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Planning for Multiple Agents 
Under Partial Observability

Ø Challenge: How to achieve intelligent coordination of a group of 
decision makers in spite of stochasticity and partial observability?   
How to handle the uncertainty about the domain, outcome of actions, 
and the knowledge, beliefs and intentions of the other agents?

Ø Objective: Find ways to make existing algorithms more effective by 
introducing additional structure into the problem or solution method.
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Problem Characteristics
Ø A group of decision makers or agents interact in a 

stochastic environment
Ø Each problem instance involves a sequence of decisions 

over finite, indefinite, or infinite horizon
Ø The change in the environment is determined 

stochastically by the current state and the set of actions
taken by the agents

Ø Each decision maker obtains different observations and 
has different partial knowledge about the overall situation

Ø Focus on collaborative settings where decision makers 
share the same objectives
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Partially Observable MDP

Ø Generalization of MDPs that was formulated in  the 1960s 
[Astrom 65]

Ø The agent receives noisy observations of the underlying 
state

Ø Need to remember previous observations in order to act 
optimally

Ø More difficult, but there are DP algorithms [Smallwood & 
Sondik 73] and many modern solvers
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Decentralized POMDP 

Ø Generalization of MDP/POMDP involving multiple 
cooperating decision makers with different 
observation functions and actions

6

a1
o1

o2

a2

1

2

World Rewardr



Formal Models 
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DEC-POMDP
DEC-POMDP-COM

MTDP

POSG

POMDP MDP DEC-MDP

POSG = Partially-Observable Stochastic Game
DEC-POMDP-COM = DEC-POMDP with Communication
MTDP = Multiagent Team Decision problem

I-POMDP = Interactive POMDP



DEC-POMDPs
Ø A DEC-POMDP is defined by a tuple á!, $⃗, %, &, ', (ñ, 

where
• ! is a finite set of domain states, with initial state s0
• $⃗ = $1, $2, … , $- are finite action sets
• % ., /⃗, .0 is a state transition function
• & ., /⃗ is a reward function
• ' = {'1, '2, … ,'-}  are finite observation sets
• ((/⃗, .0,2⃗) is an observation function

Ø Agents have different partial knowledge about the domain; 
choose actions based on their private observations.
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Applications

Coordination of mobile robots
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Multi-access broadcast channels

Decentralized detection of hazardous weather events 

Space exploration rovers



e.g. Mobile Robot Coordination
Bernstein, Hansen & Zilberstein, IJCAI 2005
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States: grid cell pairs

Actions: ­,¯,¬,®

Transitions: noisy

Goal: meet quickly

Observations: red lines         
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e.g. Multiagent Tiger
Nair, Tambe, Yokoo, Pynadath & Marsella, 2003

Ø Two agents try to locate tiger and get treasure
Ø Each agent may open one of the doors or listen
Ø Listening provides a noisy observation
Ø Large penalty for opening door leading to tiger; Large reward 

for cooperation (choosing same action) and for getting the 
treasure.



e.g. Cooperative Box-Pushing
Seuken & Zilberstein, UAI 2007

Goal: push as many boxes as possible to goal area; larger box 
has higher reward, but requires two agents to be moved. 
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Box Pushing Demo
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e.g. Sensor Network
Nair et al. 2005; Kumar and Zilberstein, 2009
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Ø Multiple sensors track a moving target
Ø To localize target two neighboring sensors must 

track it at the same time



Solving DEC-POMDPs
Ø Each agent’s behavior is described by a           

local policy di
Ø Policy can be represented as a mapping from

• Local observation sequences to actions; or
• Local memory states to actions

Ø Actions can be selected deterministically or 
stochastically

Ø Goal is to maximize expected reward over a 
finite horizon or discounted infinite horizon
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Policy Trees

Ø Optimal policy trees for the multiagent tiger problem with 
horizon 3. The policy trees of both agents are the same

Ø Each node is labeled with an action and each edge is labeled 
with an observation

Ø Suitable for finite-horizon problems 17
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Finite-State Controllers

Ø Optimal four-node deterministic controllers for the multiagent 
tiger problem

Ø Each node is labeled with an action and each transition is 
labeled with an observation

Ø Suitable for infinite horizon problems
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Key Questions
Ø What is the complexity of DEC-POMDPs?

Ø Are they significantly harder than POMDPs?  Why?

Ø What domain features affect the complexity and how?

Ø Is optimal dynamic programming possible?

Ø Can dynamic programming be made practical?

Ø How to treat communication?

Ø How to develop more scalable solution methods?
(with respect to #agents, #states, #observations)
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Complexity Results for (PO)MDPs
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MDP P-complete 
( if T < |S|)

Papadimitriou & 
Tsitsiklis 87

POMDP PSPACE- complete 
( if T < |S|)

Papadimitriou & 
Tsitsiklis 87

MDP P-complete Papadimitriou & 
Tsitsiklis 87

POMDP Undecidable Madani et al. 99

Finite Horizon

Infinite-Horizon Discounted



How Hard are DEC-POMDPs? 
Bernstein, Givan, Immerman & Zilberstein, UAI 2000, MOR 2002

Ø Static version where a single set of decisions is 
made in response to a single set of observations, 
was shown to be NP-hard [Tsitsiklis and Athan, 1985]

Ø Two-agent DEC-POMDPs Î NEXP-hard by reduction 
from TILING
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DEC-POMDP is NEXP-hard

$ policy with 
expected reward 0

Û
$ consistent tiling



Complexity of Sub-Classes
Goldman & Zilberstein, JAIR 2004
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NEXP-C  Finite-Horizon
DEC-MDP
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Algorithms for DEC-POMDPs
Ø Unclear how to define a standard belief-state for a DEC-

POMDP without fixing the policies of the other agents or 
having beliefs about them

Ø Value iteration does not generalize to the infinite-horizon 
case

Ø Policy iteration for POMDPs can be generalized [Hansen 98, 
Poupart & Boutilier 04]

Ø Basic idea: Representing local policies using stochastic finite-
state controllers and defining a set of controller 
transformations that guarantee convergence 
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Policies as Controllers 
Ø Finite state controller represents each policy
• Fixed memory
• Randomness used to offset memory limitations 
• Action selection, ψ : Qi → DAi

• Transitions, η : Qi� Ai� Oi → DQi

Ø Value of two-agent joint controller given by the 
Bellman equation:
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Finding Optimal Controllers
Ø How can we search the space of possible joint 

controllers?
Ø How do we set the parameters of the controllers 

to maximize value?
Ø Deterministic controllers can be found using 

traditional search methods such as BFS
Ø Stochastic controllers present a continuous 

optimization problem
Ø Key question: how to best use a limited amount of 

storage to optimize value
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Nonlinear Optimization Approach
Amato, Bernstein & Zilberstein, UAI 2007

Ø Key idea: Modeling the problem as a non-linear 
program (NLP)

Ø Consider node values (as well as controller 
parameters) as a variables

Ø The NLP can take advantage of an initial state 
distribution when it is given

Ø Improvement and evaluation all in one step 
(equivalent to an infinite lookahead) 

Ø Additional constraints maintain valid values
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NLP Representation
Variables:

,  ,

Objective:  Maximize 

Value Constraints: "s Î S,    ÎQ

Additional linear constraints:
• ensure controllers are independent
• all probabilities sum to 1 and are non-negative
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Independence Constraints
Ø Independence constraints guarantee that action selection and 

controller transition probabilities for each agent depend only 
on local information

Ø Action selection independence:

Ø Controller transition independence:
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Probability Constraints
Ø Probability constraints guarantee that action selection 

probabilities and controller transition probabilities are non 
negative and that they add up to 1: 

(Superscript f �s represent arbitrary fixed values)
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Optimality
Theorem: An optimal solution of the NLP results in 

optimal stochastic controllers for the given size and 
initial state distribution.

Ø Advantages of the NLP approach:
• Efficient policy representation with fixed memory
• NLP represents optimal policy for given size
• Takes advantage of known start state
• Easy to implement using off-the-shelf solvers

Ø Limitations:
• Difficult to solve optimally
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Six Aspects of MAS that DEC-POMDP 
Solvers Optimize “on the fly”

1. Internal Memory Structure
— What is worth memorizing using bounded memory?

2. Hierarchical Decomposition of the Domain
— What are the atomic decisions at each level of abstraction?

3. Information Gathering Actions
— What should an agent do to reduce uncertainty efficiently?

4. Communication Protocol Design
— What messages to use and what should they mean?

5. Organizational Design
— What role should each agent have?

6. Social Norms and Commitments
— What social norms and commitments can increase efficiency?
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How to Help our 
Planning Algorithms 
Succeed?
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1. Internal Memory Structure
Ø Existing planning algorithms don’t assign explicit meaning to 

internal memory states of the FSC
Ø Memory states have implicit meaning that can be derived by 

analyzing the policy
Ø In contrast, ML algorithms often use predefined (sometimes 

handcrafted) features to perform well
Ø Automatic feature induction is usually treated as a separate 

aspect of the problem
Ø People can often identify useful domain feature for 

coordination and, when they cannot, they can redesign the 
environment to provide such features
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What Can be Memorized?
What can be memorized in the context of DEC-POMDPs?
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Attribute-based Controllers
Amato & Zilberstein, ICAPS MAP WS 2008

Ø Designing controllers where each state has predefined 
semantics derived from the history of observations

Ø Example: Decentralized Tiger
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History-Based Controller Design
Kumar & Zilberstein, ICAPS 2015

Ø When optimizing policies represented as FSCs, it’s hard to 
determine how much memory is needed and what’s worth 
memorizing

Ø Start with a fixed-size controller, for example a reactive 
controller with one node per available observation 

Ø Optimize this controller (in this case using a dual mixed 
integer linear program (MIP) for FSCs for POMDPs)

Ø Developed a history-based controller design – associating 
clear history-related properties with each controller node
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History-Based Controller Design
Kumar & Zilberstein, ICAPS 2015

Ø Use an entropy-based node splitting criteria
Ø Somewhat similar to node splitting strategy proposed in 

[Poupart, Lang, and Toussaint 11] based on state-splitting while 
using EM for HMMs [Siddiqi, Gordon, and Moore 07]

Ø Novelty is the development of an entropy-based heuristic 
that uses the readily available information from the dual 
MIP formulation

Ø Key intuition is that we quantify the uncertainty about the 
world state associated with every HBC node, then split the 
node with the highest uncertainty 
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History-Based Controller Design
Kumar & Zilberstein, ICAPS 2015

• Results
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Informative Observations
Ø Observations should not be limited to state evidence, but 

also include indicators of goals, intentions, etc.
Ø Design observations to facilitate effective coordination
Ø Examples: vehicle signals; traffic signals; semaphores
Ø Critical aspects of coordination could be solved by design
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2. Hierarchical Decomposition
Ø Planning can be generally simplified                                     

using a hierarchical approach with                            
limited scope of decisions per level

Ø Coordination in particular could                                                
be simplified using abstraction

Ø In exiting approaches, domain-level actions and 
coordination actions are intermingled, often all at one 
level of decision making

Ø That makes both planning and coordination extremely 
complicated

52



Many Relevant Techniques 
Ø Hierarchical reinforcement learning

• Options; HAMs, MAXQ

Ø Hierarchical factored MDPs and POMDPs
• [Dietterich; Parr & Russell; Guestrin & Gordon; Hansen]

Ø Hierarchical task networks
• [Nau et al.; Erol; Tate; Fox]

Ø Planning with macro actions or complex actions
• [McIlraith et al.; Marthi, Russell & Wolfe]

Ø Service composition methods

• [McIlraith et al.; Traverso et al.]

Ø Behavior-based robotics
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Planning with Macro Actions
Amato, Konidaris & Kaelbling, AAMAS 2014

• Extended DP and MBDP to work with macro actions
• For “meeting in a grid” defined two options for each agent: each 

one moving the agent to one of the two goal corners. 
• Results in better value and significant time savings
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e.g. Bartender and Waiters
Amato et al., RSS 2015

Ø A multi-robot problem modeled after waiters gathering 
drinks and delivering them to different rooms

Ø Solved using the MacDec-POMDP model, which adds macro 
actions to Dec-POMDPs
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Using Macro Actions
Amato et al., RSS 2015

Ø Macro actions for the waiters:
• ROOM_N:  Go to room n, observe orders and deliver drinks
• BAR:  Go to the bar and observe current status of the bartender
• GET_DRINK:  Obtain a drink from the bartender

Ø The MDHS planner automatically generates solutions based 
on the macro-actions and high-level problem description

Ø Can solve problems in a few minutes that are intractable 
otherwise 

Ø Open questions remain regarding option generation 
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Hierarchical Metareasoning for 
Exception Recovery
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Ø Developed for handling exception in autonomous driving

Ø Using belief space partitioning with exception handlers

Exception

Handler 1

Exception

Handler 2

Exception

Handler 3 Regular 

Process 



3. Information Gathering Actions
Ø Planner does not distinguish 

between three benefits of actions:
Ø Contribution to goal achievement
Ø Contribution to information gathering
Ø Contribution to communication
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Ø The value of an action reflects all these contributions 

Ø Hard to reason explicitly about information gathering actions
Ø Each action could have both useful consequences and also 

unintended negative consequences along each dimension

Ø Beneficial to create “pure” information gathering actions 



Autonomous Vehicles Example
Ø Crossing intersections presents complex interactions with 

multiple, simultaneously encountered entities
Ø Edging could be used to start crossing, gain better visibility, 

or convey intention (or all three)
Ø Planning is easier when actions are not so overloaded with 

consequences 
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4. Communication      Protocols

Ø Supposed that one bit can be exchanged between agents, 
• What should each value mean? 
• When should a message be sent if communication is limited?
• Should the meaning change over time based on context? 

Ø Interestingly, these questions are answered implicitly by a 
standard DEC-POMDP policy

Ø Work on explicit communication has focused on sharing 
knowledge (some or all local observations), but not so 
much on language and protocol design
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Communication-Based Decomposition
Goldman & Zilberstein, JAIR 2008

Ø Introduce mechanisms to decouple domain actions from 
communication actions for Dec-MDPs

Ø Compute multiagent macro actions that include no 
communication, but always end with communication

Ø For Dec-MDP, communication involve sharing the most 
recent observations, which provide full observability

Ø Solving the resulting Dec-SMDP-Com model is equivalent to 
solving an MMDP rather a Dec-MDP (lower complexity!)
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Myopic Communication Strategies
Becker et al., CI 2009

Ø When communication is costly, can use a myopic rule to 
decide when to communicate

Ø Basic myopic rule can be evaluated in polynomial time 

Ø The myopic assumption – that this is the last chance to 
communicate – can lead to over communication

Ø But limited lookahead – considering the option to delay 
communication by one step – helps resolve the problem

64



Myopic Communication Strategies
Becker et al., CI 2009

Ø Limited lookahead is sufficient to get rid of anomalies
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Language Learning
Allen, Goldman & Zilberstein, IJCAI 2005

Ø Learning to assign the correct meaning to messages received 
from other agents

Ø Maintaining belief-states over a “translation”
Ø Approach converges on coordinated communication and 

action over time
Ø Also explored in Reinforcement Learning                                  

(e.g., “Learning to Communicate and Act in Cooperative Multiagent Systems using 
Hierarchical RL” [Ghavamzadeh & Mahadevan, AAMAS 04])

Ø More recently explored in the context of ad hoc teams (e.g., 
“Communicating with Unknown Teammates” [Barrett et al. ECAI 14])
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More Challenging Questions
Ø How to go beyond the “sync” model (sharing observations)? 

What communication language to use?
Ø When reasoning about explicit communication, how to 

factor implicit communication (via observations)?

Ø What are the right communication models for systems 
involving many agents (broadcast, one-to-one)?

Ø What are good cost models for communication, and how to 
factor the cost of processing new information?
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5. Organizational Design
Ø Organizational design is concerned with 

• Ways to assign local goals and tasks to                                            
agents and limit the scope of their decisions

• Ways to limit the number of other agents 
that each agent must interact with

• Ways to update the structure of the organization dynamically as the 
circumstances change

• Ways to assign specific roles to agents in a team
• Ways to decompose the overall objectives into local reward 

functions involving small groups of agents

Ø Examples 
• Sensor placement for detection or tracking
• Seeding influential nodes in a social network
• Interaction graph generation
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Generation of Interaction Graphs
Yeoh, Kumar & Zilberstein, IJCAI 2013

Ø MA models such as ND-POMDP that 
involve ≫2 agents, are designed to exploit 
the locality of interaction

Ø Existing algorithms often assume a given, 
static interaction graph
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Ø Initial work has automated the                           generation of 
interaction graphs

Ø Greedy search via space of interaction graphs guided by 
exact value of best plan or heuristic estimates

Ø MILP can be used to find optimal design with respect to 
heuristic estimates.



More Challenging Questions
Ø How to generalize heuristic and exact methods for 

generating interaction graphs beyond ND-POMDPs
Ø How to design more complex organizations involving 

heterogeneous agents and dynamically changing IG 
Ø How to optimize organizational design using an abstract 

model of the problem
Ø How to assign roles to agents to simplify coordination 

(e.g., assign an agent to each door of multiagent tiger) 
Ø How to modify the environment to facilitate the 

development of an efficient organization
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6. Social Norms and Commitments
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Ø In social psychology: Social norms are 
“rules and standards that are understood 
by members of a group and that guide 
and/or constrain social behavior without 
the force of laws.” [Cialdini Trost, 1998]

Ø Studied extensively in the social sciences, 
and also in AI

Ø Examples: Navigation through crowds while respecting 
traffic rules, or an EMS response protocol to avoid 
dispatching too many redundant services 

Ø Crucial for effective agent and human-robot interaction



Prior Work on Social Norms 
Ø “On the synthesis of useful social laws for artificial agent 

societies” [Shoham & Tennenholtz, AAAI 92]
Ø “Commitments and conventions: The foundation of 

coordination in multi-agent systems” [Jennings, 1993]
Ø “Emergent coordination through the use of cooperative 

state-changing rules” [Goldman & Rosenschein, 1993]
Ø “Optimal social laws”  [Ågotnes & Wooldridge,  AAMAS 2010]

Ø How can norms help solve DEC-POMDPs? 
Ø How to best integrate norms with existing solvers?
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Commitments 
Ø Protocols for forming and managing commitments offer an 

important mechanism to simplify planning
Ø From a purely decision theoretic perspective commitments are 

questionable:
• Why make any commitments that may limit the value of the policy?
• How can agents make commitments when operating in a stochastic domain 

under limited observability?

Ø Bounded resources/rationality could justify commitments 
Ø No significant work yet on commitments in DEC-POMDPs
Ø Some prior work by Durfee, Singh and others
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Conclusions
Ø Identified six mechanisms to add structure to multiagent 

planning problems and potentially simplify solution

Ø It is crucial to allow algorithms to exploit such mechanisms 

in order to apply them in practice

Ø It is unrealistic to expect existing DEC-POMDP solvers to 

“discover” such mechanisms “on the fly”

Ø The utility of these mechanisms has been demonstrated 

(e.g. feature-based memory states &  planning with options) 

Ø Need to pursue such mechanisms even if they seem to 

compromise “optimality” or include “ad hoc” design choices

Ø Coming next, “How to Help our Planning Algorithms 

Produce Explainable Results?”
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Questions?
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