Robotics 1

September 19, 2025

Exercise 1

Consider the 2R planar robot in Fig. 1. Determine the three homogenous transformation matrices wT_1 , 1T_2 , and 2T_e as functions of the constant geometric parameters L_1 , L_2 , and d_2 , and of the two angles q_1 and q_2 . Compute the position and orientation of the end-effector frame with respect to the world frame. Compare your result with the Denavit-Hartenberg homogeneous transformation matrix ${}^wT_e(\theta_1, \theta_2)$, defining the associated table of parameters. What is your conclusion?

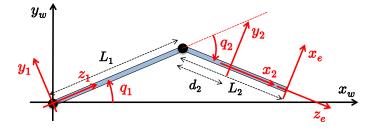


Figure 1: A 2R planar robot with world frame and generic frames attached to the links.

Exercise 2

For the 3-dof planar robot in Fig. 2, one can define a task vector $\mathbf{r}=(p_x,p_y,\alpha)$ containing the position of the robot tip and the angle $\alpha\in(-\pi,\pi]$ of the last link with respect to the axis x_w of the world frame. Using the joint variables defined in the figure, find all inverse kinematics solutions of this robot for a given task vector \mathbf{r}_d . Determine also the singular cases and explain what happens then. Evaluate your solution with the numerical data L=1 m and $\mathbf{r}_d=(1,0,-\pi/4)$ [m,m,rad]. Finally, compute the task Jacobian matrix $\mathbf{J}(\mathbf{q})=\partial \mathbf{r}/\partial \mathbf{q}$ and find its singularities.

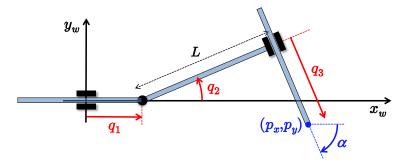


Figure 2: A 3-dof planar robot with the definition of joint and task variables.

Exercise 3

A robot joint should move from q_i at t=0, with a generic initial velocity v_i , to q_f at t=T, using a trajectory q(t) that has continuous acceleration in the open interval (0,T). Choose the motion profile and determine analytically the value of the final velocity v_f to be attained at t=T so that the resulting initial acceleration is $\ddot{q}(0)=0$. Provide then the expression of the corresponding maximum values of $|\dot{q}(t)|$ and $|\ddot{q}(t)|$ in the closed interval [0,T]. Using the numerical data $q_i=-0.5$, $q_f=1$ [rad] and T=3 s, apply your results to the two cases i) $v_i=0$ and ii) $v_i=1$ [rad/s].

[150 minutes; open books]