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SUMMARY

Symbolic execution is a popular program analysis technique that allows seeking for bugs by reasoning over
multiple alternative execution states at once. As the number of states to explore may grow exponentially, a
symbolic executor may quickly run out of space. For instance, a memory access to a symbolic address may
potentially reference the entire address space, leading to a combinatorial explosion of the possible resulting
execution states. To cope with this issue, state-of-the-art executors either concretize symbolic addresses that
span memory intervals larger than some threshold or rely on advanced capabilities of modern SMT solvers.
Unfortunately, concretization may result in missing interesting execution states, e.g., where a bug arises,
while offloading the entire problem to constraint solvers can lead to very large query times.
In this article, we first contribute to systematizing knowledge about memory models for symbolic execution,
discussing how four mainstream symbolic executors deal with symbolic addresses. We then introduce
MEMSIGHT, a new approach to symbolic memory that reduces the need for concretization: rather than
mapping address instances to data as previous approaches do, our technique maps symbolic address
expressions to data, maintaining the possible alternative states resulting from the memory referenced by
a symbolic address in a compact, implicit form.
Experiments on prominent programs show that MEMSIGHT, which we implemented in both ANGR and
KLEE, enables the exploration of states that are unreachable for memory models that perform concretization,
and provides a performance level comparable to memory models relying on advanced solver theories.
Copyright c© 2019 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Symbolic execution is a technique for program property verification largely employed in the
software testing and security domains [1]. By taking on symbolic rather than concrete input values,
multiple execution paths can be explored at once, with each path describing the program’s behavior
for a well-defined class of inputs. Nonetheless, the number of paths to explore can be prohibitively
large, e.g., in the presence of unbounded loops. In this article, we tackle one specific problem that
may affect exploration in a symbolic executor: symbolic pointers.

As in prior works [2], we use the term symbolic pointer to refer to any symbolic expression
used during the exploration carried by a symbolic engine to reason over the memory state of the
program under analysis. In more detail, any expression with at least one non-concrete constituent
and that is used by program to perform a memory read or write operation can be regarded under
this term. Symbolic pointers may lead an executor to fork the execution, possibly generating an
extremely large number of paths. When forks are avoided or at least limited, symbolic executors
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2 L. BORZACCHIELLO

1: void bomb(char* a, unsigned char i, unsigned char j) {
2: char boom;
3: a[i] = 23;
4: if (a[j] == 23) boom = 0;
5: else boom = 1;
6: assert(!boom);
7: }

Figure 1. Motivating example: can we defuse the bomb?

must resort to either powerful solver theories or pointer concretization. Nonetheless, as we will
argue later on in the article (Section 2), these solutions may come with their own drawbacks. Before
diving into the discussion of the inner workings of different state-of-the-art solutions, we present
a motivating example that should help a reader—likely one knowledgeable regarding symbolic
execution techniques, but less familiar with the specific problem tackled in this article—understand
the complexity of handling symbolic pointers.

Figure 1 provides the code of function bomb. This function takes as inputs an array a and two
indices i and j. We assume that a can point to a large memory area, possibly the whole memory,
and we do not pose any constraint on i and j. We are interested in characterizing inputs that “defuse
the bomb”, i.e., do not trigger the assert statement. When evaluating line 3, a symbolic executor
has to alter the memory state associated with the program in order to track the effects of the write
operation a[i] = 23. However, unlike a concrete execution where a single byte would be affected
by this operation, the pointer a[i] can potentially refer to any byte in memory for a symbolic
execution. An engine would represent a[i] as the sum of two symbolic expressions. While the
index i is unconstrained and its value can only range between 0 and 255 due to its data type, the
array pointer a can span an extremely large memory region (in principle, up to 232 bytes in an x86
program and up to 248 bytes in an x86 64 program). In this scenario, tracking the effects of such
a write operation is not straightforward. Naively forking the state for each byte possibly touched
by this memory access is not feasible in practice due to the massive amount of resources that the
symbolic executor would use to keep track of these states. On the other hand, omitting to track the
effects of this memory access accurately could impact the ability of the symbolic executor to reason
properly later when evaluating the branch condition a[j] == 23 at line 4. Similar to a[i],
pointer a[j] can refer to any byte in the whole memory. Although a human can easily understand
that only when i == j holds throughout a concrete execution, the boom flag would be set to zero
and the assertion at line 5 would not trigger, a symbolic executor may fail in practice to generate
concrete inputs for indices i and j that satisfy this condition. Notice also that whenever operations
such as the ones at line 4 and line 5 are placed far apart within a program, even a human may have
trouble at pinpointing the defusing condition easily.

Contributions. In this article, we first contribute to systematizing key approaches to memory
management in symbolic execution by reviewing how four different mainstream implementations
of symbolic engines handle memory operations. Our focus is on providing representative examples
of orthogonal choices in the design space of memory models. For a more exhaustive overview of
symbolic execution tools and their underlying ideas, we refer the reader to a recent survey [1]. To
the best of our knowledge, our work provides the first attempt at casting different memory model
implementations in a common conceptual framework. Our findings come from the analysis of their
source code, and for two of them also from private conversations with their authors; hopefully, they
can shed some light on solutions that are deployed in real-world systems, and thus affect thousands
of academic researchers and software engineers that use it.

As a second main contribution of the article, our systematization of memory models inspired us
to explore a different design perspective in supporting symbolic pointer reasoning: we show how to
compactly associate values with symbolic address expressions rather than concrete addresses, and
investigate how to exploit this idea to implement a fully symbolic memory that can be effectively
used in the context of state-of-the-art symbolic executors. A crucial design goal for our approach
is that it should be general enough not only to support bug detection, but also to be valuable
in application contexts where users are interested in possible consequences of these bugs, e.g.,
understanding how they can be exploited.
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Our approach, which we call MEMSIGHT, natively accounts for merging [3, 4], a mainstream
performance enabler in symbolic executors. We integrated MEMSIGHT into the state-of-the-art
symbolic executors ANGR [5] and KLEE [6]: an experimental evaluation shows that MEMSIGHT
allows for broader state exploration on prominent benchmarks analyzed with ANGR, while it
provides valuable runtime speedups when symbolically executing real-world programs under KLEE.

A preliminary version [7] of this work appeared in the Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017), where we introduced
the main idea behind MEMSIGHT (Section 3) and presented a preliminary experimental evaluation
related to MEMSIGHT when integrated into ANGR (Section 5.1.2).

2. MEMORY MODELS

In this section, we address the main practical challenges that a memory model has to face in
a symbolic execution engine. After discussing a few core aspects of memory management in
symbolic systems, we discuss the peculiarities of the memory models used by four mainstream
symbolic execution engines, which we report as representative case studies of different orthogonal
approaches. Our goal is to systematize key concepts of previous symbolic memory models, allowing
readers to put our work into the perspective of extant approaches. Additional works related to
memory models in symbolic execution are instead discussed in Section 6.

2.1. Preliminaries

A symbolic memory model describes the approach used by a symbolic engine to handle memory
operations such as loads and stores performed by the executed program. These could be performed
with respect to a specific memory object or, in symbolic engines for low-level code, with respect to
a memory address. In this article, we focus on memory models that can deal with programs written
in languages where the programmer has unconstrained access to memory, such as C and C++. In this
context, memory accesses are often performed through the use of pointers that may potentially refer
to any part of the memory, regardless of any constraints that may result from its original source-
level data type. As a key issue, memory pointers may become symbolic during the execution of a
program: this happens whenever their value depends on the program’s input. This dependency could
be direct, as when an input concurs in the computation of the pointer address (e.g., a symbolic index
is used in an array pointer), or indirect when the pointer value depends on the choices made during
the execution due to the value of one or more inputs (e.g., the address of a dynamically allocated
block may depend on the input-dependent sizes of the previously allocated blocks in the execution).
Reasoning over symbolic pointers can be especially hard for a symbolic engine since they do not
state which memory objects—and which bytes within each memory object—may be impacted by a
memory operation. James C. King in his seminal work [8] recognized symbolic pointers as one of
the most critical issues in symbolic execution.

Reasoning with Symbolic Pointers. In this section, we discuss the core aspects of a memory
model and highlight some of the challenges that contribute at making reasoning on symbolic
pointers hard when considering real-world programs.

In general, a memory model should support a symbolic engine in two aspects:
• memory object reasoning: it should allow a symbolic engine to load and store values from a

memory object, i.e., any sequence of bytes that can hold scalar or compound values.
• memory layout reasoning: it should allow a symbolic engine to reason over the memory

layout, i.e., to identify which memory objects could be involved by a load or a store operation.
To achieve soundness in the case where a load or store accesses a symbolic address, the memory
model should be able to capture all possible objects that may be contain the address and, for each
object, all possible addresses within the object. Furthermore, the memory model should be able to
capture all possible values that could be read from or written to an object.

To better grasp the difference between memory object reasoning and memory layout reasoning,
let us consider the three examples of Figure 2. In code snippet (a), a symbolic engine needs to
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1: int data[] = {1, 2};
2: if (data[i] == 2)
3: target();

(a)

1: int a = 1, b = 2;
2: if (&a + 1 == &b)
3: target();

(b)

1: int a[] = {1}, b = 2;
2: if (a[1] == 2)
3: target();

(c)

Figure 2. Examples of: (a) reasoning on a specific memory object, (b) reasoning on the memory layout, and
(c) reasoning on the memory layout and on a memory object. Uninitialized memory is zero-filled.

reason on the content of the array data when accessing it using the symbolic index i: the function
target is invoked only if i is equal to 1. In this example, the symbolic engine is not interested
in the memory location of data and i, but just in their contents. Nonetheless, even if the memory
layout is not crucial, it still needs to correctly map each variable to its corresponding memory object.
On the other hand, code snippet (b) shows an example where a symbolic engine needs to explicitly
reason on the memory layout (regardless of the content of the pointed memory): only if b is placed
immediately after a in memory, then the function target is invoked. Lastly, code snippet (c)
combines the two aspects highlighted by the two previous fragments, featuring an example where
the symbolic engine has to reason first on the memory layout and then on the content of a memory
object: the function target is invoked only if b – whose value is equal to 2 – is placed immediately
after a in memory†.

While reasoning on the memory content is a fundamental requirement of any symbolic engine,
reasoning on the memory layout may be less crucial. For instance, a symbolic engine targeting
software testing is likely interested in detecting whether an out-of-bounds error occurs, but might
not interested in reasoning on the consequences of this error (e.g., understanding which memory
object will be accessed when the out-of-bounds memory error occurs). In other words, a symbolic
engine for software testing may be interested in detecting bugs, but not concerned with determining
how to exploit them. Conversely, memory layout reasoning may be crucial for bug exploitation
and vulnerability analysis in software security tools. Another consideration is related to the
programming language and the runtime system that the symbolic engine is targeting: there are
languages, such as Java, where the raw memory layout may be of a limited relevance for the
symbolic engine. For instance, an out-of-bounds error in Java will always throws an exception,
regardless of the memory layout chosen by the underlying JVM when placing objects in a real
execution. Nonetheless, even when the layout is of limited use, a symbolic engine still needs to
identify which memory object is impacted by a memory operation.

2.1.1. Memory Models and Constraint Solvers Constraint solvers are a key component within
symbolic execution frameworks. They allow an engine to check whether formulas involving
symbolic inputs are satisfiable under a set of path conditions. In order to query a solver, engines have
to build formulas in accordance with a specific logic. Nowadays, the majority of symbolic executors
rely on two well-known logics offered by modern SMT solvers: the theory of bitvectors (BV) and
the theory of arrays over bitvectors (ABV)‡. Before discussing how these logics make it possible
in practice for an engine to perform memory object reasoning and memory layout reasoning, we
briefly review their core aspects.

Theory of Bitvectors (BV) The BV logic handles closed quantifier-free formulas over the theory
of fixed-size bitvectors. Bitvectors allow an engine to model the precise semantics of unsigned and
signed two-complement arithmetics. As the name of the theory may suggest, a bitvector has a fixed
size—which must be declared at construction time—and can be used to represent constant bits (i.e.,
a constant bitvector) or symbolic bits (i.e., a symbolic bitvector). The former type is often used to
reason over constant data, while the latter for bits coming from an input and whose values will be
determined by querying the solver.

†For our example to be meaningful, we assume that b resides in memory rather than in a CPU register.
‡In SMT-LIB[9], the theories of bitvectors and of arrays over bitvectors are denoted as QF BV and QF ABV, respectively.
SMT-LIB is an international initiative aimed at facilitating research in Satisfiability Modulo Theories (SMT) that develops
and promotes the SMT-LIB Standard, a set of common languages that can be implemented across several SMT solvers.
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Besides traditional arithmetic and logic operations, BV supports concatenation and slicing of
bitvectors, allowing symbolic executors to merge and split them. However, a notable limitation
of the slicing operator is that slice boundaries (i.e., upper and lower bit positions) must be concrete
offsets, preventing engines from extracting bits through symbolic offsets.

To model the uncertainty on a bitvector value, If-Then-Else (ITE) expressions are offered by BV:
the expression ITE(c, vtrue, vfalse) evaluates to the bitvector vtrue when the condition c is satisfied,
or to the bitvector vfalse otherwise. A notable constraint§ imposed by this logic on ITE expressions
is that the vtrue and vfalse must have the same size.

Theory of Arrays over Bitvectors (ABV) The ABV logic extends the theory of fixed-size
bitvectors by adding reasoning capabilities over arrays [10]. As in most programming languages,
an array can be seen as a mapping between indices and values, both implemented as fixed-size
bitvectors in this logic. Differently from bitvectors, arrays can contain an unbounded number of
elements, thus allowing an engine to not fix its size at construction time. Nonetheless, when defining
an array the engine has to declare the bitvector size used for representing indices and values. Hence,
the number of elements in an array is implicitly bounded by the maximum value that the index can
assume, i.e., 2n − 1 where n is the number of bits used for representing the index type.

The ABV logic offers two main operations to deal with arrays. A STORE expression takes as
arguments an array expression A, an index IDX, and a value V, and evaluates to a new array
expression constructed starting from A by updating the mapping on the index IDX with the value
V. On the other hand, a SELECT expression takes as arguments an array expression A and an index
IDX, and evaluates to the value V mapped to the index IDX when considering the array A. In both
cases, IDX and V have to be bitvectors. To define the initial content of an array, engines can nest
STORE expressions that encode the value of each element. Since nesting several STORE expressions
can soon make array expressions very long (we discuss possible performance implications in
Section 5.2.2), some engines may prefer using assertions, i.e., expressions that constrain the initial
value of each element. In this case, the array expression is compact but the solver has to consider
possibly many additional expressions when reasoning over the array.

2.1.2. Memory Object Reasoning Memory models can naturally build on top of BV or ABV to
reason over the content of a memory object. Each memory object could be represented using a
bitvector or with an array (which in turn uses bitvectors to represent array elements).

The BV logic is well-suited for operating on bit- or byte-sized objects but it does not support
reasoning over symbolic indices when extracting bits from bitvectors. To cope with this limitation,
ITE expressions can be used by symbolic executors to conditionally describe the content of an
object. For instance, consider a memory object B made of two bytes (i.e., a 16-bits bitvector). When
dealing with a symbolic pointer IDX that could potentially refer any of the two bytes in this object, a
memory model could resort to the expression ITE(IDX == 0, B[7:0], B[15:8])meaning
that the byte resulting from the memory operation is equal to the first byte of the bitvector B if the
symbolic pointer IDX is equal to 0, or equal to the second byte of B otherwise. Notation [X:Y]
on a bitvector represents the slicing operation, extracting the bits from position Y to X . Since BV
only deals with constant numeric values and with fixed-sized bitvectors, IDX must adhere to one
of these two types. ITE expressions built following this approach have to explicitly enumerate the
values that could result from their evaluation. This may make it easier for an engine to implement
and apply rewriting rules able to compact and optimize expressions.

Since ITE expressions can soon become very lengthy in presence of pointers ranging over large
objects, several symbolic executors choose to resort to ABV instead of BV, taking advantage of the
support for array expressions. By nesting SELECT and STORE expressions, a symbolic execution
engine is able to describe the content of a memory object in a natural way across sequences of
memory accesses even when dealing with symbolic indices, without the need of building ITE
expressions. For instance, when dealing with a symbolic pointer IDX that could potentially refer to

§For instance, ITE expressions returning objects of different size could be used to support symbolic object sizes.
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6 L. BORZACCHIELLO

any byte within an object A, a memory model could construct the expression SELECT(A, IDX)
where A is an array expression and IDX a bitvector object. The array A could be an empty mapping
(i.e., A = ARRAY()), or an array expression with one or more nested STORE expressions (e.g., A
= STORE(STORE(ARRAY(), 0, 10), 1, 20)).

Most symbolic executors that build on top of the ABV logic define memory objects using arrays
that map indices chosen for simplicity as 32-bit long to 8-bit values. As a consequence, these arrays
can potentially store an extremely large number of elements. This contrasts with engines relying
only on the BV logic, where bitvectors are often sized according to the actual size of the objects that
they represent. Nonetheless, an engine can pose a limit on the maximum number of elements stored
in an array by adding constraints at query time on the highest index value. These constraints can
be changed across different queries, providing interesting opportunities for symbolic explorations
involving objects with a symbolic size.

2.1.3. Memory Layout Reasoning A fundamental component in a symbolic execution engine is the
symbolic store [4]. This is often described as a mapping between program variables and their values
that allows an engine to identify which objects are impacted by a memory operation, supporting
memory layout reasoning. However, this definition is an oversimplification that does not fit the
complexity of real-world programs.

Modern applications are typically structured as functions and object classes. To correctly tell
apart different values of local variables and parameters for different pending invocations of the same
function (think, e.g., of recursive calls), a symbolic store should incorporate the notion of activation
frame, allowing the engine to access the variable instance within the current context.

When considering low-level code, the situation becomes even worse: variables are often referred
to by a piece of code using their memory addresses, but the same locations could host different
variables throughout the execution of a program (think, e.g., of the stack). Additionally, binary code
may be generated by modern compilers in order to access only bytes of an object that are relevant for
the computation (for instance a data structure field). In other words, any information about the data
type, such as the overall size of the accessed object, is often lost during compilation. In practice, it
can be very hard to logically split the memory layout into different memory objects when analyzing
binary code since the exact boundaries between objects could be unknown at run time.

For these reasons, very different approaches for performing memory layout reasoning have been
devised by different symbolic executors. We can classify these approaches with respect to how they
treat the memory: as we will discuss in Section 2.2, some executors see the memory as a single flat
memory area, while others split it into different regions.

To track memory objects in the memory layout, regardless of how memory is partitioned, engines
may explicitly maintain a mapping between addresses and objects, or delegate this task entirely
to the solver. Maintaining full control over the symbolic store may allow an engine to identify
objects impacted by a memory operations without resorting to the solver. However, this may add
significant implementation complexity, making it hard to deal with symbolic pointers. In fact, a
mapping of addresses may not be sufficient to discriminate which regions or objects are affected by
a symbolic access, requiring an invocation of the solver. For this reason, an engine may resort to
ITE expressions to deal with uncertainty (see., e.g., Section 2.2.1) or rely on the capabilities of the
ABV logic (see, e.g., Section 2.2.3), where symbolic pointers can be modeled as symbolic indices.
However, even in the latter case, to avoid querying a solver for each memory operation, executors
often implement internal data structures to avoid interactions with the solver when no uncertainty
arises on pointers, possibly reducing the runtime overhead. Hence, the picture we get in practice is
blurred: no executor relies merely on its internal mapping to perform memory layout reasoning, and
no executor delegates this task entirely to the solver.

2.2. Case Studies

While symbolic execution is one of the most powerful techniques for analyzing the behavior of
a program, its memory management is fraught with significant practical implementation issues.
In this section, we discuss the memory models of four mainstream symbolic execution engines
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MEMORY MODELS IN SYMBOLIC EXECUTION: KEY IDEAS AND NEW THOUGHTS 7

Figure 3. Classification of the memory models implemented in ANGR, KLEE, FUZZBALL, and BINSEC
with respect to the approach adopted for memory layout reasoning (x-axis) and memory object reasoning
(y-axis). The x-axis depicts how a model devises the memory layout: flat means that the memory is treated a
single flat region, while segmented means that the model is organized as a set of distinct objects. The y-axis

depicts which logic (BV or ABV) is used to perform memory object reasoning.
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Figure 4. Memory abstractions for: BINSEC, KLEE, ANGR, and FUZZBALL.

that target programs either available in a binary format or translated into a compiler’s intermediate
representation. In particular, we consider ANGR [5], KLEE [6], BINSEC [11], and FUZZBALL [12].
These frameworks provide an interesting overview about different choices that could be made in the
design of a memory model in a symbolic engine able to deal with low-level code where symbolic
pointers can possibly refer to any part of the program memory. Throughout our discussion, we
classify them according to two aspects (see Figure 3). From one side, we consider the logic needed
by these models to support memory object reasoning. Some of them can work using the BV logic,
while others has strong requirements and rely on the ABV logic. On the other side, we also consider
how they support memory layout reasoning, e.g., whether memory is split into several segments or
conceived as a single flat memory region. The memory abstractions provided by the four considered
frameworks are depicted in Figure 4.

2.2.1. ANGR. ANGR [5] is an open-source framework for binary analysis. It lifts binary code
into the VEX intermediate language [13], thus providing an architecture-independent symbolic
execution engine. Although it can offload code execution to the Unicorn CPU emulator and it
can also be used to analyze instruction traces, ANGR can be mainly regarded as a static symbolic
executor based on the Z3 [14] constraint solver. During the DARPA Cyber Grand Challenge, ANGR
has been used as a key component within the Mechanical Phish Cyber Reasoning System [15],
proving its strong capabilities to reverse engineering and security practitioners.

ANGR represents memory objects through the use of bitvectors as shown in Figure 4 (c). The
symbolic store is maintained internally as a mapping between concrete addresses and bitvector
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8 L. BORZACCHIELLO

expressions. Whenever the memory content at an address is not constant, but depends on the value
of one or more symbolic inputs, ITE expressions are used to conditionally describe the byte content.
Since binary code may fail to provide any kind of information about the object sizes, ANGR takes the
extreme approach where each byte of memory can be seen as a distinct memory object, regardless
of the data boundaries that may have existed in the original source code. Nonetheless, memory
operations involving multiple subsequent bytes (e.g., a 4-byte load) are handled by ANGR as a
single operation for performance reasons.

For these reasons, Figure 3 places ANGR in the left bottom corner, highlighting a memory object
reasoning based on the bitvector logic (BV) and a memory layout reasoning based on a flat model.

To make the symbolic execution scale to real-world programs, ANGR trades performance for
soundness by implementing a partial memory model that closely resembles the approach originally
proposed in MAYHEM [16]. When a symbolic pointer is used within a memory operation, ANGR
queries the Z3 SMT solver for computing the maximum and minimum values that the address
can assume under the current path conditions. These values are used to evaluate how large the
memory chunk spanned by a symbolic address is. If the memory chunk is larger than one byte
(i.e., the address is symbolic and can assume multiple values) and the pointer is used within a
write operation, then the address is concretized to the maximum value it can assume¶. In other
words, symbolic pointers used in write operations are always concretized in ANGR. On the contrary,
symbolic pointers used in read operations get a different treatment. If the memory chunk spanned by
a read operation is larger than a fixed threshold†, the symbolic address is concretized considering any
valid solution returned by the SMT solver. Otherwise, ANGR asks Z3 to enumerate all the solutions
(i.e., addresses possibly touched by the read operation), constructing an ITE expression that captures
the uncertainty. Notice that, as a result of this treatment, ANGR generates ITE expressions that have
a bounded number of cases when handling a read operation, i.e., the number of cases considered by
the ITE cannot exceed the concretization threshold.

Address concretization makes evaluation for a symbolic engine easier, since possibly complex
expressions are replaced with combinations of concrete values, often reducing the solving time for
queries submitted to the SMT solver. However, this strategy sacrifices completeness for scalability.
When a symbolic pointer is concretized, the symbolic engine is possibly discarding many interesting
program states. For this reason, ANGR optionally allows a user to customize the threshold used for
read concretizations and also to treat write operations similarly to read operations. In this case, a
symbolic write address is concretized only when the spanned memory chunk is larger than another
user-defined threshold. Otherwise, ANGR asks Z3 to enumerate all the solutions and, for each valid
address, updates the mapping inside the symbolic store: a new ITE expression is constructed, which
conditionally evaluates to the new value if the symbolic address equals the address, or the previously
stored value otherwise. Although ANGR can be tuned in order to accurately deal with a write
symbolic address, it will likely not scale when the spanned memory chunk is very large. ANGR
needs to perform two expensive operations: enumerate all valid solutions through the SMT solver
and sequentially update their mapping inside the symbolic store.

A significant benefit of this memory model is that merging two memory stores is a straightforward
operation. Merging promotes scalability by allowing engines to minimize the memory overhead
needed for keeping track of similar paths. This also allows avoiding repetitive analysis work, i.e.,
different paths exploring the same piece of code can be analyzed as a single path after a merge
operation. To identify the paths to merge, ANGR integrates the veritesting merging strategy [4].

From the point of view of the memory model, it is interesting to understand how ANGR operates
when the symbolic stores of two states need to be merged. It starts by cloning one of the two states,
electing the copy as the merged state. To accurately update its symbolic store, ANGR scans the
entire address space, checking for each byte if the memory mappings in the two states differ. When

¶ANGR has been often used for finding inputs able to crash an application: concretizing an address to its maximum value
may maximize the chances of this event.
†ANGR uses a threshold equal to 1024 bytes. This value was originally proposed by MAYHEM as a reasonable trade-off
between scalability and accuracy.
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this condition is detected, the mapping in the merged state is updated with an ITE expression that
conditionally describes the memory content depending on the path constraints of two states. For
instance, given the states s1 and s2 to merge, the content at an address a in the merged state can be
updated with the expression ITE(s1.π, v1, v2) where s1.π is the set of path constraints in s1, v1 is
the byte content at address a in s1, while v2 is the byte content at address a in s2. To make the merge
operations efficient, ANGR developers have carefully designed the symbolic store in order to make
it easy to detect when two states have one or more bytes with a different content.

2.2.2. KLEE. KLEE [6] is an open-source symbolic virtual machine built on top of the LLVM
compiler infrastructure. It cannot evaluate directly binary code as done by ANGR, but evaluates
programs translated into the LLVM Intermediate Representation (IR): this makes it possible for
KLEE to potentially analyze code written for different architectures and different programming
languages. To reason over symbolic expressions, KLEE may rely on several popular SMT solvers,
such as STP [17] and Z3 [14]. Additionally, it can translate its queries into the SMT-LIB format,
supporting any solver compliant with this language. KLEE has been used in many academic and
industrial projects [18, 19], demonstrating its reliability and flexibility in many application contexts.

KLEE represents memory objects using ABV instances as illustrated in Figure 4 (b). The symbolic
store is implemented as a mapping between concrete addresses and ABV expressions. However,
differently from ANGR, which tracks in its mapping the content of each byte in memory, the
symbolic store in KLEE only takes into account base address and size for each memory object.
Since the LLVM IR representation of a program does not dictate the process memory layout‖,
KLEE uses a memory allocator to choose the base address where a memory object should be stored,
concretizing the object size when symbolic. However, since this allocator does not take into account
the memory region where the objects will be hosted in a concrete execution (e.g., stack or heap
region), KLEE reasons on a concrete layout that may not be representative of a possible layout in
a concrete execution of the program, possibly leading to false positives (uncompleteness). KLEE
uses this artificial layout merely for reasoning over object boundaries that for sake of simplicity
are mapped into a linear address space. We note that the memory layout concretization of KLEE
may introduce false negatives as well (unsoundness), e.g., if a bug is not revealed under the chosen
concrete layout. For these reasons, Figure 3 places KLEE in the right upper corner, highlighting a
memory object reasoning based on the array logic (ABV) and a memory layout reasoning that treats
the memory as a set of independent memory objects.

When a load or store operation involves a symbolic address, KLEE resorts to the SMT solver
to determine which memory objects may be impacted by the memory access. To this end, KLEE
queries it to get a valid assignment for the symbolic expression representing the pointer, evaluating
where the obtained concrete address falls within the memory layout. Given the concrete address,
KLEE determines which memory object o is affected by the memory access. It then checks whether
another object could be impacted under a different assignment of the input: KLEE queries the solver
looking for another assignment that makes the pointer fall outside the boundaries of the memory
object o. This process is repeated as long as the solver is able to provide assignments that fall
outside previously considered objects. A state is then forked for each memory object that is proven
to be affected by the symbolic pointer, constraining the pointer expression to the boundaries of the
memory object for that state. The theory of arrays is then used to reason over the effects of the
memory access within a memory object for a given state.

Besides considering valid accesses to active objects, KLEE checks also whether the pointer could
fall outside any active memory object, i.e., it checks whether an invalid memory access is possible.
Since a symbolic pointer may potentially refer any object in the memory layout, in the worst case
scenario KLEE forks n+ 1 states, where n is the number of memory objects that are active at the
time of the memory access, while the additional state is used to model the invalid access scenario.

‖For instance, the LLVM IR does not impose a relative position among memory objects allocated on the stack through
the alloca instruction, leaving this decision to the runtime system. On the other hand, binary code typically refers to
stack variables through relative offsets that are computed with respect to the stack pointer or the stack base pointer.
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A notable downside of this memory model is that merging the memory stores of two states can
be very complex. KLEE is able to correctly merge two memory stores only when they have exactly
the same memory layout, i.e., the symbolic stores are the same and only the object contents may
differ. KLEE follows a merging strategy similar to the one implemented in ANGR but at an object
granularity rather than in the full address space. In other words, if the number of memory objects
differs between the two states, or the size of a common memory object differs among the two states,
then KLEE cannot merge them since the two memory layouts cannot be easily reconciled.

2.2.3. BINSEC. BINSEC [11] is an open-source platform for formal analysis of binary codes. It
provides a dynamic symbolic execution (DSE) engine that evaluates traces recorded using dynamic
binary instrumentation [20]. Traced instructions are lifted to a custom intermediate representation,
called DBA, allowing BINSEC to support different architectures. Several solvers can be used with
this framework thanks to the support of the SMT-LIB query format. While BINSEC implements
different memory models [21], we present details of the one used by default in the DSE engine since
it adds an interesting perspective in our discussion.

As shown in Figure 4 (a), BINSEC/DSE treats the whole memory as a single ABV instance using
the theory of arrays to handle load and store operations. Each state keeps track of a single formula
that describes the content of the memory: the formula is a STORE expression that recursively keeps
track of the sequence of store operations that have been performed during the execution, starting
from the initial memory state of the program under analysis. To scale over long program executions,
BINSEC/DSE applies several optimizations and rewrite rules [22], such as read-over-write, write-
over-write, constant propagation, and memory flattening. For instance, the read-over-write rule is
used to allow BINSEC to determine the result of a SELECT operation whenever only concrete
indices are present in the expression, preventing it from submitting possibly expensive queries to the
solver. Despite these optimizations, queries generated by this memory model can be very complex,
imposing a heavy burden on the solver. However, since a DSE engine should ideally submit just a
few queries during the evaluation of an execution trace, this model may provide a reasonable trade-
off between performance and analysis accuracy. When instead considering this model within the
context of a static symbolic execution engine where multiple states are maintained in parallel, it is
not straightforward to understand how to efficiently perform state merging since the memory content
is described using a single formula, making it difficult for engines to pinpoint memory differences
in the two states.

Since BINSEC/DSE treats memory as single flat region and the theory of arrays is used to reason
over symbolic accesses, its memory model appears in the left upper corner of Figure 3.

2.2.4. FUZZBALL. FUZZBALL is an open-source framework for symbolic execution of binary
code. Its name derives from the phrase FUZZing Binaries with A Little Language, where little
language refers to the Vine intermediate language built on top of the VEX IR and used by
FUZZBALL to reason directly on binary code. The framework can directly interface with the STP
solver but, similarly to other engines, other solvers are supported via the SMT-LIB query format.

FUZZBALL splits the memory address space into different regions. Initially, a single region
is available and it is used to handle accesses over concrete addresses. Other regions are instead
dynamically created by FUZZBALL in order to deal with symbolic accesses. In particular, when a
memory access is performed, FUZZBALL analyzes the expression representing the memory address
syntactically, decomposing it into different terms, whose type can be constant base, constant offset,
symbolic variables, symbolic expressions, or ambiguous terms. For instance, a constant term within
an expression is classified as a constant offset when lower than 0x4000, or as a constant base
otherwise. Since this classification is done through pattern matching rules that are designed to
correctly classify expressions that are more likely to occur in a program, it may fail when analyzing
complex expressions, marking unexpected subexpressions as ambiguous. Depending on the result of
this classification, FUZZBALL checks whether the base address of the pointer expression is constant
and thus it can be handled by reasoning on the initial region, or the base address is symbolic or
ambiguous and FUZZBALL cannot understand which concrete memory address is possibly referred
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by this pointer. In this case, FUZZBALL checks if there exists a previously created region that is
associated to a symbolic subexpression contained within the current pointer expression. If this
happens, FUZZBALL handles the memory access by reasoning on that region, otherwise a fresh new
region is created. Note that any region that is dynamically created by FUZZBALL when evaluating a
program is not mapped to a specific concrete address. Instead, FUZZBALL associates these regions
to specific symbolic expressions. This allows it to reason on memory operations that consistently
involve the same symbolic expression. For instance, a loop referring the symbolic expression α+ i,
where α is symbolic and i is constant but changes at each iteration, would be handled reasoning
always on the same region.

When the region impacted by a memory access is identified, FUZZBALL resorts to an interesting
strategy, known as table treatment, to deal with symbolic accesses. Each region can be seen as as
mapping between concrete offsets and either concrete or symbolic values. When a symbolic store
is performed by a program, FUZZBALL behaves similarly to ANGR: for each constant offset within
the region that may be referred by the store operation, FUZZBALL updates the value associated to
the offset with an ITE expression that conditionally returns the new value if the symbolic address
matches the offset in the region, or the old value otherwise. When a load operation is performed,
FUZZBALL enumerates the offsets potentially referred by the symbolic address and recovers their
values from the region. This mapping between offsets and values is later used to generate an
expression that can be handled by a solver. If FUZZBALL is configured to use the theory of arrays,
then a new array is defined, setting its initial content based on the constructed mapping, and a
SELECT expression involving the array and the symbolic address is returned. Otherwise, relying
only on the BV logic, FUZZBALL constructs an ITE expression that returns the correct memory
content depending on the value of the offset. However, differently from ANGR, which constructs
expressions resulting in abstract syntax trees (AST) that are degenerate, FUZZBALL constructs a
balanced AST by branching the ITE expression for each bit of the symbolic address. Similarly to
the partial memory model adopted in ANGR, FUZZBALL performs table treatment only when the
memory area spanned by a symbolic pointer is less than a constant threshold. Otherwise, FUZZBALL
concretizes the symbolic address using a heuristic.

We have placed FUZZBALL in the lower right corner of Figure 3 since it views memory as
a collection of regions and exploits by default the theory of bitvectors to reason over memory
objects. Although the concept of memory regions offers an elegant solution for dealing with
symbolic pointers, this approach nonetheless does not provide a general solution to this problem.
While FUZZBALL’s memory model is not amenable to state/path merging, it does not perform
concretizations that may impact soundness.

2.2.5. Wrap-up. In the previous sections we have presented the memory models of four mainstream
symbolic execution engines. These approaches provide quite different solutions to the problem of
dealing with symbolic pointers. The theory of arrays natively supports reasoning over symbolic
indices, but makes it really hard for an engine to support state merging. Representing the whole
memory using a single array as in BINSEC/DSE can lead an executor to generate very complex
queries, preventing engines from adopting this approach in the context of static symbolic execution.
KLEE models each memory object using a distinct array, but then it has to fork the execution into
several states when a symbolic access may refer to different objects. Additionally, KLEE considers
a fixed memory layout that does not fit well when exploitation is the ultimate goal of symbolic
exploration. ANGR implements a partial memory model that can miss interesting states due to
premature concretization. While FUZZBALL provides an elegant solution for dealing with fully
symbolic accesses, reasoning simultaneously over different regions is not supported. State/path
merging is implemented in ANGR and, to some extent, in KLEE, but neither in FUZZBALL nor in
BINSEC/DSE. These different design choices are due to the fact that, although merging reduces the
number of paths/states, it may lead to more complex formulas that could slow down SMT queries.

In the next section, we present a novel memory model that does not build on top of the theory of
arrays, but can still deal with write operations involving symbolic pointers. A requirement for our
model is to support state merging as a scalability tool as discussed in [4]. Additionally, our model
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Figure 5. Symbolic execution of the bomb example of Figure 1. Expressions &a, &i, and &j denote
the concrete addresses of the corresponding variables. The bomb does not detonate only if the assert

succeeds, i.e., if v′ = 0, that is v = 23, which happens for instance if αi = αj .

should be general enough to support accurate reasoning on the memory layout, allowing users to
use it even in the context of software vulnerability detection and exploitation.

3. TECHNIQUE

To illustrate how MEMSIGHT works, we start from a simple base version and then we refine it
to make it more general and efficient in practice. We target a general setting in which a symbolic
engine maintains for each explored state a set of path constraints π reflecting path choices taken
at each branch based on the values of symbolic inputs. An SMT solver is invoked to check for
path feasibility at branch instructions and to retrieve models for symbolic values and expressions,
e.g., to apply concretization. In our formalization, data can be stored in memory through load and
store operations over expressions describing addresses. Similarly to ANGR and BINSEC/DSE,
our approach treats the memory as a single flat memory region, although it may also be used to
represent individual objects as in KLEE (Section 4.2). Unless otherwise stated, we assume that all
addresses and values are expressions over concrete and/or symbolic terms. Furthermore, an engine
may decide to merge the effects from multiple paths into one to seek for efficiency, thus requiring
that the respective memories be merged as well.

3.1. Base Version

We model our symbolic memory M as a set of tuples (e, v, t, δ), where e is an expression that
denotes an address and v is an expression that denotes the value at address e. Attribute t is the
logical time at which the tuple was created and is used by load operations to determine the latest
value written at a given address. To support a merging operation for memories, we account for a
predicate δ that captures the conditions under which the tuple is valid: δ is typically computed by
the executor in terms of diverging path constraints between the states that are to be merged.

The base version of our memory model is shown in Algorithm 1. To explain how it works,
consider again the example of Figure 1. In order to determine whether there is any bomb-defusing
input, we set up a symbolic executor to associate pointer a with symbolic value αa and indices i
and j with symbolic values αi and αj , respectively.

The program’s effects on the symbolic state are illustrated in Figure 5. To keep track of logical
time, the state includes a timer t that starts at zero. Initially, the memory M includes the address-
value mappings resulting from parameter passing. For the sake of compactness, we denote tuple
(e, v, t, δ) as e 7→ v|δ=...t=... , omitting t if t = 0, and δ if δ = true.

Memory Loading and Storing. To perform the assignment a[i] = 23, the program first loads
the values of variables a and i. A load(e) operation (Algorithm 1) builds an ITE expression that
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Algorithm 1 MEMSIGHT – base version
M := symbolic memory (initially empty)

1: function STORE(e, v):
2: t← t+ 1
3: M ←M ∪ {(e, v, t, true)}
4: end function

1: function LOAD(e):
2: v ← 0
3: for x ∈M by ascending timestamp do
4: v ← ite(e = x.e ∧ x.δ, x.v, v)
5: end for
6: return v
7: end function

t := timer (initially 0)

1: function MERGE(δ, Sother, δother, ta):
2: for {x ∈M | x.t > ta} do
3: M ←M |x.δ←x.δ∧δ
4: end for
5: for {x ∈ Sother.M | x.t > ta} do
6: x.δ ← x.δ ∧ δother
7: M ←M ∪ {x}
8: end for
9: t← max(t, Sother.t)

10: end function

attempts to match e against all addresses previously assigned in M , considering the most recent
tuples first. The “else” case of the innermost ITE accounts for uninitialized memory locations,
which for the sake of simplicity we consider set to zero by default in this base version. In our
example, load(&a) yields ite(&a = &a, αa, ite(&a = &i, αi, ite(&a = &j, αj , 0))), which can be
simplified to αa. Similarly, load(&i) yields αi. The assignment is done by a store(αa + αi, 23)
operation that adds (αa + αi, 23, 1, true), i.e., αa + αi 7→ 23|t=1, to M after updating t.

The test if (a[j]==23) performs a load(αa + αj) operation, which constructs an ITE
expression v that selects the appropriate value at address αa + αj . This is done by first matching
αa + αj against the most recent written symbolic address, i.e., αa + αi, and later considering
parameters &a, &i, and &j. The execution then forks a new state Sother = {Mother, tother} for
the “else” branch, where Mother is a clone of M and tother = t. This branch is taken iff v 6= 23.

State Merging. As the value of the boom variable depends on the taken branch, a merge
operation (Algorithm 1) reconciles the states by fusing M and Mother into M . The operation takes
four parameters: Sother and δother = (v 6= 23) are respectively the state and path condition resulting
from the “else” branch, while δ = (v = 23) is the path condition of the “then” branch that kept on
working on M ; finally, ta = 1 is the timestamp of the immediate dominator of the two branches.

The merge updates all tuples added to M since the branch point at time ta by guarding them with
the “then” branch condition δ (lines 2–3), and then adds to M all tuples added to Mother since ta
(i.e., their timestamp is higher than ta), guarding them with the “else” branch condition δother (lines
4–6). In our example, this results in having tuples &boom 7→ 1|δ=(v 6=23)

t=2 and &boom 7→ 0|δ=(v=23)
t=2

present in M after merging the states (Figure 5).
Finally, the program loads and returns the value of boom, building the (simplified) expression

v′ = ite(v = 23, 0, 1). Symbolic execution can therefore conclude that any model of v′ = 0, e.g.,
such that αi = αj , will defuse the bomb.

3.2. Refinements

In its initial naive formulation, the proposed scheme suffers from a few generality and performance
issues. We now present a number of refinements that are crucial to make MEMSIGHT effective in
practice. Algorithm 2 integrates some of these refinements, helping the reader grasp these ideas
when immersed into MEMSIGHT.

Address Range Selection. One of the main drawbacks of Algorithm 1 is that load and merge
operations need to scan the entire memory, which can be highly time and space-consuming. Observe
that it is common for a symbolic address to be constrained within a certain interval [16]. Hence, a
more effective approach is to index each tuple (e, v, t, δ) with the smallest range [a, b] that includes
all possible values e can attain (line 6 of store in Algorithm 2). The range can be computed by the
SMT solver (lines 2–3). A load(e) operation can therefore scan only those tuples whose ranges
intersect with the interval spanned by the minimum and maximum values of e (lines 2–3, 8).

One possible way to support range operations efficiently is to maintain an interval tree [23] to
allow for efficient retrieval of all stored intervals that overlap with a given one. However, we should
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keep in mind that when a branch is encountered, an executor typically clones the state along with the
associated memory. To optimize space usage, we thus propose a memory-wise paged interval tree.
We partition the address space in pages: a primary interval tree built on top of page indices holds
pointers to secondary interval trees that contain the tuples in M . Each tuple is contained in exactly
one secondary tree. The page size is empirically determined to minimize the maximum tree size in
the data structure. Both the primary and the secondary trees are maintained using a copy-on-write
strategy that minimizes the need for cloning and promotes memory sharing among different states.

Multi-Byte Load and Store. The solutions presented in this section are designed for 1-byte
memory objects. For the sake of simplicity, in our discussion we even implicitly treated αa as 1-
byte object, which is unrealistic since it represents a memory address. Multi-byte operations can
be supported by issuing separate store and load operations for individual bytes and combining
the results. For instance, a load(e,sizeof(int)) can be obtained by concatenating the values
produced by load(e), load(e+ 1), load(e+ 2), and load(e+ 3). This strategy is adopted by
several symbolic executors such as KLEE.

Concrete Memory. One crucial aspect to take into account is that the majority of memory
accesses in a symbolic exploration typically happen on concrete addresses. Capturing concrete
stores in an interval tree would result in maintaining information about many ranges of size 1.
We thus extend our representation with a concrete memory object that associates concrete addresses
with expressions representing values. Each expression is annotated with a timestamp, so it can
possibly be combined with values mapped to symbolic addresses during a load operation. For the
sake of efficiency, concrete memory can be implemented as a paged hashmap with copy-on-write
cloning for pages, similarly to ANGR’s default memory implementation.

Memory Clean-up. Algorithm 1 naively creates one tuple for every store operation. A useful
improvement is getting rid of older tuples that are no longer needed: one approach is to remove a
tuple if its address is “equivalent” to the one being written (line 5 of store in Algorithm 2), i.e.,
they lead to the same concrete address for any possible valuation of symbols.

Symbolic Uninitialized Memory. Identifying how a program may behave when accessing
uninitialized memory regions is crucial for testing and vulnerability exploitation. In our base
version, we have assumed that an uninitialized cell holds a zero value, which limits the precision of
the analysis. The load(e, v) operation of Algorithm 2 supports symbolic uninitialized memory by
performing an implicit store that assigns a new symbol to address e if e is not fully “covered” by
address expressions already in M (lines 4–6). A subtle issue is how to make sure that accessing an
uninitialized memory address consistently yields the same symbolic value over time. More precisely,
for any two load(e) = v and load(e′) = v′ operations, if γ is a valuation of symbols such that
γ |= e = e′ = x and address x is uninitialized, then γ |= v = v′. To achieve this property, we use
a tie-breaking strategy based on negative timestamps for tuples created by implicit stores. Observe
that our treatment of uninitialized memory shares similarities with how constraint solvers deal with
uninterpreted functions.

Compacting Load Expressions. Broad pointers, i.e., symbolic pointers that may range over a
large interval of the address space, often span memory regions containing zero-initialized values
or another user-defined value (e.g., when setting bytes to a constant value such as −1 to mark
invalid data). MEMSIGHT exploits this practical observation in the load primitive by compacting
ITE expressions that enumerate values in such memory regions. In particular, MEMSIGHT merges
ITE cases mapped to the same value when they refer to consecutive concrete memory addresses.
For instance, in presence of an ITE expression such as ite(e = 0x0, v, ite(e = 0x1, v, ite(e =
0x2, v, ite(e = 0x3, v, v′)))), MEMSIGHT generates an expression of the form ite(0x0 ≤ e ≤
0x3, v, v′). For this optimization to be sound, MEMSIGHT takes into account timestamps and
merging conditions, excluding cases that cannot be merged. To apply this optimization more
effectively, tuples collected from the concrete memory are sorted first by timestamp and then
by addresses. MEMSIGHT is able to generate compact ITE expressions even when multiple
regions with different values are affected by a load operation. For instance, it can optimize
an expression such as ite(e = 0x0, v, ite(e = 0x1, v, ite(e = 0x2, v′, ite(e = 0x3, v′, v′′)))) into
ite(0x0 ≤ e ≤ 0x1, v, ite(0x2 ≤ e ≤ 0x3, v′, v′′)).
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Algorithm 2 MEMSIGHT – improved version

M := symbolic memory (initially empty)
π := current path constraints in symbolic engine
t := positive timer (initially 0)
t̄ := negative timer (initially 0)
sat(ψ) , ∃γ : γ |= ψ
equiv(e, e′, π) , unsat(e 6= e′ ∧ π)

range(M,a, b) , {x ∈M |[x.a, x.b] ∩ [a, b] 6= ∅}

1: function MERGE(δ, Sother, δother, ta, t̄a):
2: for {x ∈M | x.t > ta ∨ x.t < t̄a} do
3: x.δ ← x.δ ∧ δ
4: end for
5: for {x ∈ Sother.M | x.t > ta ∨ x.t < t̄a} do
6: x.δ ← x.δ ∧ δother
7: M ←M ∪ {x}
8: end for
9: t← max(t, Sother.t)

10: t̄← min(t̄, Sother.t̄)
11: end function

1: function STORE(e, v):
2: a← min(e, π)
3: b← max(e, π)
4: t← t+ 1
5: M ←M \ {x ∈ range(M,a, b) | equiv(e, x.e, π)}
6: M ←M ∪ {(a, b, e, v, t, true)}
7: end function

1: function LOAD(e):
2: a← min(e, π)
3: b← max(e, π)
4: if sat(π ∧ (∧x∈range(M,a,b) e 6= x.e)) then
5: t̄← t̄− 1
6: M ←M ∪ {(a, b, e, new symbol, t̄, true)}
7: end if
8: v ← 0
9: for x ∈ range(M,a, b) by ascending timestamp do

10: v ← ite(e = x.e ∧ x.δ, x.v, v)
11: end for
12: return v
13: end function

This optimization proves to be extremely effective in practice when dealing with real-
world programs presenting broad pointers. Interestingly, a recent work [24] targeting KLEE has
proposed one semantics-preserving transformation for array operations that shares the spirit of our
optimization. This transformation targets constant arrays and can cope even with cases where the
same value is referred by non-consecutive indices within an array. However, their rule does not take
into account timestamps and thus cannot be adapted straightforwardly in the context of MEMSIGHT.

3.3. Discussion

Previous work [2] hinted that certain bugs can only be revealed when writes are modeled
symbolically. However, classic approaches to memory modeling may not scale. For instance,
Stephens et al. [25] remark that “a repeated read and write using the same symbolic index would
result in a quadratic increase in symbolic constraints or [...] the complexity of the stored symbolic
expressions”. Our solution offers a more compact encoding that does not ask the solver to enumerate
all matching addresses – a possibly expensive task [16] – while range intersection operations can be
offloaded to efficient data structures such as the paged interval tree.

When considering our running example of Figure 1 in the context of the standard memory models
of ANGR and KLEE the results of the symbolic exploration can differ compared to what we have
seen with MEMSIGHT. ANGR adopts a partial model that would concretize both the symbolic
write a[i] and the symbolic read a[j], as the memory &a[j] spans is large. Even when
calling-context information yields intervals of manageable size, the symbolic read a[j] would
account for each a+j address instance individually, leading the executor to find only one bomb-
defusing input, i.e., the one in which concrete address a+j equals the value chosen for a+i by the
write concretization strategy. A fully symbolic approach—i.e., a memory model implemented as in
ANGR but that avoids address concretizations by raising the read and write thresholds to an infinite
value—would instead reveal the property that all inputs in which i==j holds defuse the bomb.
Unfortunately, as we will show in Section 5, a fully symbolic memory as described above hardly
scales in practice.

On the other hand, if the pointer to array a is concrete, then KLEE quickly finds the bomb-
defusing input. However, if a is symbolic then KLEE needs to fork the execution for each
active memory object, possibly leading to poor performance. Depending on the considered current
execution state, this approach may or may not scale in practice. Nonetheless, a slightly more
sophisticated variant of the running example can get KLEE in trouble again. Consider the code
provided in Figure 6. Function bomb2 is very similar to the spirit of function bomb, except for it
handles a two-dimensional array in place of a one-dimensional array. In particular, it takes as inputs
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1: void bomb2(char ** a, unsigned char i, unsigned char j, unsigned char k) {
2: char boom;
3: a[i][k] = 23;
4: if (a[j][k] == 23) boom = 0;
5: else boom = 1;
6: assert(!boom);
7: }

Figure 6. A more sophisticated variant of the running example presented in Figure 1.

a matrix a, which is assumed to be dynamically allocated, and three symbolic indices i, j, and k.
Notice that, since the type of these indices is unsigned char, their values can range between 0
and 255. For the sake of simplicity, we assume that the matrix has been properly allocated, i.e., it
contains at least 256 rows and at least 256 columns. Similarly to the running example, we assume
that the content of each cell is initialized with the zero constant. In this scenario, the memory model
used by KLEE leads it to generate 256× 256 states. The write operation on line 3 would generate
256 states since a[i] may point to any of the rows in the matrix. Similarly, when exploring each of
the 256 states, KLEE would again fork 256 states when considering the read access on line 4 since
a[j][k] may point to any of the rows. This leads to as many as 65536 states. Although this is not
a very large number and 256 of such states can actually make the assertion fail (i.e., for each state
forked at line 3, there is one of its children at line 4 that satisfies the condition i == j), KLEE
takes more than 2 hours to generate a valid solution in the experimental setup of Section 5.1.1. In
contrast, by using MEMSIGHT in a symbolic executor that models memory as a single flat region as
discussed in Section 4.1, its efficiency mainly depends on the number of bytes previously written in
memory, allowing it to find a valid solution for this example in about 30 minutes.

4. IMPLEMENTATION

In this section, we present how we have integrated MEMSIGHT in two state-of-the-art symbolic
execution frameworks: ANGR and KLEE. The first framework is a natural choice since one of
the design goals behind our model is to support symbolic execution as a means for implementing
exploitation techniques. ANGR has proved to be worth for this goal during the DARPA Cyber Grand
Challenge, when the MechaPhish team used it to detect, patch, and exploit vulnerabilities in complex
software. The second framework is instead one of the most robust and mature symbolic execution
engines currently available to the research community. KLEE has been used in several academic as
well as industrial projects, demonstrating its effectiveness even on large programs that cannot be
currently analyzed with ANGR. KLEE ships with robust POSIX environment models and works on
the LLVM IR of a program which preserves some structural properties about the program, making
the symbolic execution simpler: for instance, the IR maintains the number of elements of statically
allocated arrays and the number of fields in a C structure along with their type. By integrating our
model into KLEE, we have the opportunity to compare our approach, that only requires the theory
of bitvectors, to a memory model that intrinsically depends on the theory of arrays.

4.1. MEMSIGHT in ANGR

We start by providing the reader with an overview of the ANGR framework, and then describe how
we have implemented MEMSIGHT within its symbolic execution engine.

ANGR. ANGR is an open-source framework, mainly written in Python, for performing binary
analysis. In Figure 7a we provide a simplified overview on the major components that constitute
ANGR. Binary code is lifted from machine code to VEX IR using the PyVEX package. The symbolic
execution engine is contained in the angr package and evaluates the VEX IR of the program under
analysis, constructing expressions over symbolic variables that can be processed by the Z3 SMT
solver using the claripy package. Finally, the CLE and archinfo packages abstract away several
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(a) (b) (c) (d)
Figure 7. ANGR: (a) framework overview and (b) symbolic state and its plugins. KLEE: (c) framework

overview and (d) interactions between the executor, the memory, and the solver layers.

low-level details of the hardware architecture and the operating system on which the binary under
analysis is supposed to run.

As discussed in Section 2.2.1, ANGR adopts a partial memory model by constructing an ITE
expression for a symbolic read if the spanned range is not too large, querying Z3 for the maximum
and minimum values for the address. If they differ at most by 1024, ANGR will ask Z3 to enumerate
all the solutions and build an ITE accordingly, otherwise it will concretize the address. Optionally,
also write accesses can be treated as symbolic, with a suggested threshold of 128 for range size.

The claripy constraint-solving wrapper implements a number of optimizations to relieve the
solver from the burden of repeated queries and improve efficiency. For scalability ANGR implements
an extended veritesting merging strategy [4] that analyzes the control flow graph to determine places
where is profitable to condense the effects of separate chunks of code using ITE constraints.

MEMSIGHT Integration. In ANGR, the symbolic state is made of different components dubbed
plugins (see Figure 7b). Each plugin takes care of one aspect of the execution state. For instance,
the POSIX plugin provides support for several interaction mechanisms available on environments
conforming to the POSIX standards, for instance for networking and file-system operations. To
integrate MEMSIGHT into ANGR, we have devised it as a plugin∗ implementing the memory
abstraction required by the symbolic engine of ANGR, so it can easily be interchanged with the
default plugin for partial memory modeling. As the abstraction explicitly accounts for a merging
primitive, strategies such as veritesting can run on top of MEMSIGHT with no extra effort required.

4.2. MEMSIGHT in KLEE

As for ANGR, we first present an overview of the KLEE framework, and then describe how we have
integrated MEMSIGHT within this symbolic execution engine.

KLEE. KLEE is an open-source symbolic virtual machine written in C++ that is able to evaluate
programs expressed in LLVM IR, which is typically obtained during the lowering phase when
compiling C, C++, and other high-level languages supported by the LLVM compiler. A simplified
overview of KLEE is provided in Figure 7c, where several key software layers are depicted.
To symbolically analyze a program, the executor evaluates the program through an LLVM IR
interpreter. When memory operations are met, the executor interacts with the memory layer. This
component (Figure 7d) is composed of two main abstractions. The Address Space is used by KLEE
to determine (resolve in KLEE terminology) which memory objects may be impacted by a memory
access. As discussed in Section 2.2.2, KLEE queries the solver to check whether a symbolic pointer
can fall within one or more memory objects that are active in the address space of the program.
For each memory object that could be affected, KLEE forks the execution and performs the load or
store operation within each state through the Object State instance associated to the memory object
of interest. The Object State abstraction takes care of constructing expressions that can later be
translated by KLEE into array expressions. When the executor needs to interact with the solver, e.g.,

∗Our prototype was tested in ANGR v5.6 and is available at: https://github.com/season-lab/memsight.
Creating it has required a substantial implementation effort due to its complex interplay with the different layers of
ANGR. Along the way, we have discovered and fixed a few subtle bugs in ANGR.
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to check the feasibility of a branch, it submits a query to the solver abstraction. This component is
composed of several software layers: the caching layer is used to reuse assignments obtained during
previous queries; the optimizer is used to simplify and rewrite expressions; the query builder is the
actual solver backend that translates a query from the KLEE format to the solver-specific format,
e.g., the Z3 builder constructs a query through the API exposed by the Z3 framework.

MEMSIGHT Integration. To integrate MEMSIGHT in KLEE, we have explored two different
approaches. Initially, we have developed a custom implementation of the Object State abstraction.
This choice closely resembles the implementation strategy adopted in the ANGR framework.
However, two drawbacks soon emerged. First, our custom implementation of the Object State
constructs ITE expression rather than array expressions. KLEE expects to materialize array items,
while in our case it has to materialize bitvectors. Although items of arrays in KLEE are in turn
bitvectors and thus this difference should not pose a severe impact, we had to intervene inside several
KLEE internals to make MEMSIGHT works as expected. Another, and possibly more important,
source of concern was related to how KLEE rewrites and optimizes array expressions, reducing
often by a significant extent the need to interact with the solver. By constructing ITE expression
rather than array expressions, our first implementation of MEMSIGHT lost the possibility to benefit
from these optimizations and rewriting rules added to KLEE over the years. Although several such
optimizations could be rewritten to work on ITE expressions, the implementation effort required to
this end was a daunting prospect.

For these reasons, we have explored a different implementation approach for integrating
MEMSIGHT into KLEE: we devised MEMSIGHT as a rewriting rule within the solver-specific query
builder component. In particular, we altered the Z3 and the STP builder in order to convert array
expressions generated by the standard implementation of the Object State into ITE expressions.
Since an array expression is expressed as a STORE expression that recursively describes the history
of the write operations performed on an array from its initial state, we were able to generate ITE
expressions for our setting by replaying these store operations on a bitvector instead of an array†.
Following this strategy, our changes impacted the internals of KLEE only for the lower layers of the
solver abstraction. In this way, we benefit from any optimizations that happen at higher layers of the
solver abstraction and more in general in the whole framework. A downside of this implementation
approach – which emerges in the experimental evaluation discussed in Section 5.2 – is that we
have added an additional rewriting pass to the builder, possibly increasing the runtime overhead for
this layer. In the remainder of this article, we only consider this second approach when discussing
the integration of MEMSIGHT in KLEE. This choice arises from experimental results on different
benchmarks that clearly showed how the performance of our first implementation strategy can be
severely harmed by the lack of several optimization and rewriting rules shipped with the standard
KLEE framework.

One relevant consideration about our implementation strategy is that we did not alter the Address
Space abstraction. In other words, our solution is affected by one of the drawbacks from the memory
model adopted by KLEE: whenever a memory access may affect different objects, our customized
variant of KLEE will still fork the execution state. There are two motivations behind our choice.
First, in order to avoid forks we should have altered large, significant portions of KLEE, and in light
of the many features hinging on them that were added over the years we were concerned that the
robustness of the exploration could have been affected. Second, by altering the memory model of
KLEE we would have lost the ability to perform a fair yet simple and meaningful comparisons
between the standard release of KLEE and our variant. Our integration strategy preserves how
KLEE reasons on the different memory objects active within the program execution, and only alters
how KLEE reasons within each memory object: standard KLEE exploits the theory of arrays, while
MEMSIGHT only requires the theory of bitvectors.

†For instance, the array expression v = SELECT(STORE(STORE(ARRAY(size=2), 0, 1), 1, 2), αx).
where αx is a symbolic input, is converted into the following replay sequence: bv = MemSight(size=2);
bv.store(0, 1); bv.store(1, 2); v = bv.load(αx);
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5. EVALUATION

Due to our choice of integrating MEMSIGHT into two symbolic executors that target different
application scenarios, the experimental evaluation of MEMSIGHT has been split into two parts.
Before we move to the presentation of the results, we would like to provide the reader with some
considerations on the scope of the two engines that motivated our choice.

Application Domains. The ability of ANGR to reason on binary code lifted to platform-agnostic
VEX IR makes it an extremely powerful, versatile tool for security researchers that exploit symbolic
execution with the ultimate goal of, e.g., finding vulnerabilities [5], bypassing authentication checks
in device firmware [26], or dissecting malware [27]. Although ANGR integrates several state-of-the-
art program analysis techniques such as veritesting [4] to improve scalability, it still struggles when
analyzing real-world programs. Also, the lack of robust environment models in ANGR makes it
really challenging to use it for software testing, even on standard UNIX tools. For instance, when
analyzing the coreutils suite with ANGR we observed a large number of false positives (i.e.,
unrealistic program behaviors) that make it hard to perform meaningful comparisons with results
obtained from other executors that use different memory models. Nonetheless, ANGR has improved
drastically during the last years and thus we believe that the situation can improve in a near future.
In light of these considerations, we focused our investigation with ANGR on binaries taken from
DARPA Cyber Grand Challenge (CGC): ANGR provides a robust support to the DECREE execution
environment adopted during this competition, allowing us to analyze several complex pieces of code
written by DARPA for this platform.

On the other hand, KLEE has been designed with the ultimate goal of performing software testing
on real-world programs. To this end, its creators have built robust environment models that make it
possible to use KLEE for testing programs written for POSIX platforms. However, KLEE cannot be
used directly for analyzing programs whose source code is not available, and it is not suitable for
exploiting, or even just finding, software vulnerabilities whose nature is strictly related to the binary
representation of a program. For instance, analyzing the consequences of a stack buffer overflow
can be quite challenging when the order of stack variables has not yet been fixed by the compiler.

5.1. ANGR

In this section we report on an investigation of the practical impact of MEMSIGHT when integrated
inside ANGR. The main goal of our discussion is to answer the following two research questions:

RQ1 How broad are the symbolic addresses used in benchmarks taken from the DARPA CGC?

RQ2 Does MEMSIGHT improve ANGR’s soundness?

5.1.1. Experimental Setup and Methodology Our experiments are based on benchmarks authored
by the Cromulence (CROMU) DARPA performer group of the CGC. Although these programs
can hardly be considered real-world, since they can run only within the DARPA Experimental
Cybersecurity Research Evaluation Environment (DECREE)∗, they have been designed by DARPA
to resemble the complexity emerging in real-world applications. Additionally, DARPA has put
significant effort in order to design applications that can effectively pose severe challenges to state-
of-the-art program analysis techniques, including symbolic execution.

Tests were conducted on a server equipped with an Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz
with 16 cores and 64 GB RAM, running Linux CentOS 6.7. We compare MEMSIGHT against three
different ANGR memory concretization strategies: 1) ANGRCONC, which concretizes all accessed
symbolic addresses, 2) ANGRPART (the default of ANGR), which concretizes all read addresses that
span ranges larger than 1024 and all written addresses, and 3) ANGRFULL, which avoids address
concretizations by raising both the read and write thresholds for concretization to an infinite value.

∗DECREE is an open source operating system extension based on a custom x86 Linux kernel that supports only 7
system calls. Its simplicity removes several implementation details of standard UNIX-based operating systems, making
DECREE ideal for computer security research.
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We symbolically execute MEMSIGHT, ANGRCONC, ANGRPART, and ANGRFULL on the
CROMU benchmarks with a budget of 2 hours and 32 GB of RAM. To characterize the breadth
of the exploration enabled by the memory model in use, we measure the number of explored paths.
To make a meaningful comparison across different memory models, in our experiments symbolic
execution explores states in rounds using a first-in-first-out strategy: a new round starts only when all
states in the previous round have been explored. Hence, at any round the set of explored paths with
some concretization strategy is always a subset of the paths that would be explored by performing
fewer concretizations. To minimize the memory consumption of ANGR, we enabled veritesting [4].
As a result, ANGR may symbolically execute multiple basic blocks, i.e., straight-line code sequences
with no branches, from the same state within a single round. Additionally, ANGR may opt to merge
some states before ending a round. For this reason, the round count should be considered just as an
indirect measure of the number of instructions explored during an experiment.

5.1.2. Experiments Table I provides an overview of several statistics that we collected when
analyzing a representative selection of benchmarks from the CROMU corpus. In particular, to shed
light on our first research question (RQ1) we selected from the CROMU set a total number of
20 programs, dividing them into three groups. The first group (rows 1-3) contains benchmarks
where we observed extremely broad pointers that lead to concretization by ANGRPART (the
default memory model in ANGR). The second group (rows 4-10) contains programs that also
show concretization events when using ANGRPART. Lastly, the third group (rows 11-20) contains
benchmarks where symbolic pointers either have not been observed or were not broad enough
to require concretization when using ANGRPART. Benchmarks have been selected to reflect the
ratios observed in preliminary analyses on the full CROMU set, with a large fraction of benchmarks
from the CROMU corpus not showing symbolic pointers that would be concretized by ANGRPART,
while only a few presented extremely broad pointers. Unfortunately, we were unable to run several
CROMU benchmarks due to internal assertion failures or errors in ANGR, so we could not obtain
reliable information on the characteristics of their memory accesses.

Columns # symbolic pointers and max range size report the total number of memory accesses
to a symbolic address with a range size larger than 1 and the maximum size of the ranges of
symbolic addresses accessed by load and store operations throughout the execution. Notice that
for benchmarks in the first group the ranges are much larger than the thresholds one can afford in
practice when using partial memory models. Column expected outcome of the exploration speculates
on what we may expect from symbolically executing these benchmarks with different memory
models. Our hypotheses are based on two considerations. First, extremely broad pointers should
demonstrate how a fully symbolic memory approach as in ANGRFULL cannot scale in practice.
Second, symbolic accesses that are concretized may lead an executor to miss some paths during the
exploration. Notice that this is not obvious, as such a path can be missed by an executor only when
the result of a pointer concretization affects the decision taken on some branch condition along it.

To address our second research question (RQ2), we first assess to what extent concretization may
restrict state explorations, possibly leading to unsoundness due to missed paths. Table II presents a
summary of our experimental comparison; its left part compares the number of distinct control flow
paths explored by the memory models we considered. To allow for a direct comparison, the snapshot
of the number of paths is taken at the same exploration round K for the same benchmark in all
memory versions. The value chosen forK is the same considered in Table I. We first observe that full
concretization (ANGRCONC) may significantly restrict the number of explorable paths, confirming
the findings reported in previous works [2, 16]. For instance, as a consequence of concretizing
symbolic pointers on the CROMU 00003 benchmark (which features symbolic loads) we lose 3566
out of 3592 paths under ANGRCONC. Overall, when considering our third group of benchmarks
(rows 11-20), half of them generates more paths when not performing concretization. The increase
of paths is observable on every benchmark of this group with at least one symbolic pointer.

When taking into account benchmarks from the second group (rows 4-10), we note that a partial
memory model (ANGRPART) does not often capture all explorable paths. Interestingly, even a
few symbolic write operations spanning small memory regions can lead programs to generate a
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Table I. Statistics on the number of concretization events and broadness (number of possibly dereferenced
distinct bytes) of symbolic pointers when considering the CROMU Cyber Grand Challenge benchmarks.

# BENCHMARK
ROUND # SYMBOLIC POINTERS

MAX RANGE SIZE
EXPECTED OUTCOME OF THE EXPLORATIONK LOAD STORE

1 CROMU 00006 316 6 24 262128 ANGRCONC and ANGRPART may miss some paths
ANGRFULL may take too long

MEMSIGHT should explore all paths
2 CROMU 00018 923 716 400 770048
3 CROMU 00038 389 7 4 65536
4 CROMU 00001 481 235 0 9

ANGRCONC and ANGRPART may miss some paths
ANGRFULL and MEMSIGHT should explore all paths

5 CROMU 00009 1534 662 8 9
6 CROMU 00014 1511 1521 0 9
7 CROMU 00024 329 1708 28 28
8 CROMU 00031 899 126 2295 56
9 CROMU 00032 643 52 576 8192
10 CROMU 00033 364 1053 1020 1020
11 CROMU 00002 773 0 0 0

ANGRCONC may miss some paths
all paths should be explored by

ANGRPART, ANGRFULL, and MEMSIGHT

12 CROMU 00003 646 52 24 0
13 CROMU 00004 9342 0 0 0
14 CROMU 00005 79754 0 0 0
15 CROMU 00008 9540 0 0 0
16 CROMU 00012 365 72 24 0
17 CROMU 00022 545 33 28 0
18 CROMU 00029 489 469 12 0
19 CROMU 00040 946 396 16 0
20 CROMU 00041 840 0 0 0

Table II. Experimental comparison between ANGRCONC, ANGRPART, ANGRFULL, and MEMSIGHT when
considering the CROMU CGC benchmarks. Round K refers to the exploration depth reported in Table I.

BENCHMARK

AT ROUND K

# PATHS
TIME MEMORY

SECS SLOWDOWN MB OVERHEAD
ANGR ANGR ANGR MEMSIGHT

ANGR ANGR ANGR MEMSIGHT
ANGR ANGR ANGR MEMSIGHTCONC PART FULL CONC PART FULL CONC PART FULL

CROMU 00006 9 31 fail 34 56 1.8 fail 10.9 222 2.0 fail 4.8
CROMU 00018 78 96 fail 383 294 1.0 fail 20.7 1195 1.0 fail 12.2
CROMU 00038 5 5 fail 127 314 0.9 fail 21.8 315 1.1 fail 42.7
CROMU 00001 1845 1845 2466 2466 2084 1.0 1.2 1.4 23821 1.0 1.3 1.3
CROMU 00009 1131 1131 1715 1715 1729 1.1 1.7 1.9 11493 1.0 2.5 2.6
CROMU 00014 2072 2072 2128 2128 4244 1.0 1.1 1.2 14213 1.0 1.2 2.0
CROMU 00024 2100 2100 2673 2673 1216 1.0 3.5 4.8 18252 1.0 1.4 1.8
CROMU 00031 299 1413 1413 1413 841 3.6 3.5 4.3 5272 5.7 5.8 5.9
CROMU 00032 3 3 53 53 57 1.0 119.9 11.6 160 1.0 28.5 21.7
CROMU 00033 508 508 539 539 1765 1.0 1.4 1.3 26110 1.0 1.1 1.2
CROMU 00002 2468 2468 2468 2468 1408 1.1 1.0 1.1 19547 1.2 1.0 1.0
CROMU 00003 26 3592 3592 3592 95 31.9 33.2 35.4 359 67.3 63.0 68.9
CROMU 00004 1 1 1 1 7194 0.9 1.0 1.0 689 1.0 1.0 1.6
CROMU 00005 1 1 1 1 6592 1.0 1.0 1.1 2378 1.0 1.0 1.0
CROMU 00008 1 1 1 1 6811 1.0 1.0 1.1 722 1.0 1.0 1.5
CROMU 00012 3524 3740 3740 3740 2463 1.1 1.2 1.5 24996 0.9 1.0 0.8
CROMU 00022 1063 1156 1156 1156 2425 1.2 1.2 1.3 16725 1.0 1.1 0.9
CROMU 00029 2142 3549 3549 3549 2461 1.6 1.7 1.8 18270 1.4 1.2 1.3
CROMU 00040 1322 2882 2882 2882 2982 2.2 2.2 2.3 16358 1.0 1.0 1.2
CROMU 00041 1316 1316 1316 1316 6569 1.0 1.0 1.1 14611 0.7 1.0 0.7

large amount of additional execution paths. For instance, ANGRPART misses more than 33% (621
out of 2466) of the paths in CROMU 0001 due to concretizations on write accesses spanning at
most 9 bytes. Nonetheless, on one benchmark (CROMU 00031) we can see how despite some
concretizations take place when using ANGRPART, no additional paths could be observed in the
experiment with ANGRFULL.

Benchmarks from the second group seem to suggest ANGR is missing several paths due to
concretization. MEMSIGHT is instead able to explore the same number of paths as ANGRFULL.
However, it is only when considering benchmarks presenting extremely broad pointers (first group,
rows 1-3) that we can appreciate the benefits given by MEMSIGHT, completing our discussion of
research question (RQ2). ANGRFULL cannot handle in practice pointers spanning large memory
regions, failing due to excessive resource requirements. In particular, even a few large write
operations were enough in our experiments to make ANGRFULL exhaust its time budget. On the
other hand, MEMSIGHT is the only memory model among the ones considered in our evaluation
that lets ANGR fully explore paths in the presence of extremely broad pointers.

The benefits from avoiding pointer concretization come however with a price. The right part of
Table II reports the slowdown (running time) and the spatial overhead (memory usage) measured
on the experiments with ANGRPART, ANGRFULL, and MEMSIGHT compared to ANGRCONC. The
attentive reader would argue that observing consistently higher running time and memory overhead
is however expected when additional paths emerge during the exploration as a consequence of
avoiding concretizations. For instance, we measured a slowdown higher than 30× and a spatial
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symbolic
store

Figure 8. Example of symbolic store excerpted from the CROMU 00006 CGC benchmark.

overhead higher than 60× on the CROMU 00003 benchmark where ANGRCONC has missed the
majority (99,3%) of paths during its exploration.

The most interesting performance comparison that we can make from the data reported in
Table II is between ANGRFULL and MEMSIGHT. In presence of symbolic pointers spanning
small memory regions, ANGRFULL is generally more efficient than MEMSIGHT. We were
not surprised since MEMSIGHT maintains additional metadata (e.g., timestamps) compared to
ANGRFULL: their storage and processing can be quite expensive in terms of memory and time
usage. However, MEMSIGHT shows its advantages when symbolic pointers become broader. For
instance, CROMU 00032 performs a few write operations with a range equal to 8192 bytes and
MEMSIGHT is considerably more efficient than ANGRFULL on it. When considering benchmarks
with extremely broad pointers (rows 1-3) MEMSIGHT is the only model that keeps their exploration
sustainable in ANGR.

5.1.3. Case Study We now discuss a real-world code example that shows how MEMSIGHT can
maintain fully symbolic addresses in a context where previous techniques are instead forced to
concretize them. CROMU 00006 is a service that produces random numbers and generates charts for
numeric data, including bar charts and sparklines. As seen in Table I, this benchmark dereferences
pointers that span very large portions of the address space. This arises for instance in function
read_data shown in Figure 8, which fills a buffer data of symbolic size datum_cnt with
values read from the input. An inspection of the x86 binary code reveals that the dynamic stack
allocation uint32 data[datum_cnt] (line 2) makes the stack pointer register esp symbolic.
Later in the code (line 6), parameter passing on stack to function read results into a symbolic store
via esp. The range of possible addresses esp can assume at that point is as large as 262,128
due to previous constraints on the maximum stack size imposed by the program. This triggers
concretization in ANGRPART, forcing the symbolic execution to reason on a buffer of fixed size†.
Since the symbolic range for esp is very large, ANGRFULL fails to produce a result due to excessive
resource consumption. In contrast, MEMSIGHT keeps esp symbolic, considering in the analysis
all possible sizes of the data buffer. As confirmed by our experiments (Table II), the ability to
consider a buffer of variable size impacts the breadth of the exploration, allowing MEMSIGHT to
push symbolic execution through states that remain hidden to ANGRPART.

5.2. KLEE

We now analyze how our integration of MEMSIGHT compares with the standard release of KLEE.
As discussed in Section 4, our implementation in KLEE does not affect the memory layout reasoning
adopted in this framework, but impacts how KLEE behaves when reasoning over a memory object.
Since KLEE uses theory of arrays to accurately support memory object reasoning, concretization
on symbolic accesses does not play a role as seen with ANGR. For this reason, differently from
Section 5.1.2, we cannot expect MEMSIGHT to explore additional paths when compared to the
standard KLEE. On the other hand, our evaluation aims at answering the following questions:

RQ1 How frequent are symbolic accesses when considering real-world programs?

†We observed that, since the stack grows downward and ANGR concretizes symbolic writes by default using the
maximum possible address, then the analysis ends up reasoning on the smallest, rather than the largest buffer size. A
segment-dependent concretization strategy would yield better results here.
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RQ2 How efficient is KLEE when using MEMSIGHT to reason over a memory object?
RQ3 How can differences in performance be explained?

5.2.1. Experimental Setup and Methodology To make a fair comparison between MEMSIGHT and
the standard memory model of KLEE, we replicated as closely as possible the experimental setup
used in a recent work targeting the KLEE framework [24]. This operation was favored by the
availability of the artifact§ associated to the original paper. In our experiments, we considered the
following benchmarks:
• bandicoot v6, a programming system with a set-based programming language;

• coreutils v6.11, a collection of programs for file, shell, and text manipulation;

• bc v1.06, an arbitrary-precision calculator that solves mathematical expressions.
Tests were conducted on a server equipped with two Intel R© Xeon R© E5-4610 v2 @ 2.30GHz with 8
cores each and 256 GB RAM, running Debian Linux 9.2. We built KLEE from the same source code
base released with the artifact, adding our patches when running KLEE with MEMSIGHT. KLEE was
executed matching the configuration combined transformation originally proposed and tested in the
paper [24]. We used STP 2.1.2 as the constraint solver [17].

To validate our experiments, as for the setup, we pursued the same strategy proposed in the
artifact [24]. In particular, we executed programs using a DFS search heuristic, a deterministic
allocator, and a fixed sandbox for file system operations. To make executions across different
memory models comparable, we fixed a number of target instructions that must be explored by
each program when running under KLEE. Our targets derive from the ones proposed in the original
artifact [24] with adjustments due to a different hardware configuration (e.g., a different CPU).
We report our targets in Table III (column instructions). To ensure that different runs of the same
benchmark executed the same instruction trace, we exploited the capabilities of KLEE to record an
instruction trace and then compared the traces across different runs to identify possible divergences.
A divergence could indicate a bug in our implementation resulting in a different program behavior.

5.2.2. Experiments Table III provides a summary of our experiments. The columns grouped under
statistics report how many load and store symbolic accesses have been detected when executing
the considered set of programs under the baseline KLEE. The numbers should help answer our
first research question (RQ1). Besides counting the number of accesses, as for the experiments
with ANGR, we measured how large were the memory regions spanned by each symbolic access,
reporting in Table III the maximum value observed during an experiment. Notice that, differently
from the experiments with ANGR, we considered an access as symbolic even when it spans a single
memory location since KLEE does not check for its range and thus treats it as symbolic.

The majority of the programs that we considered show some symbolic accesses during their
execution. When considering load operations (column symbolic load), we can see that most of them
performs a non-negligible number of accesses using pointers that are not concrete. However, only
few programs (namely bc, csplit, paste, and tsort) have at least one symbolic load operation
whose range is larger than 1024 (i.e., a threshold commonly used by partial memory models). When
considering instead symbolic write operations (column symbolic write), only 8 out of 46 programs
have at least a symbolic access. However, just half of them has at least one symbolic write operation
whose range is larger than one. Overall, symbolic accesses spanning large memory regions do not
appear to be common in the set of benchmarks that we considered, with only few notable exceptions.

The columns grouped under comparison in Table III provide the results of a performance
comparison between the standard memory model of KLEE and MEMSIGHT, shedding light on our
second research question (RQ2). For each program and for each memory model, we repeated the
experiment five times, taking the average running time and computing a 95% confidence interval.
By comparing the instruction traces recorded during different runs of the same program, we verified
that no divergence occurred, allowing us to make a meaningful comparison among runs. To make
running times easier to compare, column speedup reports the ratio between the average running time
when using KLEE with its standard memory model and the average running time with KLEE when
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Table III. Comparison between KLEE and MEMSIGHT when running the same instructions from the same
programs. Highlighted benchmarks are considered by charts available in Figure 9.

BENCHMARK
STATISTICS COMPARISON

SYMBOLIC LOAD SYMBOLIC STORE # INSTR
QUERY RUNNING TIME (SECS)

SPEEDUP# MAX RANGE # MAX RANGE TIME KLEE MEMSIGHT
[ 760 745 0 0 2062048 72.0% 36.80 ± 1.28 36.80 ± 1.28 1.00
ar 304 1021 0 0 18456 96.0% 862.20 ± 8.00 720.80 ± 7.31 1.20
as 1304 1021 0 0 3488967904 1.0% 2605.80 ± 134.70 2612.80 ± 125.47 1.00
bandicoot 903615 256 0 0 17122168 <1% 1110.40 ± 5.86 1137.00 ± 3.18 0.98
base64 91866 511 331 1 1034873341 1.0% 1519.40 ± 37.17 1519.80 ± 58.61 1.00
basename 272 509 0 0 20794661 9.0% 28.60 ± 0.54 29.20 ± 1.07 0.98
bc 658 1151 0 0 267080 90.0% 1226.20 ± 36.85 973.80 ± 12.01 1.26
comm 681 509 0 0 951360500 12.0% 1477.40 ± 38.08 1476.20 ± 31.19 1.00
csplit 10257 2041 0 0 355387987 4.0% 2842.80 ± 21.49 2840.40 ± 24.68 1.00
cxxfilt 14489 509 5233 1 70769782 87.0% 3163.60 ± 198.55 2710.00 ± 110.71 1.17
dircolors 673 511 0 0 740772634 1.0% 1426.00 ± 22.04 1399.00 ± 15.12 1.02
dirname 952 509 0 0 14097923 13.0% 22.20 ± 0.82 21.80 ± 0.82 1.02
elfedit 7563 509 0 0 2146961 14.0% 1277.00 ± 3.53 1275.60 ± 1.78 1.00
env 0 0 4610 2 3796866887 <1% 3254.40 ± 160.73 3259.00 ± 114.89 1.00
expand 209359 511 0 0 1188404283 17.0% 2801.20 ± 48.57 2805.60 ± 42.32 1.00
expr 12126 19 0 0 36734777 81.0% 211.20 ± 2.12 220.20 ± 1.89 0.96
factor 14866 511 0 0 209953760 33.0% 508.40 ± 6.88 514.40 ± 10.77 0.99
fmt 5666 511 0 0 123867149 5.0% 463.40 ± 2.36 464.60 ± 4.42 1.00
fold 0 0 0 0 1298980327 <1% 1640.00 ± 63.49 1600.80 ± 29.26 1.02
id 274 509 0 0 3312410730 <1% 2921.40 ± 104.60 2701.60 ± 59.29 1.08
join 190164 511 0 0 2050775816 7.0% 2906.20 ± 53.17 2786.00 ± 79.42 1.04
link 62500 509 0 0 352800856 <1% 1374.80 ± 9.26 1374.40 ± 12.86 1.00
ln 66590 509 15 1 1560875063 1.0% 1768.40 ± 37.80 1784.00 ± 25.70 0.99
logname 9258 509 0 0 113008072 <1% 1679.20 ± 24.84 1668.20 ± 9.56 1.01
mkfifo 11571 509 0 0 173858572 1.0% 268.00 ± 9.19 269.60 ± 4.42 0.99
mknod 15235 509 0 0 177406898 32.0% 644.20 ± 11.07 625.40 ± 5.99 1.03
nice 8674 511 0 0 31381687 88.0% 1874.00 ± 59.53 2925.40 ± 45.52 0.64
nm-new 160 511 3011 97 410382622 43.0% 507.80 ± 8.00 508.20 ± 15.61 1.00
objcopy 718 511 5745 97 1201202143 63.0% 2504.20 ± 127.30 2371.00 ± 162.54 1.06
od 6358 511 63 1 112411438 68.0% 832.20 ± 17.01 861.40 ± 14.63 0.97
paste 460457 225001 0 0 1739528644 <1% 2968.60 ± 62.48 2945.20 ± 71.82 1.01
readelf 7470 509 0 0 2290974 15.0% 1212.20 ± 5.34 1214.20 ± 5.30 1.00
readlink 274 509 0 0 1691286445 <1% 1885.40 ± 72.24 1859.40 ± 65.24 1.01
rmdir 27327 509 0 0 335183764 <1% 517.00 ± 6.08 522.40 ± 11.29 0.99
seq 7491 509 216 1 44348415 87.0% 1252.20 ± 39.97 852.80 ± 12.31 1.47
setuidgid 9573 511 0 0 120234190 1.0% 1655.40 ± 14.25 1670.00 ± 7.84 0.99
sleep 24443 509 0 0 292909689 1.0% 496.80 ± 9.56 510.00 ± 9.37 0.97
strip-new 329 511 3043 97 458212770 54.0% 784.80 ± 48.87 629.00 ± 52.91 1.25
stty 320569 511 0 0 598834807 1.0% 2943.00 ± 35.25 2883.60 ± 14.92 1.02
tr 15399 509 3869 255 89174737 41.0% 2062.80 ± 8.36 1478.80 ± 11.25 1.39
tsort 2345 140733033363337 0 0 6001673 94.0% 1137.80 ± 8.27 647.80 ± 9.83 1.76
tty 3143 509 0 0 740978348 1.0% 1418.40 ± 29.14 1403.60 ± 25.11 1.01
unexpand 65320 511 0 0 466186749 2.0% 946.00 ± 12.53 947.20 ± 11.16 1.00
users 1778 509 0 0 21790095 10.0% 32.00 ± 0.98 32.00 ± 0.98 1.00
wc 198146 511 0 0 904608440 <1% 1431.20 ± 48.93 1414.20 ± 19.44 1.01
whoami 9213 509 0 0 112545932 <1% 1624.60 ± 17.73 1627.40 ± 14.71 1.00

using MEMSIGHT. A speedup larger than 1.0 means that MEMSIGHT made the execution under
KLEE faster, while a speedup smaller than 1.0 indicates a slower execution with MEMSIGHT with
respect to the standard memory model of KLEE.

Only 8 out of 46 programs show a speedup that significantly deviates from 1.0 (bold values
in the last column of Table III). The largest speedup (1.76) has been measured on tsort.
Interestingly, this is the program where we observed the pointer spanning the largest memory region
(140,733,033,363,337 bytes) across all the benchmarks. Similarly, the third largest speedup has
been measured on the program tr that performs several store operations using pointers spanning
a memory region of size 255 bytes, which is the largest one measured in our experiments when
considering write accesses. In the same way, the positive performance impacts observed on the
programs ar, bc, cxxfilt, seq, and strip-new may result from the symbolic accesses that
take place during their executions. On the other hand, the nice program appear to be negatively
affected by MEMSIGHT, resulting in a speedup equal to 0.64, i.e., a 36% slowdown during its
execution. Other apparently unexpected results emerge also when considering benchmarks that
perform symbolic accesses but do not seem to benefit from the use of MEMSIGHT.

To explain these results – thus tackling our third research question (RQ3) – we have to consider
other factors that play a crucial role in the running time of a program when analyzed symbolically. A
first key element is the time spent by KLEE querying the constraint solver during an experiment. If
this time is rather small, then even in presence of symbolic accesses we cannot expect MEMSIGHT
to impact the performance of KLEE significantly. Our implementation of MEMSIGHT inside KLEE
works by rewriting queries submitted to the solver. Column query time in Table III provides an
overview of the cumulative query time measured during our experiments when using the baseline
KLEE. 30 out of 46 programs spent less than 20% of their running time querying the constraint solver
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Figure 9. Analysis of the running time required to run queries generated by KLEE when symbolically
analyzing programs highlighted in Table III.

when running under KLEE. For instance, although we observed a large number of accesses spanning
large memory regions in paste, the query time during the experiment involving this program has
been less than 1%, making really hard for MEMSIGHT to make any practical difference.

Taking into account the cumulative time spent querying the solver is not enough to explain the
results for some of the benchmarks. For this reason, we decided to perform an additional experiment,
where we focused our analysis on the time required for executing each specific query generated
by KLEE. Unfortunately, we could not just measure the running time of each query during our
experiments and then compare their running times when using different memory models. Since
MEMSIGHT is generating queries for the backend solver that may differ from the ones generated
by the standard memory model of KLEE, during an experiment we could get slightly different yet
valid solutions depending on the memory model in use. Since the caching layer of KLEE may
reuse solutions from previous queries to solve subsequent queries, several queries recorded with
one memory model were not submitted to the solver when using another memory model, making
any kind of comparison troublesome. Nonetheless, disabling the caching layer would have presented
unrealistic performance results that could not be experienced in practice by any real user adopting a
reasonable configuration for KLEE.

For this reason, we opted to execute KLEE with the caching layer enabled when generating results
in Table III, and then perform an offline running-time analysis of the queries. In particular, we first
recorded the queries submitted to the solver when running KLEE with its standard memory model.
Given this fixed set of queries, we then used kleaver (a tool shipped with KLEE) to rerun them
in isolation disabling any caching layer and reducing other runtime factors that could affect their
execution when performed under KLEE. We repeated each query 10 times, measuring the average
running time when using the standard STP solver backend of KLEE and then using MEMSIGHT.
For the sake of simplicity, in the remainder of this section we refer to the standard STP backend
of KLEE using the name KLEE, while MEMSIGHT is used to refer to the STP backend based on
MEMSIGHT. Figure 9 provides the results of our analysis for the 8 programs highlighted in Table III.
For each program, we partition the queries into six bins depending on their average running time
when executed under KLEE. For each bin we report cumulative running times for the queries that
fall into it when executed with KLEE, and for the same queries when executed with MEMSIGHT.
The number of queries falling within each bin is shown under its label (x axis).

Overall, a trend seems to emerge in most charts: MEMSIGHT provides a positive performance
impact for queries falling inside the partitions associated to larger query times, while the baseline
KLEE is more efficient when we consider bins related to faster queries. Let us consider the
strip-new benchmark: the 730 queries falling in the partition [0.1, 1) seconds are faster when
using MEMSIGHT instead of KLEE; on the other hand, the 4074 queries from partition [0.01, 0.1)
are slower with MEMSIGHT than with KLEE. Nonetheless, if we sum the cumulative times among
the partitions we may understand why a 1.25 speedup was observed for strip-new in Table III.
Observe that in doing so we might miss possible benefits from some optimizations in the caching
layer, for instance when a solution for a query works also for similar queries.
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When focusing on the nice program, although MEMSIGHT is faster at executing queries in
the partition [0.01, 0.1) seconds, it is significantly slower on queries falling in the partition [0.001,
0.01) seconds. As for strip-new, if we sum up the cumulative times across different bins, we
get a possible explanation for the 36% slowdown reported in Table III. When considering the
nm-new program, the chart may suggest an overall positive performance impact of MEMSIGHT
when running this program under KLEE which however was not observed in Table III, where the
measured speedup was negligible. We believe that optimizations from the caching layer in this case
may have affected the number and type of queries submitted to the solver during that experiment
when using MEMSIGHT instead of standard KLEE. On other benchmarks (such as for the od
program) where the slowdown is negligible even if there are symbolic accesses and the cumulative
query time is significant, the impact of MEMSIGHT was limited since most of the query time is
spent in fast queries where our solution appears to be slower than standard KLEE.

Discussion. A first natural question that may arise at this point is why MEMSIGHT appears to
perform worse on fast queries when compared to standard KLEE. The answer to this question is
related to our way of integrating MEMSIGHT into KLEE. As mentioned in Section 4, MEMSIGHT
operates in KLEE by rewriting queries inside the backend solver. This additional pass can add an
overhead that is not amortized when the original queries generated by KLEE are solved very quickly
by the solver. To avoid this overhead, we should have implemented MEMSIGHT inside the Object
State abstraction. However, this would have required us to rewrite also the optimizer layer of KLEE.
Although our prototype incurs a performance penalty because of this decision, we believe that an
implementation strategy that limits the code changes to the solver backend would more easily allow
MEMSIGHT to be integrated in the main KLEE codebase in the near future.

On the contrary, we asked ourselves why MEMSIGHT appears to perform better on queries that
required a large solving time under standard KLEE. To answer this question we tried to analyze the
type of queries that are submitted to the solver. Since several of them involve arrays whose initial
content is constant, we focused our attention on how KLEE handles them. When defining this kind
of arrays within a query, KLEE generates a nested STORE expression that can be quite deep if the
size of the array is considerable. Interestingly, while we were performing this investigation (months
after we finished implementing our prototype), the developers of KLEE discovered and patched
“a massive performance issue with constant arrays” when using the Z3 solver∗∗. Applying their
patch results in KLEE using assertions instead of STORE expressions to define the initial content
of constant arrays. Although the developers noticed this performance problem in Z3 and limited
the code changes to the Z3 backend, we extended their patch in order to use assertions for defining
constant arrays also within the STP backend. However, we did not observe any appreciable running
time improvements on most benchmarks when adopting this patch in STP, obtaining on the other
hand slightly worse running times on some of the programs.

We then turned our investigation toward other features of queries that could play a role. In our
evaluation, we used symbolic accesses as indicators for performance opportunities that could be
exploited by MEMSIGHT. Unfortunately, expressions related to memory pointers embedded in
possibly long and complex queries are not easy to detect and analyze statically. At the end, we
were not able to find a consistent correlation between the improvements in query time obtained with
MEMSIGHT and one single feature in the queries that we considered. We believe it is likely that
several different features play a role in the running time, and a solid methodology would be needed
in order to pinpoint and correlate them to query running times. A recent work [28] has proposed
to use machine learning when deciding which solver to use depending on the features of a given
query. Our setting is different, as we wish to compare different queries resulting from handling the
same memory access under different memory models, which in turn may leverage different solver
facilities. Nonetheless, we believe that a machine learning-assisted technique could help shed some
light on this problem, and we hope to see it tackled by the research community in the future.

An alternative investigative approach would have been to walk through the inner workings of the
STP solver in the hope of getting insights on why a given query expressed using theory of arrays

∗∗https://github.com/klee/klee/issues/836
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may be more or less efficient compared to when rewritten using the approach of MEMSIGHT, i.e., by
using ITE expressions in place of STORE and SELECT expressions. Such an investigation would
be far from easy: due to the inherent complexity of modern SMT solvers, the symbolic execution
research community has often leveraged them essentially as black boxes. We believe that bridging
the gap in knowledge between satisfiability checking theory and its applications in, e.g., software
testing research would make a compelling topic for new investigations.

6. RELATED WORK

In Section 2 we outlined the main ideas behind the concept of memory model for symbolic execution
and presented the inner workings of the models used by four mainstream symbolic execution
engines. However, we left out a number of works that also tackled the problem of handling symbolic
pointers. We now briefly review works targeting low-level code that are more relevant for the
application contexts targeted by MEMSIGHT.

Memory Models. Concolic executors such as DART [29] and CUTE [30] deal with pointers
by exploiting knowledge resulting from the program’s concrete execution that is carried alongside
the symbolic exploration of a given path. DART uses the concrete value of a pointer in place of its
symbolic expression to disambiguate the affected memory location in the presence of a symbolic
access. CUTE makes a step further by splitting the values stored in the memory into two different
sets: the first set is used to track primitive values, while the second for pointer expressions. This
distinction allows CUTE to determine whether a branch condition involves a pointer. CUTE can
handle comparisons of equality for pointers, accounting for the different scenarios that might arise
because of them in the symbolic exploration.

The memory model of EXE described in the original work [31] supports symbolic reads by
emulating pointers as offset references to array objects; concretization is used for multiple pointer
dereferences, while symbolic writes are not discussed in detail. The model later went through some
extensions and was likely used as the starting point of the one adopted in KLEE [6]. Kapus et al.
propose in [32] a new segmented model for KLEE to reduce forking by putting objects that may be
referenced by the same symbolic pointer into the same segment, represented with a single array.

SAGE [2] takes advantage of concrete values from dynamic test generation to support symbolic
pointers, confining them within the memory regions in which the corresponding concrete values
fall. The work also discusses the relevance of multiple pointer dereferences and symbolic write
operations in software testing.

MAYHEM [16] introduces the partial memory modeling abstraction and proposes a number of
clever optimizations such as range refinements with value-set analysis [33] and fine-grained query
caching to reduce the burden on the SMT solver when assessing range sizes. ANGR implements a
partial memory models that closely resembles the one proposed in MAYHEM.

Our MEMSIGHT proposal shares several analogies with the segment-offset-plane model proposed
by Trtı́k et al. [34], which stores data in separate planes based on their type. Each plane holds a list
of write records, and a solver is invoked for each read operation to check whether a stored expression
collides with the given (typed) symbolic address. We believe our approach is more general as it is
not affected by the type safety characteristics of a language, it provides support for state merging
that is compelling for scalability, and it explicitly accounts for uninitialized memory.

Concretization Strategies. As we have seen in this article, several symbolic executors resort to
concretization in the presence of symbolic pointers. The framework presented by David et al. [35]
describes concretization policies for symbolic values and addresses, shedding light on this research
problem and paving the way to a systematic study of concretization strategies and policy tuning.
Along these lines, we believe that the delayed concretization technique with uninterpreted functions
proposed by Păsăreanu et al. [36] to handle non-linear constraints could be value in the setting of
pointer concretization strategies too.

Lazy Memory Initialization. A common practice in symbolic execution is to analyze code in
isolation. This is often done to avoid the path explosion that would arise when considering the code
in the context of the whole program. For instance, a symbolic executor may struggle at reaching code
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that is buried after a complex input parsing phase. Also, developers of a library may be interested in
testing the code library without making any assumption on the client code invoking it.

Nonetheless, code often cannot be executed accurately in isolation. Real-world code may expect
a well-defined memory state in order to work properly, i.e., according to the intended application
semantics. For instance, a piece of code may behave differently depending on how an internal
data structure has been initialized, and a symbolic exploration may end up considering unrealistic
memory states, i.e., states that would not be reachable when testing the code in the context of
the enclosing program. To allow for a meaningful symbolic exploration even in isolation, different
works [37, 38, 39] have investigated how to reconstruct the memory state lazily. In particular,
several approaches have tackled the problem of lazily reconstructing heap configurations, i.e., how
to reason over code that inspects dynamically allocated data structures such as linked lists or trees.
Most of these techniques rely on the availability of data type information and target object-oriented
languages like Java. Although orthogonal to the problems and goals discussed in this article, lazy
memory initialization is a very important problem in symbolic execution research, and several of
these techniques could be integrated into MEMSIGHT to help it deal with code tested in isolation.

Merging Strategies. In Section 2.2.1 we mentioned merging as a key performance enabler
in symbolic executors. Merging comes in two main flavors for deciding when to perform such
operation: state merging [3] is well suited to engines that expand different sides of a branch at
the same time, while path merging [4] is amenable to implementations where sides are explored
one at a time. MEMSIGHT can be used with both approaches. We also note that the tuples used in
MEMSIGHT share some analogies with the value summaries created by [40], which also simplifies
merging by implicitly representing the possible values that a variable may attain over different paths.

Code Manipulation. The semantics of tuples for memory writes in MEMSIGHT shares analogies
with the Static Single Assignment form [41] used in compilers, where each assignment to a variable
generates a fresh copy of the variable to hold its most recent value. Similarly, writing to a memory
cell in MEMSIGHT generates a new tuple with a higher timestamp, effectively creating a fresh new
version of that memory cell. In both cases, read operations always fetch the latest written value.

7. CONCLUSIONS

We believe that the key concept developed in this article of generalizing a symbolic memory
model so that it maps symbolic address expressions—rather than just concrete addresses—to value
expressions, can lead to further interesting developments.

The refinements introduced in Algorithm 2 and the optimizations applied to our prototype
implementation can significantly affect the performance of the basic version of the approach.
Nonetheless, the optimization design space to explore is large, leaving significant room for
improvement. As a first observation, static analysis techniques such as value-set analysis can be used
to refine ranges as in MAYHEM [16] and ease constraint solving. Also, the expressions returned by
memory load operations could be amenable to simplification, as expressions from recent symbolic
writes may together supersede other expressions stored earlier in the execution. Similarly, the paged
interval tree may periodically be rebuilt—or modified in a lazy fashion—to prune “outdated” values.
Investigating the benefits of delayed pointer concretization in symbolic execution and possible
strategies for it remains an interesting open question.

When analyzing the current embodiment of MEMSIGHT from a critical perspective, a few
observations are worth to be raised. MEMSIGHT provides a novel approach for efficiently handling
symbolic writes, as our memory model does not need to update the mapping for each address
possibly affected by such an operation. Nonetheless, its design comes with a few notable drawbacks.
Handling symbolic pointers in read operations can still lead MEMSIGHT, similarly to other memory
models, to generate lengthy ITE expressions that may become hard to parse for an engine (e.g., when
applying rewriting rules) or complex to reason on for an SMT solver. Moreover, keeping additional
metadata (e.g., timestamps) to reason over the memory may increase the burden on the symbolic
engine, adding spatial and temporal overheads to the exploration. Nonetheless, our experiments with
ANGR show that this overhead could be worth the price whenever a partial memory model may
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perform concretizations that affect the exploration by missing valuable program states. We believe
that MEMSIGHT may be able to sustain explorations that cannot be handled by alternative solutions
currently available in ANGR. This makes MEMSIGHT appealing in contexts, such as vulnerability
exploitation, where symbolic execution may be ineffective due to improper pointer concretizations.

On the other hand, the experiments with KLEE show that when MEMSIGHT is deployed in the
context of a framework that treats the memory as a set of independent memory objects, MEMSIGHT
may provide a performance level that is comparable to that achieved by a memory model relying on
the theory of arrays. Although understanding why MEMSIGHT makes KLEE faster or slower during
the exploration of a program is far from being a trivial task, we believe that our discussion of
MEMSIGHT may still provide valuable insights. We think that investigating and devising automatic
methodologies to pinpoint which factors are impacting the processing time of related queries could
bring significant value to the validation of experiments like the ones discussed in Section 5.

In this article, we have defined the memory model as the component supporting a symbolic
executor in two aspects: memory object reasoning and memory layout reasoning. However,
after implementing MEMSIGHT inside two symbolic execution frameworks, we realized that the
design of a memory model should take into account also other aspects. For instance, during
our experiments, we identified that two C library functions, memcpy and memset, constitute a
severe challenge. Reading or writing large memory regions can require a non-negligible amount of
resources when a symbolic pointer is involved in one of these two operations. The design of memory
models should consider these primitives, as well as other memory heavy-duty operations commonly
offered by standard programming libraries, in order to improve performance and scalability.

Our experiments seem to suggest that symbolic pointers might not be very common in real-world
programs. However, several factors may play a role in the nature of pointers that show up inside
a program. For instance, most symbolic executors concretize symbolic expressions that represent
object sizes. Several memory-related operations often involve a task whose work depends on the
size of the object that they are manipulating. Since treating these sizes as symbolic can easily
make the exploration unsustainable, symbolic frameworks choose to concretize them. However,
symbolic sizes can be extremely common in practice and could easily lead a program to generate
symbolic pointers. For instance, primitives offered by the C library for dynamic memory allocation
such as malloc, calloc, or realloc, carry out tasks that crucially depend on the allocation
size received as argument. In particular, several different memory layouts could be generated by
considering different choices when concretizing allocation sizes. We think that the design of a
memory model should take into account this problem, possibly providing support for keeping sizes
symbolic, without forcing an executor toward their concretization.
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