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some concepts from the last lecture

- analysis & control of dynamical systems

- dynamics/motion

- models/mathematical models

- prediction/simulation

- linearity

- time-invariance

- feedback control scheme: principle and example

this lecture

- models: from differential equations to state space representation
- input & output choice

- State

- similar transformations
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general mathematical model

r(t) state € R"
u(t) input  u e R™

y(t) output y € RP

A dynamics matrix (nxn)
B input matrix (nxm)

state Space representation

linear time invariant (LTI)
dynamical system (continuous time)

multi input (if m = 1, single input)

multi output (if p = 1, single output)

(' output or sensor matrix (pxn)
D feedthrough matrix (pxm)

SISO system: B (nx1) and C' (1xn)
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block diagram representation

(D]
u(t) _+)Q+:b(t)): (1) +,+§

simulation model
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mathematical model

°t

°t

ne state evolution is influenced by the initial condition anc

ne output displays the measurable effect of such state evo

output

the input

ution (and

potentially may also depend directly on the input when D is nhon-zero)

the system transforms an input signal into an output signal
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system as a sighal transformer

v(?)
F(t) no friction case
—— 7 and vo = 0
A A
F(¢) v(t)

Input mass output
(cause) System (effect)

1
model v(t) = —F(1) no friction
(system representation)
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mass model with viscous friction

q with friction force Fy(t)
(t)

we add a viscous friction force Fy(t), acting on the mass, which can be

oy Fd

considered proportional to the velocity and acts in the opposite direction

Fi(t) = pv(t)

Newton’s equation mo(t) = —F4(t) + F(t) = —pv(t) + F(t)
model is updated as o(t) = —po(t) + iF(t)
(system representation) m
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mass system - simulations

Mass (velocity) with no friction

velocity

- | \ |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lime
no friction

(different initial velocities)

velocity

-0.5 -

Mass (velocity) with friction

(different initial velocities)

with friction

_V0 = —2

_Vo =-1
Vo =

_VO = 1

_VO =

= = input

| | | | |
0 0.5 1 1.5 2 25 3 3.5 4 45
time

velocity when a constant 1 N force from ¢ = 1 sec is applied

(learn how to interpret plots)

suggested problem:

use only piece-wise constant F(t) = +F'in order to change velocity
from v1 to v2 (you can switch value at any time)
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sighals & systems perspective

600.3 - Fall 201 |

MIT OpenCourseware Dennis Freeman Signals & Systems

Lecture |:Signals and Systems

analysis & design of systems via their signal transformation properties

system transforms an input signal into an output signal

how: system description (we saw mathematical model)
is independent from physical substrate (e.g., cell phone)
focus: flow of information

abstract, widely applicable, modular, hierarchical
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different systems may have similar models

* [inear motion under the action of a force

Hl» o(t) = —F(t) x(;;oiSIzg(t)bzl/m
) m u(t) = F(t) g
H
£(t) =0-x(t) +b-u(t) <-- mode?iﬁicture <-- &(t) =0b-ut)
+ rotational motion under the action of a torque .
ot G(t) = TT0) =Ry

11t)
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similar models and similar behavior

* [inear motion under the action of a force

’U(t) 1 t
F{(t) v(t) =vo + — / F(r)dr
o X
A
t
T(t) =0 -2z(t)+b-u(t) ------------- > x(t) = xg b/ u(7)dr
0
* rotational motion under the action of a torque v
1 rt
w(t) w(t) = wo + 7 / T(7)dr
0

11t)
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mass-spring-damper (MSD)

rest position — O S

F(t) control force

Fy(t) disturbance force

(
F.(t) elastic force

—— . F4(t) friction force

rest position: with zero velocity

Newton’s
second law m a(t) = F(t) - Fe(t) - Fu(t) - Fa(t)
of motion

s(t) = deviation from rest position a(t)

F.(t) = k s(t) linear spring

modeling
hypothesis [ (t) = u v(t) linear viscous friction
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MSD - elastic force

modeling load F. & spring characteristics
hypothesis
=== linear
> === degressive
deflection s
= progressive
example: : N 3
Pe: . load F. . . .. cubic approximation k15 + k25
progressive spring 0 5 '
: : _ linear approximation ks
linear E 1ot
—_— behavior 4 : fully compressed
— 5 5 (all the coils are in contact) —%
= n : : compression s

deflection s W-I't.rest position

the (linear) approximation of the spring characteristic is part of the modeling phase
similarly for the friction force
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MSD - friction force

we assumed the viscous friction force Fy(t) to be proportional to the
velocity and acting in the opposite direction

we indicate schematically the presence of viscous friction with the symbol

a mechanical damper is also called dashpot

and we call it a damper
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MSD - state space representation
™ a(t) — F(t) - Fe(t) - Fa(t) - Fd(t)

+ modeling hypothesis

[ m (1) = —k s(t) — (1) + F(t) — Fy(t) ]

how do we rewrite this linear model in the standard state space form!?

we need to
* define the state
* define the input(s) and output(s)

* rewrite this second order differential equation in terms of the state and its derivative

4 )
input(s) 7 state 7 output(s) 7
o >
how many 7 n=~"7 how many 7
\ J

can also be seen as a
signal transformer
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MSD - state space representation

t(t) = Ax(t) + Bu(t)
H‘ "’ if yes, how 7

mE(t) = —ks(t) — pa(t) + F(t) — Fy(t)

input: 2 choices

* single (scalar) input u(t) = F(t) - Fa(t)
(if it is not necessary to distinguish between the control input F(t)
and the disturbance Fj(t), for example in a pure analysis context)

* two distinctive inputs F'(t) and Fy(t) become a unique two

dimensional input vector u (t)
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MSD - state space representation

choosing as state the position displacement and the velocity of the mass

o-(:19)-(8)

we can rewrite the second order differential equation as

Zi?l (t) — X9 (t)

k L4 1
Co(t) = —— t) — — L —(F'(t) — F,(t
ba(t) = ——a1(t) — Ly (t) + —(F(t) - Falt)
1 second order 2 first order
from differential to differential
equation equations

and matrix form 7
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MSD - state space representation

in the form #(t) = Az(t) + Bu(t)
* single input case A i
i () = (5 —2) () + (3) -
with u(t) = F(t) — Fa(t)
v BB
- (5 ) ) (2o (2



MSD - state space representation

matrices A and B are characteristics of the given system,

while C and D depend upon the particular chosen output

examples:
y(t) = s(t) > C=(1 0) D=0
y(t) = $(1) C=(0 1) D=0
y(t) = s(t) — ws(t) C=(1 —-m) D=0
no special physical meaning
. . k nw. |1
t) = s(t -
y(t) = 5(1) we use S ms mS -

_(_k feedthrough
¢ ( ) term D
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high order ODE

2 b, 12D 4 a2 a2 4 a2V = bu(t)

. - d'z(t)
with (D) (¢) = ,
20(t) = —5
~(0)
(1)
we can choose as state x(t) = , and find (A,B)
Z(n_l)/

n dimensional
vector

dimension of state n = number of initial conditions necessary to
define a unique solution of the n-th order differential equation

MSD as a special case ~ ms + us + ks =u
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high order ODE

finding (A,B)

[0 1 0 o 0 ,
2D 0 0o 1 --. 0 2(0) (O
/Z@)\ . . : ( e \ (o
i (t) = : _ ; ; : ; : + ||
(n E E 1 (n-1) 0
\ | )/ \_CLO —a1 - —an_1/ / \b)
_ A o)+ B ult)

:l C z(t) 4+ 0 wu(t) .e.D = 0
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state

The state of a dynamical system is a set of physical quantities
(state variables), the specification of which (in the absence of

external excitation) completely determines the evolution of the
system (B. Friedland)

Specific physical quantities that define the state are not unique,
although their number (system order) is unique

Or the minimum set of variables such that their knowledge at
time to, together with the knowledge of the external excitations
(inputs) in |to,t), allows the complete characterization of the
system evolution in [to,t)

Lanari: CS - Models
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state dimension - examples

1
* first order system v(t) = —F(t) reR
m

- second order system m&+us+ks=u 1z€R’
* n-th order system x € R"

2™ a2 b 4002 a2 4 ag2?) = bu(t)
* 241 = 3rd order system

Aol + a1T1 + agr1 = Qu 71 ;
. r=|xz1|] €R
b1To + boxa = Bu To

* 2nd order system although one 2nd order + one |st order ODE
a2x1 + a1x1 + agr1 = Qu

201 1.1 021 x:(a?l)GRQ
b121 + bor1 = Pu

X7
substituting 1 from 2nd equation ito first: one 2nd order ODE
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+ ! |
Resistor v % l v(t) = Ri()

+ 1
) 7 l i(t):Cdv(t)

Capacitor T At
_ 1

or v(t) = o (t)
+ v .

di(t

Inductor v % l v(t) =L d(t)

_ () = Lo

ori(t) = 7 o(1)

" I
voltage

() Vs 5
source

v(t) = vs(t)
755 é current
i(t) = is(t)

elements which store energy = —>  state components
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Kirchhoff’s laws

conservation laws

KCL (Kirchhoff current law):

the algebraic sum of all the currents entering and leaving a node
must be equal to zero
> i

k

KVL (Kirchhoff voltage law):

the algebraic sum of all the voltages within a closed circuit loop
must be equal to zero
2 =0

J

Lanari: CS - Models

25



models of electrical circuits (RLC example)

series RLC circuit (Resistor, Inductor, Capacitor): fj;.{(t)
2 energy storing elements @ R
. du(t _
vr(t) = Ri(t) wvp(t)=1L d( ) ve (t)
t 4 +
KVL sememay UR + U + Vo0 = U v(t) é UO(t) C
L . di(t) - -
Att.: this looks likea [ Ri V(1) = v
| st order ODE dt + R+ veld 2 -+
vL(?) L
state o — (i) -
(one possible choice) z(t) (Uc (t))
da(t R 1 1
W i)~ Teol) + o)
find = Axz+ Bv (sol)
dv,(t) i 0
= —1
dt C
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models of electrical circuits

series RLC circuit (alternative model)

dvo (t)

being vr(t) = Ri(t) wvp(t)=L pr

i(t) = C

we rewrite the KVL equationas LC vo + RCvo +ve = v
state
(other possible choice) Z(t) a (UC (t)> instead of ZC(t) — (

note the similitude (RLC) LCi¥c + RCoc +ve =v

between the two
expressions (MSD) ms+ pus+ks=u

“similar’ structure/solution/behavior

Lanari: CS - Models
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models of electrical circuits

series RLC circuit

 with state £ we had

R _1 1
_ L I3 | T
A=11 0 )’ b= 0

C

e with state z we have

0 1 0
A=1_1 g B=1
LC L LC

m»m} since these two different representations refer to the
same RLC circuit, they must share the same important
system characteristic

different dynamic matrices but with same characteristics
(e.g., same eigenvalues - see algebra slides)

Lanari: CS - Models
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models of electrical circuits

series RLC circuit: 2 different state vectors choice

note that x(%) and z(t) are related by a linear nonsingular transformation

2(t) < > (1) 2(t) = T x(t)

change of coordinates

)= (50) = (2 o) (eetn) =720

check T' nonsingular

I'nonsingular defines a similarity transformation
(see algebra slides)

Lanari: CS - Models
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models of electrical circuits (other example)

11
MW
=+ R u [ 1l v
v(t) R C vc 1 S . "
- /
- s U = Y = 13
T = VC
1 /1 1 1
r = —= | x U
C\Ri Ry R.C
1 1 1
= - | T U
7/ Ri ' R R
output may depend instantaneously from the input D term
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feedthrough term D

numerical example
A= |

2

—4

step input ||

output
0 1 1
8 9 10
D=0.5
15 T T T T T
1 : /\\______———-' :
/—7\\ ] ] .
// \\ ‘ ‘
05 7~ T = TS e — = = —
/ ‘ step input
[ ‘ output
0 | | |
o/ 1 2 3 5 8 9 10
t
Dy =0.5
AQ |: 4
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u(t) unit step input from t = 1

at time ¢t = 1, the input switches
from 0 to 1 and instantaneously

the output switches from 0 to
D2u(1) = D>

] Bzzm Co=12 2| Dy=05
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heat flow models

heat flow (variation of . 1
heat ), Joule/s) througha @ = E(Te —T)
resistance (wall)
l induces a
change in

rate of change of I’ of box A
(thermal capacitance) is . 1.
proportional to heat flow I = 5Q

Te

& T = 1T'1T
TC ~  RCT " RCC

example: a box placed with
internal temperature 7'in an
ambient at a temperature 7

if 1. constant

Lanari: CS - Models

lumped capacitance models

(2 heat (Joule)

R thermal resistance
['temperature

I ambient temperature

C heat capacity

first order system

y 111

1(0)
% T.
T(0)

> T
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heat flow models lumped capacitance models

2 similar rooms
T. R C room thermal capacity

q R room thermal resistance

2R room thermal resistance

11 15 between rooms

g heat flow source

writing the variation of heat in each room

1y =17 17 — T
IR R second order

T, —T. T,—T, system
R 2R

if g is an input, the state components could be chosen as 71 and 1>

CT, =

CT2 — q

— find (A,B) and choose an output of interest (and thus C)

Lanari: CS - Models
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heat flow models

Iy =17 17 =1

Ty = R R same equations
as the following circuit
CT, = g T2}_%T€ 1y — Iy (prove it)
2R
T QM-C 11
i ]

vTI 7T F

Te
current
generator

voltage across first capacitor 11 - 1
voltage across second capacitor 15 - ¢

Lanari: CS - Models

34



vocabulary

English Italiano

linear time-invariant system sistema lineare stazionario

input/state/output ingresso/stato/uscita

mass/spring/damper system |sistema massa/molla/smorzatore

. rappresentazione nello spazio di
state representation

stato
dynamics matrix matrice dinamica
input (output) matrix matrice di ingresso (uscita)

matrice del legame diretto

feedthrough matrix . .
ingresso-uscita
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