The Siren Song of Temporal
Synthesis

Moshe Y. Vardi

Rice University

Verification

Model Checking:

e Given: Program P, Specification .

e Jask: Check that P satisfies ¢

Success:

e Algorithmic methods: temporal specifications
and finite-state programs.

e Also: Certain classes of infinite-state programs
e Jools: SMV, SPIN, SLAM, etc.

e Impacton industrial design practice is increasing.
Problems:

e Designing P is hard and expensive.

e Redesigning P when P does not model ¢ is hard
and expensive.

Automated Design

Basic Idea:

e Start from spec ¢, design P s.t. P satisfies .
Advantage:
— No verification
— No re-design
e Derive P from ¢ algorithmically.
Advantage:
— No design

In essenece: Declarative programming taken to
the limit.

Harel, 2008: “Can Programming be Liberated,
Period?”

Program Synthesis

The Basic Idea: “Mechanical translation
of human-understandable task specifications

to a program that is known to meet the
specifications.”

Deductive Approach (Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980)

e Prove realizability of function,
e.g., (Vz)(Jy)(Pre(x) — Post(x,y))

e Extract program from realizability proof.
Classical vs. Temporal Synthesis:
e (Classical: Synthesize transformational programs

e Temporal: Synthesize programs for ongoing

computations (protocols, operating systems,
controllers, robots, etc.)

Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

e next y: ¢ holds in the next state.
e eventually ¢: p holds eventually
e always o: ¢ holds from now on

e o untilvy: ¢ holds until 1) holds.

Semantics: over infinite traces

e T,wEnNextpifwe e e o o

e TwEwuUNtilypifwe ___eo o o
w P ¢ P

Examples

e always not (CS; and CS,): mutual exclusion
(safety)

e always (Request implies eventually Grant):
liveness

e always (Request implies (Request until Grant)):
liveness

Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach
(Wolper, Clarke+Emerson, 1981)

e Given:

e Satisfiability: Construct model M of ¢

e Synthesis: Extract P from M.

Example: always (odd — next —odd)N
always (—odd — next odd)

Reactive Systems

Reactivity: Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, robots, etc.
(also, open systems).

Example: Printer specification —
J; - Job ¢ submitted, P; - job ¢ printing.

e Safety: two jobs are not printing together
always —(Py A\ Py)

e Liveness: every jobs is eventually printed
always /\?Zl(JZ- — eventually P;)

Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M: A single state where Ji, Jo, P;, and P,
are all false.

Extract program from 1M ? No!

Why? Because M handles only one input
sequence.

e J1,Jo: Input variables, controlled by environment

e P, Py: output variables, controlled by system

Desired: a system that handles all input
seqguences.

Conclusion: Satisfiability is inadequate for synthesis.

Realizability

I: input variables
O: output variables

Game:
e System: choose from 2¢
e Env: choose from 2!

Infinite Play:

105 115 125 - - -
Og, O1, Oo, ...

Infinite Behavior: ig U og, 11 U o1, 19U 09, ...
Win: Behavior satisfies spec.
Specifications: LTL formulaon 7 U O
Strategy: Function f : (27)* — 2¢

Realizability: Abadi+Lamport+Wolper, 1989
Pnueli+Rosner, 1989
Existence of winning strategy for specification.

Desideratum: A universal plan! Why: Autonomy!

Church’s Problem

Church, 1957: Realizability problem wrt specification
expressed in MSO (monadic second-order theory of
one successor function)

Blchi+Landweber, 1969:
e Realizability is decidable.

e If a winning strategy exists, then a finite-state
winning strategy exists.

e Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree
automata.

Question: LTL is subsumed by MSO, so what
did Pnueli and Rosner do?
Answer: better algorithms!

10

Strategy Trees

Infinite Tree: D* (D - directions)

e Root: ¢; Children: xd, x € D*,d € D
Labeled Infinite Tree: 7 : D* —» X
Strategy: f : (21)* — 2©

Rabin’s insight. A strategy is a labeled tree with

directions D = 2! and alphabet ¥ = 2°.

Example: I = {p}, O = {¢}

>

Winning: Every branch

satisfies spec.

Rabin, 1972: Finite-state automata on infinite trees

11

Emptiness of Tree Automata

Emptiness: L(A) = 0

Emptiness of Automata on Finite Trees: PTIME
test (Doner, 1965)

Emptiness of Automata on Infinite Trees: Difficult
e Rabin, 1969: non-elementary

e Hossley+Rackoff, 1972: 2EXPTIME

e Rabin, 1972: EXPTIME

e Emerson, V.+Stockmeyer, 1985: In NP

e Emerson+dJutla, 1991: NP-complete

12

Rabin’s Realizability Algorithm

REAL(y):

e Construct Rabin tree automaton A, that accepts
all winning strategy trees for spec .

e Check non-emptiness of A,,.

e If nonempty, then we have realizability; extract
strategy from non-emptiness witness.

Complexity: non-elementary

Reason: A, is of non-elementary size for spec ¢ in
MSO.

13

Post-1972 Developments

e Pnueli, 1977: Use LTL rather than MSO as spec
language.

e V.+Wolper, 1983: Elementary (exponential)
translation from LTL to automata.

e Safra, 1988: Doubly exponential construction of
tree automata for strategy trees wrt LTL spec
(using V.+Wolper).

e Rosner+Pnueli, 1989: 2EXPTIME realizability
algorithm wrt LTL spec (using Safra).

e Rosner, 1990: Realizability is 2EXPTIME-
complete.

14

Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response:

e 2EXPTIME is just worst-case complexity.
o 2EXPTIME Ilower bound implies a doubly
exponential bound on the size of the smallest

strategy; thus, hand design cannot do better in
the worst case.

Real Challenge: very difficult algorithmics!

15

Classical Al Planning

Deterministic Finite Automaton (DFA)
A= (ZasasoapaF)

o Alphabet. %

States: S

Initial state: sq € S

Transition function: p: S x % — S
Accepting states: F C S

Input word: ag,aq,...,a,-1 RUN: sg,51,...,5,

e s;11=p(s;a;)fori >0

Acceptance: s, € F.

Planning Problem: Find word leading from sq to F..
o Realizability: L(A) # ()

e Program: w € L(A)

16

Dealing with Nondeterminism

Nondeterministic Finite Automaton (NFA)
A= (ZasasoapaF)

o Alphabet. %

States: S

Initial state: sq € S

Transition function: p : S x ¥ — 2°
Accepting states: F C S

Input word: ag,aq,...,a,-1 RUN: sg,51,...,5,

® Sii1 € p(ss,a;) fori >0

Acceptance: s,, € F.

Planning Problem: Find word leading from sg to F..
o Realizability: L(A) # ()

e Program: w € L(A)

17

Automata on Infinite Words

Nondeterministic Buchi Automaton (NBW)
A= (EasasoapaF)

o Alphabet. %

States: S

Initial state: sq € S

Transition function: p : S x ¥ — 2°
Accepting states: F C S

Input word: ag, a4, ..

Run: sg, s1, ...

® Sii1 € p(s;,a;) fori >0

Acceptance: F' visited infinitely often
Motivation:

e characterizes w-reqularlanguages

e equally expressive to MSO (Buchi 1962)

e Mmore expressive than LTL

18

((0+ 1)*1)~:
=10

N

1

(0+1)*1:

U (o)

0,1

el SN

Examples

— infinitely many 1’s

— finitely many 0’s

19

Infinitary Planning

Planning Problem: Given NBW A = (%, S, sg, p, F),
find infinite word w € L(A)

From Automata to Graphs: G4 = (S, E),
Es={(s,t): t € p(s,a) for some a € 3}.
Lemma: L(A) # 0 iff there is a a state f € F
such that G 4 contains a path from sy to f and a
cycle from f to itself.

Corollary: L(A) # 0 iff there are finite words
u,v € ¥* such that uv” € L(A).

Bonus: Finite-state program.

Synthesized Program: Do « and then repeatedly
do v.

20

Temporal Logic vs. Buchi Automata

Paradigm: Compile high-level logical specifications
Into low-level finite-state language

The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula ¢, one can construct an
NBW A, such that a computation o satisfies ¢
if and only if o is accepted by A,. Furthermore,

the size of A, is at most exponential in the
length of .

always eventually p:

o]_9 (e) —Iinfinitely many p’s
| 7

p p
eventually always p:

1

p,p

— finitely many p’s

21

LTL Planning

Input. LTL formula ¢
Planning Problem: Find word w = ¢
Realizability: ¢ is satisfiable.

Solution: Solve infinitary planning with A,

22

Synthesis of Reactive Systems

Game Semantics: view an open system S as
playing a game with an adversarial environment F,
with the specifications being the winning condition.

DFA Games:

S choose output value a € X

FE choose input value b € A
Round: S and E set their values
Play: word in (X x A)*
Specification: DFA A over the alphabet X x A
S wins when play is accepted by by A.

Realizability and Synthesis:

o Strategyfor S —7:A* — %
e Realizability — exists winning strategy for S

e Synthesis — obtain such winning strategy.

23

Solving DFA Games

A= (2 xA,S, sg,p, F)

Define win;(A) C S inductively:

o wing(A) =F

o win;11(A) = win;(A)U

{s:(Ja € X)(Vb e A)p(s,(a,b)) € win;(A)}

Lemma: S wins the A game iff s € wine(A).

Bottom Line: /inear-time, least-fixpoint algorithm
for DFA realizability. What about synthesis?

24

Transducers

Transducer: a finite-state representation of a
strategy— deterministic automaton with output
T = (Aa Ea Qa qo, &, 5)

e A: input alphabet

e .. output alphabet

e (): states

e qo: initial state

e a: 5 x A — S:transition function

e 3:S5 — X output function

Key Observation: A transducer representing a
winning strategy can be extracted from
wing(A), wini(A),. ..

25

Reachability Games

Game Graphs: G = (Vp, V1, E,vs, W)

° EQ(VOX‘/l)U(VlXVO)

e v, start node

o W C VU Vi winning set

e Player 0 moves from V4, Player 1 moves from
Vi.

e Player O wins: reach W.

Fact: Reachability games can be solved in linear
time —least fixpoint algorithm

Consequence: realizability and synthesis

26

NFA Games

NFA Games:

e S choose output value a € X

e I/ choose input value b € A

e Round: S and FE set their variables

e Play: wordin (X x A)*

e Specification: NFA A over the alphabet ¥ x A
e S wins when play is accepted by by A.

Solving NFA Games: Basic mismatch between
nondeterminism and strategic behavior.

e Nondeterministic automata have perfect foresight.
e Strategies have no foresight.

Conclusion: Determinize A and then solve.

27

NBW Games

NBW Games:

e S choose output value a € X

e I/ choose input value b € A

e Round: S and FE set their variables

e Play: infinite word in (X x A)¥

e Specification: NBW A over the alphabet X x A
e S wins when infinite play is accepted by by A.

Resolving the mismatch: Determinize A

LTL Games:

e Specification: LTL formula ¢

e Solution: Construct A, and determinize.
History:

e Church, 1957: problem posed (for MSO)

e Blchi-Landweber, 1969: decidability shown

e Rabin, 1972: solution via tree automata

28

Determinization

Key Fact (Landweber, 1969): Nondeterministic
Blchi automata are more expressive than
deterministic Buchi automata.

Example: (0 + 1)*1«:

1
-o —— (o) —finitely many 0’s

I

0,1 1

McNaughton, 1966: NBW can be determinized
using more general acceptance condition — blow-up
Is doubly exponential.

29

Parity Automata

Deterministic Parity Automata (DPW)

A= (27‘97807/07*;:)

o F=(I,Fs, ..., Fy)-partition of S.

e Parity index: k

e Acceptance: Least i such that F; is visited
infinitely often is even.

Example: (0 + 1)*1¢
1

—/ r
IRl
0 1

Parity condition: ({¢},{r})

— finitely many 0’s

Safra, 1988: NBW with n states can be translated
to DPW with n©(™ states and index O(n).

30

Parity Games

Game Graphs: G = (Vy, Vi, E, v, W)

° EQ(VOX‘/l)U(VlXVO)

e v, start node

o W C VU Vi winning set

e Player 0 moves from 1},

Player 1 moves from V.

o W= (Wi, Ws, ..., W) —partition of Vo U V;
e Play 0 wins: least ¢ such that W is visited
infinitely often is even.

Solving Parity Games: complexity
e Jurdzinski, 1998: UPNco-UP

e Schewe, 2007: O(n*/3)

e Calude et al., 2017: Quasi-PTIME
Open Question: In PTIME?

31

LTL Synthesis

Algorithm for LTL Synthesis:
e Convert specification ¢ to NBW A,
(exponential blow-up)

e Convert NBW A, to DPW A? (exponential
blow-up)

e Solve parity game for Afi (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis
iIs 2EXPTIME-complete.

e [ransducer. finite-state program with doubly
exponentially many states (exponentially many
state variables)

32

Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:
e Mona: MSO on finite words

e Linear-Time Model Checking: LTL on infinite
words

Experiments with Automata-Theoretic Approach:

e Symbolic decision procedure for CTL (Marrero
2005)

e Symbolic synthesis using NBT (Wallmeier-
Hatten-Thomas 2003)

Why LTL synthesis is so hard?

e NBW determinization is hard in practice: from
9-state NBW to 1,059,057-state DRW (Althoff-
Thomas-Wallmeier 2005)

e NBW determinization is hard in practice: no
symbolic algorithms

e Parity games are hard in practice!

2EXPTIME: Need not be an insurmountable
problem, but algorithmics is very challenging!

33

Solution 1: General Reactivity (1)

Piterman-Pnueli-Sa’ar, 2006: Limit LTL
specification: (AlwaysFEventually P) —
(AlwaysEventually Q)

Pros:

e Cubic game solvability (wrt game size)
e Tools, e.g., Slugs
e Broad applicability — popular in robotics

Cons: low expressiveness!

34

Solution 2: LTL ; — Finite-Horizon LTL

Crux: [De Giacomo+V., 2013]

e Full syntax of LTL
e Interpreted over finite traces

Example: Always Eventually p — p must hold at last
point of trace.

Algorithmic Ideas [De Giacomo+V., 2015]

o If pis an LTL, formula, then it can be translated
(w. 2exp blow-up) to DFA.
e Synthesis via DFA games

Implementation [Zhu-Tabajara-Li-Pu-V., 2017]:

e Translate ¢ to FOL, and use MONA to translate
to BDD-based Symbolic DFA.

e Solve DFA game symbolically

e Open Tool: Syft

35

Number of solved cases

200

150

100

(O
o

Performance Comparison

I
Syft ™~~~

Acacia+ &>

Length of the formula

36

Discussion

Question: Can we hope to reduce a 2EXPTIME-
complete approach to practice?

Answer:

e Worst-case analysis is pessimistic.
— Mona solves nonelementary problems.
— SAT-solvers solve huge NP-complete problems.
— Model checkers solve PSPACE-complete problems.
— Doubly exponential lower bound for program

size.

e We need algorithms that blow up only on hard
iInstances

e More algorithmic engineering is needed.

37

Al vs SE

Some Crossfertilization:

e From planning to verification: bounded model
checking

e From verification to planning: BDDs, temporal
goals

More collaboration needed!

e Where does one get comprehensive specification?
e Can system learn from experience?

e What about humans in the loop?

38

