
Static Analysis of ROP Code
Daniele Cono D’Elia, Emilio Coppa, Andrea Salvati, Camil Demetrescu

Sapienza University of Rome

{delia,coppa,demetres}@diag.uniroma1.it

andrea.slvt94@gmail.com

ABSTRACT
Recent years have witnessed code reuse techniques being employed

to craft entire programs such as Jekyll apps, malware droppers, and

persistent data-only rootkits. The increased complexity observed in

such payloads calls for specific techniques and tools that can help

in their analysis. In this paper we propose novel ideas for static

analysis of ROP code and apply them to study prominent payloads

targeting theWindows platform. Unlike state-of-the-art approaches,

we do not require the ROP activation context be reproduced for the

analysis. We then propose a guessing mechanism to identify gadget

sources for payloads found in documents or over the network.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;Mal-

ware and its mitigation.

KEYWORDS
Return oriented programming, code reuse, static analysis, exploits.

ACM Reference Format:
Daniele Cono D’Elia, Emilio Coppa, Andrea Salvati, Camil Demetrescu.

2019. Static Analysis of ROP Code. In 12th European Workshop on Systems

Security (EuroSec ’19), March 25–28, 2019, Dresden, Germany. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3301417.3312494

1 INTRODUCTION
Code reuse techniques have been historically used to circumvent

system-level defenses such as Data Execution Prevention, borrow-

ing fragments from the program’s code or a library linked to it

to perform remote code execution. Return Oriented Programming

(ROP) [11] is the most prominent instance of such mechanisms.

ROP is popularly known as an exploitation technique to get

around executable-space protection mechanisms and perform shell-

code injection. However, recent years have witnessed uses of ROP

in increasingly more complex scenarios. For instance, researchers

have employed ROP to get around code review and signing mech-

anisms in iOS, building apparently innocent Jekyll apps [13] that

turn evil at a remote attacker’s command and carry out unforesee-

able malicious actions. The weaponization of CVE-2013-0641 for

Adobe Reader is the first embodiment of a ROP-only attack in a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroSec ’19, March 25–28, 2019, Dresden, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6274-0/19/03. . . $15.00

https://doi.org/10.1145/3301417.3312494

document, with a chain of unprecedented length and complexity

embedded in a PDF to bypass Adobe Sandbox without using shell-

code. ROPInjector [10] rewrites instead portions of a malware as

ROP chains for the sake of anti-virus evasion via polymorphism.

Finally, the speculation of return-oriented rootkits to bypass kernel

integrity mechanisms has become reality with Chuck [12], the first

persistent data-only malware in the form of a Linux rootkit.

The increase in complexity of ROP payloads calls for tools and

systems that can assist humans in the analysis of such sequences,

provided that existing reverse engineering approaches and resources

tailored to EIP-driven control flow are not well-suited for this goal.

To the best of our knowledge, only two works have dealt with

this problem. deRop [9] attempts to convert a ROP exploit to a

semantically equivalent shellcode that can be analyzed by existing

technologies. However, the implementation was tested against very

simple, “classic” exploits and not released. ROPMEMU [7] uses em-

ulation over a memory dump of the system, collecting, simplifying

and merging multiple traces obtained via a coarse-grained multi-

path exploration of the ROP chains of the Chuck malware. The

work sheds light on the main challenges in the analysis of complex

chains, and its implementation is available to the community.

Contributions. In this work we explore the analysis of ROP code

from a new standpoint: rather than converting ROP sequences

to simplified EIP-based representations, we identify, dissect, and

annotate code components (program points, basic blocks, branching

sequences, and API calls) at the ROP level, providing the analyst

with an overview of the inner workings of a ROP program. Other

than favoring code understanding, we believe the proposed shift

may enable new applications like retrofitting and similarity analysis

for exploits, and aid the analysis of programs obfuscated with ROP.

Our technique can be used without having to reproduce the ROP

activation context (e.g., an exploitation attack, or in the Jekyll case

a remote interaction), as only the gadget sources must be known.

We also propose algorithms to identify such sources for payloads

spotted in malicious documents or over the network.

We test our ideas on ROP payloads written for Windows, and

make a prototype implementation available to the community.

2 APPROACH
We now provide the reader with a high-level overview of our ap-

proach, followed by an in-depth discussion of each component of

the analysis. We seek for a technique that can be applied statically,

without knowing the memory context and activation sequence for

a chain or relying like ROPMEMU on a memory dump, possibly

taken in the exact moment execution first jumps into ROP code—as

a gadget may break the chain by polluting the stack once executed.

Overview. Given a ROP program and one or more PE files (e.g.,

main executable, DLLs) containing the borrowed gadgets, we use

https://doi.org/10.1145/3301417.3312494
https://doi.org/10.1145/3301417.3312494

EuroSec ’19, March 25–28, 2019, Dresden, Germany D’Elia et al.

emulation and multi-path exploration to uncover instructions and

control flows the code may exercise. A loader component populates

the emulator’s memory with the ROP payload and the executable

sections from the PE files. Memory accesses to non-code regions

are trapped and handled to attempt to fill gaps with a dynamic anal-

ysis in the exploited run-time context. Shadow copies of memory

and stack are maintained to keep track of changes and their propa-

gation. Special care is taken to identify function calls to standard

Windows components and control transfers to non-ROP code or to

dynamically generated chains (§2.1). Program points, basic blocks,

and branching machinery are identified at ROP level rather than

in a standard EIP-oriented sense, while gadgets within blocks are

annotated with tags obtained, e.g., using a constraint solver (§2.2).

We then discuss the analysis of payloads captured over the net-

work or in documents, as determining the victim application and/or

the gadget source may not be immediate in such scenarios. Lever-

aging details of the ASLR mechanism of Windows, we propose a

strategy (§2.3) for guessing PE components required by chains that

are generated at run time (e.g., using information from a leaked

pointer) or use hard-wired address (e.g., as in the Jekyll approach).

2.1 Emulation
We implement our ideas in Unicorn, a CPU emulator framework

that supports fine-grained instrumentation on different architec-

tures. Our prototype supports 32-bit Windows PE executables and

libraries, and we are planning to extend it to Linux ELF files.

We assume the analyst has got access to a ROP payload—captured

for instance by analyzing network communications or documents,

or spotted in the wild by other actors—and that knows which pro-

gram will host it, including the component(s) from which the gad-

gets are borrowed. In §2.3 we will relax the latter assumption.

Execution Context. We set up the emulator by loading the ROP

payload to an arbitrary memory area, with the stack pointer ESP

pointing to the initial part of the chain and the instruction pointer

EIP to the first gadget in it. We load code sections and headers for

each PE component referenced in gadget addresses, choosing the

right image base address to materialize them. Note also that when

gadgets are borrowed only from shared libraries we do not need to

load the PE of the host application, unless its Import Address Table

(IAT) is used by ROP code to locate API functions.

As the ROP program would run in an unnatural, skimmed ad-

dress space, we need a mechanism to identify memory accesses

that are legit in the context of a real execution and possibly mimic

pre-existing contents that are manipulated by the program
1
. We

employ a shadow memory that tracks every time an address within

an initially unmapped page is accessed in a read or write opera-

tion. We create a valid page using a page fault handler on the first

access to a region, filling its content with a marker byte, and set

up a bitmap to keep track of addresses accessed in it, as well as of

the ones seeing repeated read/write operations. In ROP code it is

common to observe irrelevant memory operations as side effects of

gadgets alongside those required by the payload’s logic, such as to

transfer data to a region just allocated by it. Maintaining a shadow

memory lets us track effects and prerequisites on memory for each

step of the execution, and is useful also for multi-path exploration.

Wemonitor execution conditions forwhich the instruction pointer

ends up in an executable region either allocated by the payload or

for which it modified the permissions (as often is the case with the

stack) to account for possible control transfers to injected code se-

quences. Conditions are dynamically updated as the chain executes

operations such as VirtualAlloc or VirtualProtect.

Function Calls. The usage of system library and system calls

in ROP code is nowadays not limited anymore to making a re-

gion executable and copying a shellcode to it. For instance, the

weaponization of CVE-2013-0641 creates and decrypts a DLL file on

disk to later load it into the host process. The authors of ROPMEMU

remark that function calls need special care as they usually take

place with the same control transfer mechanism used for gadget

chaining, i.e., as a return to the function’s entry point. They use the

distance from the first return instruction to discriminate between

gadgets and function bodies, and produce random return values for

functions with the exception of, e.g., those for allocating memory.

In our skimmed address space the invocation of functions that

belong to a loaded PE component are detected by monitoring jumps

to their prologue (we precompute function entrypoint addresses

using Nucleus [2]). However, API functions often belong to PE com-

ponents (such as Windows libraries or the Visual Studio runtime)

that may differ from the ones used as gadget sources. We devise

a strategy that can help identifying missing components of the

address space—which would be present instead in a dump—and

steer the emulation process when a call takes place:

• for functions accessed by dereferencing the IAT of a loaded

PE image, we parse the IAT at load time to identify for each

entry the DLL and the referenced function symbol (export)

within it, and rewire the target address to a non-executable

memory area, so that we can hook such calls using the han-

dler for fetch protection exceptions in the emulator;

• for function accessed via hard-wired addresses
2
, we rely on

a database of pre-computed offsets for exports of essential

Windows DLLs such as kernel32.dll, and check for matches

for the combination of export offset and valid base address;

• we complement the previous technique with a heuristic that

inspects the calling context and tries to guess the most likely

candidate based on the arguments and their order: for in-

stance, immediate 0x40 (EXECUTE_READWRITE) is typi-

cally passed as third argument to VirtualAlloc and as fourth

to VirtualProtect in many ROP payloads;

• when the previous techniques fail or multiple guesses are

available, we present the analyst with some options, includ-

ing the generation of a random return value for the call as

in the default strategy of ROPMEMU.

To handle direct invocations of system calls and exotic mecha-

nisms typical of ROP code, such as writing the ordinal to a register

and jumping halfway in Nt library wrapper of another syscall, we

use a database of system call ordinals for differentWindows version.

When a call to a commonly used function is intercepted, we

rely on models implemented as simple Unicorn plugins written

1
For instance, API addresses that the Windows loader solves and writes in the IAT. As

a direction for future work, we plan to explore symbolic execution techniques (e.g.,

[3, 5]) to account for other possibly unknown dependencies in the host program.

2
This accounts for non-randomized DLLs, functions solved by the host via GetProcAd-

dress, and chains generated by an active remote attacker as in the Jekyll architecture.

Static Analysis of ROP Code EuroSec ’19, March 25–28, 2019, Dresden, Germany

in Python to mimic the effects of the call in the context of the

emulator. In the implementation we currently support functions

for string manipulation, memory allocation, file handling, dynamic

function/DLL loading, and simple decompression schemes.

2.2 Code Analysis
Branch Identification. Reconstructing the control flow of ROP

code can be done by unraveling the chain and monitoring how ESP

varies. In particular, fall-through edges between gadgets correspond

to stack pointer modifications of a byte amount equal to the mem-

ory footprint of the source gadget, represented by its operands (i.e.,

values popped from the stack), any present padding (e.g., for ret
N instructions), and by its own address. Branches instead are nor-

mally implemented using gadgets that before reaching the return

instruction add to ESP a quantity (variable in conditional branches,

and fixed in goto-like jumps) typically read from a register.

Conditional branches are not straightforward to implement in

ROP code, as classic conditional jump instructions do not mix

well with return-oriented control transfers. For this reason, such a

branch in ROP is typically implemented in three steps:

(1) an arithmetic or logic instruction sets one or more flags in

the status register EFLAGS to reflect the semantics of the

required check (e.g., a gadget that executes neg eax sets the
carry flag CF to 1 if EAX contains 0, and to 0 otherwise);

(2) an instruction leaks one or more bits of EFLAGS to a register

or memory, having its value reflect the outcome of the com-

parison (e.g., for ECX initially set to 0, a gadget that executes

adc ecx,ecx will modify ECX to 1 if and only if CF=1);

(3) the value from the previous step is used to compute an offset

that in turn is added to ESP. Having 0 as resulting offset

implies that the branch is not taken.

We thus devise the following strategy to identify the components

of a ROP branch. For each condition flag we keep track of the last

instruction (and relative gadget) that modified it; this information

can be obtained from a disassembler like Capstone.We thenmonitor

instructions that can leak one or more condition flags to registers

or memory (e.g., adc, pushf, lahf), and for each flag we perform a

simple data flow analysis to determine which gadgets manipulate it,

following taint propagation for both registers and memory till the

instruction that adds the tainted computed offset to ESP is reached.

Multi-path Exploration. Branch identification is valuable for con-

trol flow reconstruction, but in our setting also a preparatory step

for the multi-path exploration that we use to identify possible al-

ternative control flows in a ROP program. To support this strategy,

every time we encounter an instruction that leaks condition flags

we create a snapshot of the shadowmemory and of the CPU context.

When the current control flow path reaches its end, we restart the

emulator from the snapshot and flip the condition flag(s) that taint

analysis identified as involved in the ESP offset computation.

Our multi-path exploration reconstructs an over-approximation

of the possible control flows of the program, as some branches

may not be feasible in a concrete execution, for instance if the ROP

code is obfuscated. This limitation is shared also by ROPMEMU.

We improve on the technique proposed by its authors in two ways:

we propose a simple scheme to identify the three components

of branches
3
in ROP code, and we use taint analysis to rule out

repeated paths from the analysis (i.e., we flip only flags actually

involved in a branch) which could arise from unintended side effects

or adversarial obfuscation strategies.

We plan to refine our scheme by adding symbolic execution to the

picture: we believe it could not only help ruling out some unfeasible

branches, but also provide a logical representation of the computed

conditions via the constraints collected in the exploration.

Control Flow Reconstruction. Due to the return-oriented control

transfer mechanism, standard control flow graph (CFG) reconstruc-

tion algorithms cannot be applied directly to ROP code.

For the notion of program point, which in compiler-generated

code corresponds to instruction locations, we can use the distinct

<ESP value, gadget address> pairs that the ROP payload can yield.

This choice accounts for having the same gadget used in multiple

points of the chain, and for cases where the same memory location

may see different contents as in, e.g., dynamically generated chains

or ROP unpacking mechanisms. With respect to ROP branches,

they simply are indirect branches, and multi-path emulation can

be used to reveal the targets of conditional ROP jumps.

As the emulation proceeds, we build a directed graph where

nodes represent ROP program points and edges indicate control

transfers (a fall-through or a jump sequence) between them. Trans-

fers to non-ROP code (library and system calls) are marked as nodes

of interest in the graph. The graph construction process accommo-

dates for multiple explored execution paths, as the information on

the current node (i.e., program point) is stored in the state snapshot

used by multi-path analysis, and new edges and nodes can be added

as each path gets explored. Once code analysis is complete, we

merge nodes that form sequences with single points of entry and

exit, thus assembling the ROP basic blocks of the CFG.

Annotations. Our code analysis process pursues different goals

compared to deRop and ROPMEMU, which try to convert ROP code

to a simplified EIP-based representation. The techniques and trans-

formations used in these works could still be used in our setting,

for instance to provide an additional simplified representation of

the instructions in a ROP basic block.

To assist analysts as they weasel their way through ROP code, we

augment the CFG representation with annotations on the program

semantics carried out at each step. For instance, we identify patterns

of gadgets within ROP basic blocks, and represent them as a whole

inside them. We already mentioned the highlighting of transfers to

non-ROP code, and how we identify the components in a branch

decision. We also leverage an existing analyzer component from

the BARF suite to extract—using a combination of code lifting

and verification in a constraint solver—a semantic signature of

each gadget, that is, an assembly-like description of the operation

carried out by it according to the operation category (e.g., memory

load/store, register assignment, arithmetic) it most likely falls into.

While in our analysis pipeline this is probably the less mature

component, we believe an interesting research problem lies behind

it. To the best of our knowledge, gadget analysis has largely been ex-

plored from the attacker’s perspective (i.e., finding the right gadget

for an operation), but never from a code understanding one.

3
The authors of ROPMEMU focus on pushf instructions and flip the ZF flag, as it is

the sole mechanism used to implement branches in the Chuck rootkit they analyze.

EuroSec ’19, March 25–28, 2019, Dresden, Germany D’Elia et al.

2.3 Gadget Guessing
In §2.1 we assumed that the analyst knows the application compo-

nent(s) from which the payload draws the gadgets. We now try to

relax this assumption, proposing an algorithm to identify candidate

code modules from a collection of libraries and executables from

different programs. We believe this algorithm can be useful in at

least two scenarios: one where a ROP payload is captured from

the network traffic of an organization [8], for instance as part of a

Jekyll app-based attack, and one where static inspection of a docu-

ment reveals the presence of a ROP chain, but the targeted viewer

application and/or its vulnerable version(s) are unknown.

The algorithm leverages both features of Address Space Layout

Randomization (ASLR) implementations in mainstream systems

and distinctive features of the ROP control transfer mechanism.

Popular operating systems randomize only the base address of

a code module, leaving the relative distances between gadgets in

a component unaltered. For Windows, only 256 addresses can be

used as base for the main image, while libraries are placed using

a bitmap of available memory locations within a designated area.

The image of an application is divided in consecutive pages of 64K

bytes, and the first page is loaded at a randomized base address.

Observe also that in the absence of ROP branches or function

calls, control transfers in a ROP payload are determined by ret <N>
instructions at the end of each gadget. However, both are unlikely

to be found at the very beginning of a ROP payload.

Explore. We can leverage the above observations to build Algo-

rithm 1. Procedure explore simulates the execution of a ROP chain

for a fixed number of steps using gadgets from a PE module loaded

at some base address. A helper method getGadgetDelta fetches the

ESP variation yielded by instructions in the gadget used at posi-

tion idx in the chain: intuitively, in a branchless exploration only

constant positive offsets are allowed. Note that any δret immedi-

ate for the ret instruction is added to ESP by the CPU after the

control transfer takes place, i.e., it affects idx at the next step (δ ′
ret

is updated at line 8). When a valid gadget is found for the current

choice of (PE, base address) and the resulting displacement for idx

falls within the bounds of the chain, the exploration can advance

by one step. In our experiments, a wrong choice of PE or base was

typically revealed in at most 3 steps.

The procedure is used by the two functions shown in Algorithm 2.

Depending on the characteristics of the extracted ROP payload, we

could be dealing with a chain either made of hard-coded addresses

or obtained by adding offsets to an address leaked at run time. In

both cases, we wish to identify (PE, base address) candidates that

we can fully validate using the emulation approach of §2.1.

Fixed Addresses. The first case accounts for payloads leveraging

non-randomized libraries (for instance, as in malicious documents

targeting old viewer versions, or in many PoC exploits available

online) or generated following the Jekyll approach, where a remote

attacker uses a previously leaked pointer to craft and send to the

application a payload that is consistent with the randomization

choices performed by ASLR. For non-randomized libraries, one

could use explore over the preferred base address of each DLL to

discriminate potential candidates
4
. In the general case, function

guessFixed exploits ASLR implementation details to guess the

base address. As every code page is 64K-byte long, we extract the

procedure explore(PE, chain, idx, depth, δ ′
ret
= 0):

1 while depth > 0 do
2 Gaddr ← chain[idx:idx+3]

3 ∆g-base ← Gaddr - PE.base

4 if ∆g-base < 0 or ∆g-base > PE.size return false

5 (δesp, δret)← getGadgetDelta(PE, ∆g-base)

6 idx← idx + δesp + δ ′ret
7 if δesp ≤ 0 or invalidIdx(chain, idx) return false

8 depth← depth - 1 ; δ ′
ret
← δret

9 return true

Algorithm 1: Exploration simulation for ESP modifications.

initially: results← ⟨⟩

function guessFixed(PE, chain, startIdx, depth):
1 numPages← (PE.size + 0xFFFE) » 16

2 gadgetPageAddr← chain[startIdx:startIdx+3] » 16 « 16

3 for pageIdx ∈ {0 ... numPages-1} do
4 PE.base← gadgetPageAddr - (pageIdx » 16)

5 if explore(PE, chain, startIdx, depth, 0) then
6 results← results · ⟨(PE, PE .base, 0)⟩
function guessLeak(PE, pChain, startIdx, depth):
7 base← <pick any valid base>

8 chain← applyOffset(pChain, base)

9 for RVA ∈ PE.RVAs do
10 PE.base← base - RVA

11 if explore(PE, chain, startIdx, depth, 0) then
12 results← results · ⟨(PE, base, RVA)⟩

Algorithm 2: Gadget hunting techniques.

address of the page in which the first gadget in the chain falls by

clearing the 16 LSBs of its address. As code from the considered PE

spans numPages chunks, we use the gadget page address to explore

the possible bases. Line 4 will compute base addresses such that

first gadget falls in every possible page from the first to the last.

Algorithm 1 will check the validity of subsequent gadgets falling in

different pages and rule out malformed alignments (line 4).

Leaked Pointers. The second case accounts for payloads that are

dynamically tailored to the runtime by means of a vulnerability that

leaks a pointer. This is often the case with documents embedding

code written in a scripting language (e.g., JavaScript for PDF docu-

ments, or PostScript as in the weaponization of CVE-2015-2545 for

Microsoft Office). Such code typically leaks one between the image

base, the address of the .text segment, and a function pointer,

and generates a ROP chain using the leaked pointer to compute

gadget addresses. Note that any leaked pointer can be expressed

as the sum of the PE base and the RVA (relative virtual address)

representing its distance from it. We make use of this observation

in the formulation of function guessLeak: we choose any valid

64K-aligned address to patch the chain, and attempt an exploration

by taking into account every possible RVA. The key to make it work

while patching the chain only once is to alter the PE base passed

to explore: subtracting the RVA from it (line 10) is equivalent to

generating
5
a new chain using base+RVA as leaked pointer. RVAs

for DLL exports are contained in library headers, while we rely on

Nucleus for detecting functions in executables.

4
From Windows 8 however ASLR may be enforced when relocation data is available.

5
Algebraic sums are the only operations we witnessed for patching in our experience.

Static Analysis of ROP Code EuroSec ’19, March 25–28, 2019, Dresden, Germany

Exploits Adobe Reader U3D, Audio Converter, BigAnt Server, Cas-

tripper, ComSndFTP (2), Easy File Sharing Web Server (3)

Free MP3 CD Ripper, Mini-stream RM-MP3 Converter (2),

MPlayer, NetTransport, nfsAxe [source: ExploitDB]

Documents Weaponization of CVE-2013-0641 (“number of the beast”)

Table 1: ROP payloads for testing code emulation.

Discussion. Our algorithms hinge on the assumption that a chain

in its initial portion does not make non-constant ESP modifications,

nor it rewrites itself by pushing addresses of successor gadgets
6
.

Candidate PE images are identified using code from Algorithm 2,

and false positives are eventually ruled out via full code emulation.

A minor refinement we adopt in the implementation is to consider

as exploration depth how many distinct gadgets are traversed.

In the presence of more than a few candidates to validate, we

would like to integrate gadget quality metrics [6] to prioritize chains

that when materialized on a PE image feature higher-quality gad-

gets, i.e., better suited for writing ROP payloads (for instance, in

terms of clobbered registers or unintendedmemory accesses).When

only partial matches are found or full validation reveals later gad-

get addresses outside the loaded PE, two or more images may be

involved
7
, and we repeat Algorithm 2 to fill in the blanks.

Observe that Algorithm 1 can run on program points other than

the initial. This may turn out useful for instance in exotic scenarios

where the stack pivoting hijacks ESP somewhere inside the payload

and determining the location of the initial gadget may not be easy.

Previous research has used clustering and statistical properties to

distinguish between gadget addresses and data/padding. We plan

on devising heuristics to identify likely valid program points by

inferring possible ESP variations just from the looks of the chain,

and refine the choices of idx and δ ′
ret

to be used for explore in

Algorithm 2 when trying to determine the leveraged PE image.

3 EVALUATION
We report preliminary results from an investigation of our tech-

niques over a collection of ROP payloads for Windows. To facilitate

the study of ROP techniques and subsequent research, we make

the execution setup available to the community. Our presentation

is three-pronged, following the organization of our architecture.

Code Emulation. To see to which extent the execution of ROP

code found in the wild can be carried out in our skimmed execution

setting outlined in §2.1, we consider 16 variants of exploitation

attacks against 12 vulnerable Windows applications, and the ROP-

only weaponization of CVE-2013-0641, also dubbed “number of the

beast” by the FireEye firm (Table 1). For each payload, we verify

that the actions seen in the emulator are consistent with findings

from manual analysis and public write-ups when available.

The considered exploits exercise a good deal of Windows APIs,

triggering all the function call identification heuristics from §2.1.

Invoked APIs involve mainly memory allocation/protection (using

standard functions or unusual techniques like creating an empty

file and mapping it to later overwritten executable memory) and

manipulation (to transfer a shellcode). We check that the emulation

halts when about to jump into shellcode, and verify its contents.

The analysis of the “number of the beast” weaponization was

significantly more challenging. The payload drops a second-stage

DLL and consists of a straght-line sequence of 349 gadgets that:

START

EXIT

bubble-sort
START

EXIT

matrix-multiply

Figure 1: CFG from EIP-based construction algorithm.

• calls LoadLibraryA() on 4 standard Windows DLLs (msvcr90,

crypt32, ntdll, kernel32) and solves 5 functions within them

throughout the execution using GetProcAddress();

• performs Base64-decoding of a buffer with an API of crypt32

and decompresses it using RtlDecompressBuffer() of ntdll;

• creates a temporary file and writes the DLL payload to it,

reading RVAs in msvcr90 for fopen() and fclose() from the

IAT and solving fwrite() dynamically with GetProcAddress();

• loads the dropped DLL with LoadLibraryA, then sleeps.

Our emulation mechanism could run the ROP payload in full

once we added Python models to mimic the effects of CryptString-

ToBinaryA (for Base-64 decoding) and RtlDecompressBuffer.

Code Analysis. The branchless nature of payloads from Table 1

was not adequate to test the techniques described in §2.2. We thus

discuss the ROP programs analyzed in [14] as showcases of how

ROP “leads to program logic that can be tricky to decipher”. Unfor-

tunately, we could not analyze portions of the Chuck malware as at

the time of writing the repository linked in [12] was not working.

[14] discusses four ROP programs: bubble-sort, factorial, fibonacci,

and matrix-multiply. For factorial and fibonacci, the authors show

the dynamic CFG obtained with a classic algorithm from the com-

piler literature [1], where basic block boundaries are determined by

targets of control transfer instructions. They then compare CFGs

of C programs encoding the same operations of the ROP ones with

CFGs obtained after applying their trace simplification technique.

We reconstruct EIP-based dynamic CFGs for the benchmarks,

reporting the two most complex cases in Figure 1. Due to lack of

space, we refer the reader to [14] for the graphs for factorial (18

gadget blocks, 36 edges) and fibonacci (18 gadget blocks, 32 edges);

the graphs from Figure 1 are not reported in the work.

6
We are not aware of self-modifying ROP code to date. Yet, it remains a possibility.

7
When ASLR is enforced, this is difficult: an attacker either needs multiple pointer

leaks, or has to discover the address of a module from the image contents of another.

EuroSec ’19, March 25–28, 2019, Dresden, Germany D’Elia et al.

START

EXIT

matrix-multiply
START

EXIT

START

EXIT

START

EXIT

bubble-sort factorial fibonacci

Figure 2: ROP CFG with multi-path exploration.

We then perform multi-path exploration on the programs with-

out providing any input, but relying on our branch identification

technique to reveal alternative control paths. We use <ESP value,

gadget address> pairs as program points and construct ROP basic

blocks accordingly. We present the obtained ROP CFGs in Figure 2.

Our control flow reconstruction process resulted in a ROP CFG

identical to the CFG of the C counterpart of factorial shown in [14],

while for fibonacci the graphs are very similar (our clique of two

mutually adjacent nodes corresponds to a single block with a self

loop in the C CFG). [14] does not discuss bubble-sort and matrix-

multiply, so we inspect them manually. For the former, we identify

an outer loop with an inner loop for comparisons and swaps; for the

latter, we identify three nested outer loops for indexing, and three

tight loops for multiplication implemented with addition gadgets.

Gadget Guessing. We conclude by presenting preliminary results

from applying our gadget guessing algorithms to payloads from a

collection of malicious PDFs targeting different Adobe Reader vul-

nerabilities (Table 2). ROP code here is typically laid out in memory

bymeans of a Javascript object embedded in the document. Forensic

tools such as peepdf can extract and prettify the script, as it may

be slightly obfuscated in its syntax. Such a script typically checks

the application version using the app.viewerVersion variable and
tailors the chain generation process accordingly or aborts.

We assemble a collection of candidate DLLs and plug-in files

for 9 releases of Reader (8.0, 8.3.0, 9.5.3, 10.0.7, 10.1.2, 10.1.4, 11.0.1,

17.008.30051, 18.01120038). For gadget extraction, we use ROPgadget

and ropper to look for gadgets of at most 10 bytes or 6 instructions

(the respective defaults) and yielding a constant positive ESP delta.

The chain generation process varies across the samples we con-

sider. S1 and S2 use hard-wired addresses, which hint at a non-

randomized DLL; S3 and S4 generate a chain by summing offsets to

a leaked pointer; S5 adds to every gadget in an existing chain the

difference between the leaked pointer and a value that turns out to

be the base address of the original chain.

The code for chain generation is conceptually simple: its input

dependencies may be the viewer version and/or a leaked pointer:

in our experience, their uses could easily be spotted in the code

without resorting to dataflow analyses. Once we define variables

for them, we run the code in isolation in an off-the-shelf Javascript

ID CVE PE for gadgets (version) Addresses

S1 2010-2883 icucnv34.dll (8.0, 8.3.0), icucnv36.dll (9.5.3) fixed

S2 2011-2462 icucnv36.dll (9.5.3) fixed

S3 2013-0641 AcroForm.api (10.0.7, 10.1.2) patched

S4 2013-2729 AcroRd.dll (9.5.3) patched

S5 2018-4990 EScript.api (18.01120038) patched

Table 2: PDFs and leveraged Adobe Reader components.

engine (we use V8) and retrieve the generated chain. By assigning

a valid base address as pointer value we realize the applyOffset

subroutine used in guessLeak. As for the version, we can look

at instructions that check it or try random assignments and com-

pare the output chains. S5 does not check it, so releases for which

the payload may likely work are not given away by its code. We

have been able to identify vulnerable components from our set of

versions correctly, incurring no false positives. We determine the

leaked pointer from the leveraged PE to be the address of its .text
section for S3, and its image base for S4 and S5.

For validating guessFixed on hard-coded payloads leveraging

randomized PEs, we synthesize some by rebasing exploits in Table 1

and chains in S1, S2 and S5, as Jekyll attacks for Windows have

been speculated only recently [4]. The algorithm reports the correct

PE among the components of the considered applications, while

full emulation rules out the (rather few) false positives we find.

4 CONCLUSION
We have presented novel code analysis techniques that can be

applied directly to ROP programs, discussing directions for future

work throughout the paper. Hoping that other researchers may

benefit from them, we make our code available at https://github.
com/season-lab/ropdissector/. This work is supported in part

by a grant of the Italian Presidency of the Council of Ministers.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd ed.). Addison-Wesley Longman.

[2] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-Agnostic

Function Detection in Binaries. In EuroS&P ’17. IEEE, 177–189.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.

2017. Assisting Malware Analysis with Symbolic Execution: A Case Study. In

CSCML ’17. Springer, 171–188.

[4] Pietro Borrello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2019.

The ROP Needle: Hiding Trigger-based Injection Vectors via Code Reuse. In SAC

’19. ACM, 1962–1970.

[5] Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2017. Rethinking

Pointer Reasoning in Symbolic Execution. In ASE ’17. IEEE, 613–618.

[6] Andreas Follner, Alexandre Bartel, and Eric Bodden. 2016. Analyzing the Gadgets.

In ESSoS ’16. Springer, 155–172.

[7] Mariano Graziano, Davide Balzarotti, and Alain Zidouemba. 2016. ROPMEMU:

A Framework for the Analysis of Complex Code-Reuse Attacks. In ASIA CCS ’16.

47–58.

[8] Xusheng Li, Zhisheng Hu, Yiwei Fu, Ping Chen, Minghui Zhu, and Peng Liu.

2018. ROPNN: Detection of ROP Payloads Using Deep Neural Networks. arXiv.

[9] Kangjie Lu, Dabi Zou, Weiping Wen, and Debin Gao. 2011. deRop: Removing

Return-oriented Programming from Malware. In ACSAC ’11. ACM, 363–372.

[10] Giorgos Poulios, Christoforos Ntantogian, and Christos Xenakis. 2015. ROPIn-

jector: Using Return Oriented Programming for Polymorphism and Antivirus

Evasion. Black Hat USA (2015).

[11] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. In ACM TISSEC.

[12] Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. 2014. Persistent

Data-only Malware: Function Hooks without Code. In NDSS ’14.

[13] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. 2013. Jekyll on

iOS: When Benign Apps Become Evil. In USENIX Security ’13. 559–572.

[14] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015.

A Generic Approach to Automatic Deobfuscation of Executable Code. In SP ’15.

IEEE, 674–691.

https://github.com/season-lab/ropdissector/
https://github.com/season-lab/ropdissector/

	Abstract
	1 Introduction
	2 Approach
	2.1 Emulation
	2.2 Code Analysis
	2.3 Gadget Guessing

	3 Evaluation
	4 Conclusion
	References

