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outline

* zero-state solution

® matrix exponential

e total response (sum of zero-state and zero-input responses)
* Dirac impulse

* impulse response

* change of coordinates (state)
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system
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Linear Time Invariant (LTI)
dynamical system
(in Continuous Time)

relR” vwelR™ yelR”




system representation

implicit representation b — E v(0) = vy
i(t) = Az(t) + Bu(t)  z(0) = zg m ;
example
!
1t
explicit representation (solution) v(t) = v + — / F(r)dT
0

r(t)=...

* we want to study the solution of the set of differential equations
in order to have a qualitative knowledge of the system motion
* we need the general expression of the solution
- first we look at the solution when no input is applied
(zero-input response)
- then we add the contribution due to the input only
(zero-state response)
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solution: zero-input response

zero-input response (i.e. with u(t) = 0) z(t) = Az () + B><
escalar case & = ax z(0) = xg ey () = €™
® matrix case 1 = Ax ZU(O) — X0 M I(t) — eAtiUo

dimensions n x 1 T n X 1

. At 9
what is e ! "X M
[ )
definition = ] + At + AQ— 4 . Z Ak
\_ _J
. d ,
check fzd—(e xo):---:Ax
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matrix exponential

definition

properties

dt
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consistency

composition

= < Ai1Ad = AA
equality holds iff



solution: zero-input response

the exponential matrix propagates the initial condition into state at time ¢

eAt

xro = x(0) > x(t)

propagation

more in general it propagates the state ¢ seconds forward in time

x(T) > x(T+1t) = eAt:z:'(T)

curiosity: Euler approximation
r(t+t)~x(r)+te(r) = (I + At)x(7)
exact solution

r(t+1t) =eMa(r) = (I + ;475 + A% /20 4+ )z (T)
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solution: zero-input response

phase plane T = (2) (note that n = 2, hence it’s a plane)
it is possible to represent the vector field # = Ax | z(t) = Ax(t)
Ao e NN
Sk N
1\\\\\\*,t\'\\\\\\\ le(t)
0_5\\\\\\\ '\'\'\\\ \\ >
RN NN NS i
AN NN <o vector field
‘\\\\\x\»=f-\\\\i§ S
15 e =~ NN . I
P ] eample ()= |y | el

and build a phase portrait (geometric representation of the trajectories)

for mechanical systems (typically second order systems) the phase plane
has coordinates position and velocity
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X2

phase plane
state trajectories
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solution on phase plane: pendulum example

modeling ® rod has no weight
hypothesis @ mass 1m concentrated at the tip

moment of inertia is I = m/¥¢?

equation of motion ¥ = —¢mg sin? mg sinv

myg
Pendulum with no damping 3 g - .
(nonlinear differential equation) ﬁ(t) ™ / Slnﬁ(t) =0
. . _ZCl_ _19_
in state space form, choosing the stateas T = | = 1
2
: L2
gives T = . = f(x)
— 2 sinay
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solution on phase plane: pendulum example

Pendulum with no damping 19(75) i Q Sinﬁ(t) — 0

(nonlinear differential equation) /
phase portrait 4} 1 (9(0),9(0)) = (x,0)
3t solution - Q
unstable
equilibrium
state

stable )
equilibrium al

state
o

(9(0),9(0)) = (0,0)
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solution on phase plane: damped pendulum

more in the stability section

interpret the different motions starting from the initial conditions e
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solution: total response - general case

r = Ax + Bu
r — Ax = Bu

e Mg o7 Ar — e~ A By

da (e_Atm(t)) = e~ Bu(t)
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solution: total response

scalar case

t
T = ax + bu  solution is z(t) = e xq / e =T bu(T)dr
0
heck using th :
check using the
Leibniz intggral rule At f t T dT o / _f( )dT T f ‘ T=t
t
i = aexq + / ae® T bu(T)dr + bu(t) = ax +bu  m
0

example: see the point mass  v(t) = vy + - / F(T)dt

4 )
definition: convolution integral f(t)xg(t) = / f(t—m7)g(r)dr
\. J
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solution: total response

matrix case

4 )

t
state z(t) = ety +/ e A7) Bu(r)dr
0

A ¥,

zero-input response (ZIR)  zero-state response (ZSR)

«§ ¥

t
output y(t) = CeMay + / Ce*=7) Bu(7)dr + Du(t)
\. 0 J
e*!  state-transition matrix
N.B. product is not commutative
Ce! output-transition matrix for matrices
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solution: total response

total response = zero-input response + zero-state response

1

x(0) # 0 z(0) =0
u(t) =0 u(t) # 0
two distinct contributions to the motion of a linear system

® 3 non-zero initial condition causes motion as well as

® 2 hon-zero input

alternative names
* zero-input response = free response/evolution

* zero-state response = forced response/evolution
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superposition principle consequence of linearity

t
x(t) = ey —|—/ e =T) Bu(7)dr
0

from general solution ;

y(t) = Ce g + / Ce =) Bu(r)dr + Du(t)
0

if  (Toa, Ua(t)) generates  Z.(t) and  Yq(?)
if  (Top, up(t)) generates  Zp(f) and  Y(?)

then (axoq + Bxop, qug(t) + Buy(t)) generates ax,(t) + Bay(t)

N and oy (t) + Byp(?)

only for same linear
combination

e

\_

if

special case ZSR (forced response) x(0) = 0

ua(t) —_— ZS Ra

then awu,(t) + pup(t) —— oZSR, ZSR
wn(t) 7SR, (t) + Buy(t) Q + BZSRy

_/
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superposition principle: special case - example

CE‘(O) = 0 l disturbance d(t)
(" )
control input u(t) m(t) — A $(t) + B4 u(t) + By d(t) output y(?)
> >
y(t) = Cx(t) + D1 u(t) + Do d(t)
\ J

total output ZSR (forced response) is made up of two contributions
* a first due only to the control input (setting the disturbance to zero)

* a second due only to the disturbance (setting the control input to zero)

property frequently used in control design
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Dirac’s delta (impulse)

generalized function impulse
centeredint = 7

5(1) =0 if t#0
+00
/ o(T)dr =1

= approximation

properties
f(t)é(t — 7') = f(T)5(t — 7') (as a function of ?)
f(T)5(t — 7') - f(t)5(t — 7') (as a function of 7)

+ 00
/ F(7)8(t — 7)dr = (1)

— 00 sifting
F00 (sampling)
/ F(t—m)0(r)dr = F(t) | bropers

(as a function of 7)
Lanari: CS - Time response
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Dirac’s delta: application

Zero-state OUtpUt response
sifting property

I

4 4
/ CeAt=7) Bu(r)dr + Du(t) = / [CeA(t_T)B + Do(t — T)} u(T)dr
0 0

(4
rewritten as / W(t — ryu(r)dr  with [W(t) — CeMB 4 D(s@
0

for now just a more compact way to rewrite the ZSR, but it can be also
given an interesting physical interpretation

if u(t) =

/0 Wt —71)u(r)dr 5(9 /0 Wit —7)o(r)dr = W (t)

W(t) defined as the (output) impulse response
i.e. the response to a specific input, the Dirac impulse
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impulse response

for any input u(t), the zero-state output response is a convolution
integral of the impulse response W(t) with the input u(t)

t
output ZSR = / Wt —71)u(r)dr
A 0

to the input (1)

* the knowledge of the sole (output) impulse response W(t) allows us
to predict the zero-state (output) response to any input u(t)
* a unique experiment aimed at the determination of the impulse

response W(t) is, theoretically, sufficient to characterize any zero-
state response
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21



iImpulse response - example

mass + friction (with coefficient 11), measuring velocity

1
1 1 r =V A = _ﬂ B = —
v = v+ —F > 1 = Ax + Bu m m
m m u=F C =1 D =0
I At 1 Ky
impulse response W (t) = Ce”'B = Re -
F(t) Wi(t) ;i iﬂpulse respogse
t P
| F, F 2
P —nt— > D
0 : 10 15

time

physical interpretation (see how much -u/m is important)

* larger friction coefficient gives faster impulse response exponential decay
* larger mass gives slower impulse response exponential decay
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impulse response - example
mass + friction (with coefficient 11), measuring velocity

1 I _
=Tyt —F impulse response W (t) = Ce'B = —e m!
m m m

for a different input, for example u(t) = sin wt, we can compute explicitly
the zero-state response from the knowledge of the impulse response

y(t) = /0 Wt —7m)u(r)dr =---
1 1

5 [ Sinwt—wcoswt—kwe_%t}
m (8] 4o m

zero-state response to sin(5t)

time
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Dirac’s delta: application

similarly for the state zero-state response

define H(t) as H(t) =e™B

the zero-state response (of the state) can be written as the following
convolution integral

/ t A=) By(1)dr = /O t H(t — 7)u(r)dr

0

interpretation

/tH(t—T)u(T)dT fult) = /Ht—T

/H 9)d9 = H(t) < i
T T=1

S|ft|ng property

H(t) state impulse response ¢“'B

Lanari: CS - Time response
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state impulse response

H(t) state impulse response e“'B

other interpretation (for SISO systems) (= ZIR from z)

H(t) = e*'B formally looks like |e*zo| with o = B

. (—01 05 ~1 \
L = _05 _01 L 2 u , | te impullse reslponsel

1.5¢

1_

the impulse is transferring
the state instantaneously o
from 0 to B, and then evolves

with no input as a free

evolution from g = B 1.5
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iImpulse response

/
4\ impact hammer

Impulse Response

Amplitude

| | | |
30 40 50 60 70
Time (sec)

impulse response
(here not experimental)

Hubble Space Telescope
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impulse response: experimental determination

Modal testing for vibration analysis:

* the impulse, which has an infinitely small duration, is the ideal testing
impact to a structure: all vibration modes will be excited with the same
amount of energy (more on this in the frequency analysis section)

* the impact hammer should be able to replicate this ideal impulse but
in reality the strike cannot have an infinitesimal small duration

* the finite duration of the real impact influences the frequency content
of the applied force: the longer is the duration the smaller bandwidth

more in the “Mechanical Vibrations’’ course
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solution: total response

more compact notation

t
x(t) = P(t)zg+ / H(t — 7)u(r)dr
0
t
y(t) = Y(t)xg —I—/ Wt —71)u(r)dr
0
state d(t) = et H(t) =e™B
output U(t) = Ce? | W(t) =Ce*B+ D§(t)
transition impulse \
matrix response Dirac impulse
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change of coordinates

In a state space representation

(A, B,C, D) (A, B,C, D)
state x z=Tx det(T) # 0 state 2

change of coordinates

I'defines a representation similarity transformation

>

Cx + Du same system Yy = Cz + Du

<
|

input u & output y do not change,
only state is chosen differently

the matrices of the two equivalent system representations are related as

~

A=TAT' B=TB C=CT'! D=D

equivalent system representation (proof) ...
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change of coordinates

the fact that the same system can be represented with different choices
of the state vector is not surprising

consider the 2-dimensional case, the same state can be represented in
the two frames or w.r.t. two different bases

<1

Lanari: CS - Time response
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example: from “models of electrical circuits”

series RLC circuit

state 2(t) = (zgg) or - (t) = (vif?t))

T
note that x(%) and z(t) are related by a linear i(t) {%
nonsingular transformation z(t) = T xz(?)

_|_
() — ve () _ ve(t) _ (0 1 i(t) T v(t) ’Z}C’(t) C
0= (ietn) = (£0) = (3 o) uetw) =70 <'I»> -
T Inonsinguiar +
_ (0 1y 1 (0 C vr(t) L
() o9 L
2(t) =T x(t) r(t) = T~ 2(t)

we can study the RLC circuit in any equivalent choice of the state vector
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models of electrical circuits

series RLC circuit

 with state £ we had

R _1 1
_ L L | T
S 0 )’ b= 0

C

e with state z we have

0 1 0
A=1_1 g B=1
LC L LC

mmé} since these two different representations refer to the
same RLC circuit, they must share the same important
system characteristic

different dynamic matrices but with same characteristics
(e.g., same eigenvalues - see algebra slides)

Lanari: CS - Time response
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impulse response

1 experiment > 1 response
t = Az+ Bu same system ¢ = Az+4DBu
y = Cx+ Du (different representation) y = (Cz+ Du

| I

N

W(t) = Ce B + D§(t) W(t) = Ce B + Ds(t)

\4

same impulse response

4 ) i.e. independent from
Wi(t) =W(t) the chosen set of
\ y coordinates (state)
(proof) ... the impulse response characterises

the 1/O behavior
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general solution (recap)

=
~~
N
N—
]

d(t)xg + /0 H(t — 7)u(r)dr

y(t) = \If(t)$0+/0 Wt —7m)u(r)dr

O(t) =e H({t)=eMB Y(t)=Ce? W(t)=Ce™B+ Dé(t)

the matrix exponential appears everywhere

do we need to compute the exponential using its definition 7

At— 2_ e o o k—
e’ =1+At+ A 2!+ —g Ak!
k=0
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matrix exponential

there are many different ways
to compute the matrix

exponential ...
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SIAM REVIEW (© 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 3-000

Nineteen Dubious Ways to
Compute the Exponential of a
Matrix, Twenty-Five Years
Later®

Cleve Moler'
Charles Van Loanf

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involv-
ing approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristic polynomial have been proposed. In practice, consideration of computational
stability and efficiency indicates that some of the methods are preferable to others, but
that none are completely satisfactory.

Most of this paper was originally published in 1978. An update, with a separate bibliog-
raphy, describes a few recent developments.

Key words. matrix, exponential, roundoff error, truncation error, condition
AMS subject classifications. 15A15, 65F15, 65F30, 651.99

PIl. S0036144502418010

1. Introduction. Mathematical models of many physical, biological, and eco-
nomic processes involve systems of linear, constant coefficient ordinary differential
equations

(t) = Az(t).

Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is
sought which satisfies an initial condition

2(0) = zo.

In control theory, A is known as the state companion matrix and z(t) is the system
response.

In principle, the solution is given by z(t) = e*4zy where ¢!
defined by the convergent power series

4 can be formally

t22

etA=I+tA+T+~-~.

*Published electronically February 3, 2003. A portion of this paper originally appeared in STAM

Review, Volume 20, Number 4, 1978, pages 801-836.
http://www.siam.org/journals/sirev/45-1/41801.html
tThe MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 (moler@mathworks.com).
tDepartment of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7501
(cv@cs.cornell.edu).
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matrix exponential

we will use changes of coordinates (state) z = T'x

r = Ax+ Bu
y = Cx+ Du

a _
eAt _ T_leAtT

“easier’” to compute
-

~

_/
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if 37 -
z ="Tx

(T") #£ 0 5 = Az+ Bu
—> y = Cz + Du
 with e‘zft

Hypothesis |
\l/ ‘easier” to compute

_1 B
€At _ 6TAT t _ TeAtT 1

(proof)
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since it is used frequently, we prove that
( Y ( N )
if A=TAT '|ie. A=T TAT then | =T leflT
\. . \. J
from A=TAT! we obtain A =T"'AT
i~ >tk _
At _ T YATt _ ~1 k
et =ce = Z E(T AT)
k=0
= > =T AT
k=0
—1 s tk e _
=T ) AN T
k=0 _
= T LM
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vocabulary

English Italiano

phase plane piano delle fasi
ZIR/ZSR evoluzione libera/forzata
vector field campo vettoriale

(state) impulse response risposta impulsiva (nello stato)

convolution integral integrale di convoluzione
transition matrix matrice di transizione
sampling property proprieta di campionamento
superposition principle principio di sovrapposizione
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