns)

b-trees 605 2 1.731 3 0.974
b-trees-large 2 690 2 1.749 3 1.423

fannkuch 399 0 1.793 0 0.621
fasta 400 2 2.335 2 2.699

fasta-redux 400 4 2.306 4 2.269
mbrot 256 15 5.016 15 3.628

mbrot-large 1 024 15 5.268 15 4.637
n-body 50 3 2.952 3 6.929

n-body-large 500 3 2.953 3 6.953
rev-comp 6 8 -10.158 8 8.267
sp-norm 1 210 2 0.772 2 -0.030

sp-norm-large 19 360 2 0.778 2 -0.003

Table 2. Cost of OSR transitions to the same function. For
each benchmark we report the number of fired OSR transi-
tions (rounded to millions), the number of live values passed
at the OSR point, and the average time for a transition.

Open OSR (µs) Resolved OSR (µs)

Insert Gen. Insert Generate f’to
Benchmark |IR| point stub point Total Avg/inst

b-trees 13 15.40 28.32 14.31 76.13 5.86
fannkuch 50 14.16 18.66 12.84 208.03 4.16

fasta 38 12.93 27.07 13.01 250.39 6.59
fasta-redux 55 13.79 23.44 9.32 258.36 4.70

mbrot 77 15.96 27.39 15.30 384.61 4.99
n-body 19 14.31 19.73 11.58 88.73 4.67

rev-comp 145 16.31 39.99 13.90 810.84 5.59
sp-norm 28 15.31 27.50 12.41 154.54 5.52

Table 3. Q3: OSR machinery insertion in optimized code.
Time measurements are expressed in microseconds. Results
for unoptimized code are very similar and thus not reported.

and the time spent in the IR manipulation. Locations for
OSR points are chosen as in Q1, and the target function is a
clone of the source function.

For open OSR points, we report the time spent in insert-
ing the OSR point in the function and in generating the stub;
both operations do not depend on the size of the function.
For resolved OSR points, we report the time spent in insert-
ing the OSR point and in generating the f’to function.

Not surprisingly, constructing a continuation function
takes longer than the other operations (i.e., up to 1 ms vs.
20-40 us), as it involves cloning and manipulating the body
of the target function and thus depends on its size: Table 3
hence comes with an additional column in which time is nor-
malized against the number of IR instructions in the target
function.

Discussion. Experimental results presented in this section
suggest that inserting an OSR point is unlikely to degrade
the quality of generated code (Q1). The time required to fire
an OSR transition is negligible (i.e., order of nanoseconds,
Q2), while the cost of OSR-point insertion and of generating

a continuation function is likely to be dominated by the cost
of its compilation (Q3). For a front-end, the choice whether
to insert an OSR point into a function for dynamic optimiza-
tion merely depends on the trade-off between the expected
benefits in terms of execution time and the overheads from
generating and JIT-compiling an optimized version of the
function; compared to these two operations, the cost of OSR-
related operations is negligible.

Base Optimized Optimized Direct
Benchmark (cached) (JIT) (cached) (by hand)

odeEuler 1.046 2.796 2.800 2.828
odeMidpt 1.014 2.645 2.660 2.685
odeRK4 1.005 2.490 2.582 2.647
sim anl 1.009 1.564 1.606 1.612

Table 4. Q4: Speedup comparison for feval optimization.

Q4: Optimizing feval in MATLAB. We report the speed-
ups enabled by our technique in Table 4, using the running
times for McVM’s feval default dispatcher as baseline. As
the dispatcher typically JIT-compiles the invoked function,
we also analyzed running times when the dispatcher calls a
previously compiled function. In the last column, we show
speed-ups from a modified version of the benchmarks in
which each feval call is replaced by hand with a direct call
to the function in use for the specific benchmark.

Unfortunately, we are unable to compute direct perfor-
mance metrics for the solution by Lameed and Hendren
since its source code has not been released. Figures in their
paper [9] show that for the very same MATLAB programs
the speed-up of the OSR-based approach is on average
within 30.1% of the speed-up of hand-coded optimization
(ranging from 9.2% to 73.9%); for the JIT-based approach,
the average grows to 84.7% (ranging from 75.7% to 96.5%).

Our optimization technique yields speed-ups that are very
close to the upper bound given from by-hand optimization;
in the worst case (odeRK4 benchmark), we observe a 94.1%
when the optimized code is generated on the fly, which be-
comes 97.5% when a cached version is available. Compared
to their OSR-based approach, the compensation entry block
is a key driver of improved performance, as the benefits
from a better type-specialized whole function body outweigh
those from performing a direct call using boxed arguments
and return values in place of the original feval.

6. Related Work
Early Approaches. OSR has been pioneered in the SELF
programming language implementations [8] to enable source-
level debugging of optimized code, which requires deopti-
mizing the code back to the original version. To reconstruct
the source-level state, the compiler generates scope descrip-
tors recording locations or values of arguments and locals.
Execution can be interrupted only at certain interrupt points
where its state is guaranteed to be consistent (i.e., method
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prologues and backward branches in loops), allowing opti-
mizations between interrupt points. SELF also implements
a deferred compilation mechanism [2] for branches that are
unlikely to occur at run-time.

Java Virtual Machines. The success of the Java language
has drawn more attention to the design and implementation
of OSR techniques, as bytecode interpreters began to work
along with JIT compilers. In the high-performance HotSpot
Server JVM [12] performance-critical methods are identified
using method-entry and backward-branches counters; when
the OSR threshold is reached, the runtime transfers the exe-
cution from the interpreter frame to an OSR frame and thus
to compiled code. Deoptimization is performed when class
loading invalidates inlining or other optimization decisions:
execution is rolled forward to a safe point, at which the na-
tive frame is converted into an interpreter frame.

The Jikes RVM uses an OSR mechanism [6] that extracts
a scope descriptor from a thread suspended at a method’s
entrypoint or backward branch, creates specialized code to
setup the stack frame for the optimized compiled code and
resumes the execution at the desired program counter. OSR
is used as part of a profile-driven deferred compilation mech-
anism. A more general solution is proposed in [18], with the
OSR implementation decoupled from program code to ease
more aggressive specializations triggered by events external
to the executing code (e.g., class loading). Execution state
information is maintained in a variable map that is incre-
mentally updated across a set of compiler optimizations.

In the Graal VM, which is centered on the principle of
speculative optimizations, the execution falls back to the
interpreter during deoptimization, while a runtime function
restores the stack frames in the interpreter using the metadata
associated with the deoptimization point [4, 5, 22].

Prospect. Prospect [20] is an LLVM-based framework for
parallelizing a sequential application. The IR is instrumented
through two LLVM passes to enable switching at run-time
between a slow and a fast variant of the code, which are
both compiled statically. Helper methods are used to save
and eventually restore registers, while stack-local variables
are put on a separate alloca stack rather than on the stack
frame so that the two variants result into similar and thus
interchangeable stack layouts.

Other Related Work. In tracing JIT compilers deoptimiza-
tion techniques are used to safely leave an optimized trace
when a guard fails. SPUR [1] is a trace-based JIT compiler
for Microsoft’s Common Intermediate Language (CIL) with
three levels of JIT-ting plus a transfer-tail JIT used to bridge
the execution from an instruction in a block generated at the
second or third level to a safe point for deoptimization to the
first JIT level. In RPython, guards are implemented as a con-
ditional jump to a trampoline that analyzes resume informa-
tion for the guard and executes compensation code to leave
the trace; resume data is compactly encoded by sharing parts

of the data structure between subsequent guards [17]. A sim-
ilar approach is used in LuaJIT, where sparse snapshots are
taken to enable state restoration when leaving a trace [13].

7. Conclusions
In this paper, we have presented an OSR framework that in-
troduces novel ideas and combines features of extant tech-
niques that no previous solution provided simultaneously.
Relevant aspects include platform independence [10], gen-
eration of highly optimized continuation functions [6], and
performing deoptimization without the need for an inter-
preter as fallback [1].

Two novel features we propose are OSR with compensa-
tion code, which allows extending the range of points where
OSR transitions can be fired, and the ability to inject OSR
points at arbitrary locations. Using these features, we have
shown how to improve the state of the art of feval opti-
mization in MATLAB virtual machines. In our implementa-
tion, encoding compensation code is currently delegated to
the front-end. Future work may investigate automatic ways
to build it for certain classes of compiler optimizations.

We have investigated the feasibility of our approach in
LLVM, showing that it is efficient in practice. We expect it
to be fully portable to other VM frameworks, as the OSR se-
mantics is encoded entirely at intermediate code level with-
out using any special LLVM feature.
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C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to Rule Them All. In Onward! 2013, pages 187–204, New
York, NY, USA, 2013. ACM.

260

http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
https://www.webkit.org/blog/3362/
https://www.webkit.org/blog/3362/
https://github.com/Sable/mcvm
https://github.com/Sable/mcvm

	Introduction
	Overview
	OSR in LLVM
	Optimizing feval in McVM
	Current Approaches
	A New Approach

	Experimental Evaluation
	Benchmarks and Setup
	Results

	Related Work
	Conclusions

