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outline

* introduce the Laplace unilateral transform

* define its properties

e show its advantages in turning ODEs into algebraic equations

e define an Input/Output representation of the system through
the transfer function

e explore the structure of the transfer function

* solve a realization problem
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Laplace transform

real valued function f(t) L > F(S) complex valued function
in the real variable ¢ in the complex variable s
teR seC
4 — p
— st Laplace (unilateral
F(S) -~ / f(t)e di " tran(sform )
0
\ J
for f(t) with no impulse and _
no discontinuities at ¢t = ( F(S) o L[f(t)]
Im

region of existence:
for all s with real part greater equal to
an abscissa of convergence oy

-a | region of
i convergence

example f(t) = e ™ a>0, o09g=-a
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inverse Laplace transform

L_l

F(t) = £V F(s)] = — / T R(s)etds

27 s

unique for one-sided functions f(¢) definedfor ¢t >0 or [f(t) =0 for t<0

(one-to-one)
with this assumption the inverse

all give the same F(s) Laplace transform is unique
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Laplace transform

Laplace transform of the impulse

o= correct definition of the
"""" Laplace transform

LI6(t)] = /OO O(t)e™tdt = /OO (e tdt =e " =1

Linearity [ [Oéf( ) + 59( )] — aﬁ[f(t)] - 5£[g(t)] J
. ( £ [ 40 _eiy - \
Derivative property at — S [f(t)] f(O)

can be applied iteratively L [f(t)} _ SQE[f(t)] — sf(0) — f(O) very useful in

model derivation
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LTI systems

also useful here t(t) = Ax(t) + Bu(t) x(0) = xg

(proof): linearity + derivative property

algebraic solution
X(s)= (s —A)‘zg+ (sI — A)"'B U(s)

and therefore

Y(s)=C(sI — A) 'z + [C(sI — A)"'B+ D] Ul(s)
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LTI systems
state ZIR state ZSR

transform transform

e N e N

[X(s) = (s] —A) " txg+(sI —A)'B U(s)j

t
x(t) = eag +/ e =7) Bu(1)dr
0

and therefore, comparing

L [eAt] = (s — A)7!

Heaviside step function

5_1(t) 1 for tZO

1 1
C[e] = — L0_1(1)] = . 1 R 0 for t<0
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LTI systems

y(t) = Cettag + /O w(t — T)u(r)dr

with  w(t) = Ce™ B + D6(t)

transform W (s) = C(s] — A)_lB + D

- [C(sI — A)"'B+ D] Uls)

general result

Y(s) = C(sI—A) ‘zg-
= C(sI —A) taxg+W(s) U(s)
Convolution theorem
r { /O w(t — T)u(f)df} — W (s) U(s)

being L|§(t)] = 1 the output response transform corresponding to u(t)

same for H(s)
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transfer function

t
Input/Output behavior yzs(t) = / w(t — 7)u(T)dr
0

Lo — 0 (ZSR)
Yzs(s) = Wi(s) U(s)

Transfer function

~ R
W(s) = C(sI—A)"'B+D
_ st(S)
U(s)
= Llw(?)]
- Y
Input/Output behavior independent from

state choice?

independent from state
space representation!?

Lanari: CS - Laplace domain analysis



transfer function

z=Tx det(T) # 0

(A,B,C,D) > (A,B,C,D)
r = Ax+ Bu 5 = Az+ Bu
y = Cz+ Du y = Cz+ Du

~

W(s)=C(sI —A)"'B+D=C(sI — A)~'B+ D
for a given system, the transfer function is unique

(obvious since it’s the Laplace transform of the impulsive
response which is independent from the system representation)
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shape of the transfer function

W(s)=C(sI —A)'B+D
inverse through the adjoint (transpose of the cofactor matrix)

1
det(sl — A)

C' (adjoint of (sI — A)) B+ D

cofactor(i, j) = (—1)i+j minor(z,j) polynomial of order n - 1

1 ..........................................
................. (' (cofactor of (sI — A B + D
T eleter ol o1 A B
polynomial of order n ......... » rational function
(strictly proper)
strictly proper rational function: degree of numerator < degree of denominator
proper rational function: degree of numerator = degree of denominator

we may have cancellations of common factors between the numerator
and the denominator (final denominator degree may be less than n)
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shape of the transfer function

after

W (s) = strictly proper rational function + D cancellations of
1 1

common terms
proper rational function

s N(s) D=0 strictly proper rational function
S) =
D(s) D #0 proper rational function
N ( 3) roots Zeros
W(s) = D(s) > soles (for coprime N(s) & D(s))

i.e. N0 common roots

from previous analysis the poles are a subset of the eigenvalues of A

[{poles} C {eigenvalues} ]

more on this later
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partial fraction expansion  (distinct roots case)

N(s) beastrictly proper rational function with
D(s)  coprime N(s) and D(s) and distinct roots of D(s)

Let F(s) =

- N(s)

. D(s)=an[[(s—p) = Fls)= an [[i=1 (s — ps)

1=1

n
R.
then F(s) can be expanded as F(s) = Z :

with the residues R; computed as R; = [(5 —pi)F(s)]

e transfer function WW(s)

this result will be used for the
* output zero-state response Y(s)
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poles & eigenvalues

from def
N (s) ! 1
W(S) — D(S) < W(S) — det(s[ _ A) N,(S) characteristic
< polynomial
if det(s] —A) and N’(S) coprime {poles} = {eigenvalues}
if det(sI —A) and N'(s) not coprime {poles} subset of {eigenvalues}
y here visible l here visible
Input/Output vs Input/State/Output )
representation representation )
Transfer State
function space

we need to understand when & why this happens
(so to understand when we can consider the transfer
function equivalent to a state space representation)
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pOIGS & eigenvalues (distinct eigenvalues of A case)

n = state space dimension = dimension of A = number of eigenvalues

np = number of poles in W(s) D = 0 case
partial fraction expansion
N(s) N(s) . R,
W(S) — D — Np — Z Z done the same analysis
(S) Hz 1(S_p’t) i—1 S — Pi intforn =2
", Cu; vI'B
A Aj J
W(s) = Llw(t)] = L[Ce ' B] = Z tuju] | Bl=) S_;.
j=1 ’
spectral form
’UjTB =0
if and/or the eigenvalue \; does not appear as a pole
CUj =0

we have a “hidden mode” associated to the eigenvalue )\;
(see structural properties)

NB distinct eigenvalues is different from diagonalizable
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pOIGS & eigenvalues (distinct eigenvalues of A case)

fact: all the natural modes appear in the state ZIR At
for some generic initial condition > &
If for an eigenvalue \; we have that
T T . :
V; B = (0  implies the corresponding mode will not appear A
in the state impulsive response > "B =H(t)

the corresponding mode (or eigenvalue) is said to be uncontrollable

Cu; =0 implies the corresponding mode will not appear
in the output transition matrix > et = U(t)

the corresponding mode (or eigenvalue) is said to be unobservable
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poles & eigenvalues

(distinct eigenvalues of A case)

Theorem

Every pole is an eigenvalue.

An eigenvalue \; becomes a pole if and only if it is both controllable and observable
viTB #~ 0 and Cu; # 0

or equivalently the following two PBH rank tests are both verified

A— N1
rank( A—)\il‘ B ):n and rank =X0
C
Popov-Belevitch-Hautus Popov-Belevitch-Hautus
controllability test observability test

(the PBH test could be tested for a generic A but matrix A - AI loses rank only for A=\; )

Lanari: CS - Laplace domain analysis



poles & eigenvalues

Where does the PBH test comes from?

Observability (sketch):

(distinct eigenvalues of A case)

A— N1 means that the rectangular (n+1) x n matrix has not full
rank <n column rank and therefore it has a non-zero nullspace, that
C is there exists a n vector wu; such that
( (

u; =0 «—> 4

C

X C’uz:()

X C’uz:()

that is there exists an eigenvector which belongs to the nullspace of C' (or the corresponding

mode is unobservable)
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example

1 1 1 1 . .
1 1 N(s—1 o fractional decomposition
(SI — A) — St (s+ )1( ) — Ml works also for rational matrices
0 s+ 1 s —1

s—1

both natural modes appear (as it
elt = Mye=t 4+ Mye!  should be) in the state transition
matrix

a different way to compute the
matrix exponential
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example

(sI —A)"'B = (s%l)

C(sI—A)"'=(0

w(t) = Ce*B =0

equivalently
Uq / (A — )\1])U1 =0
U9 / (A — )\Ql)ug =0

mode corresponding to
P 8 ) oAt B

A2 does not appear

Wi(s)=0

mode corresponding to O At no poles
A1 does not appear
forced response will always be zero

independently from the input applied
(look at the 2 first order ODE)

:8 ;] up =0 g = H v =[1 —1/2]
:_02 (1)] uz =0 ug= H vl =10 1/2]

Lanari: CS - Laplace domain analysis

20



example equivalently with the PBH rank test

controllability test

0 1]1
mode corresponding to A1 is controllable rank 0 210 =2=n

—2 11
mode corresponding to A2 is uncontrollable rank 0 =1<n

observability test

(0 1) (=2 1\

rank [ 0 2 | =1<n rank 00 1 =2=p
\ 0 1/ \ 0 1)

mode corresponding to A1 mode corresponding to Ao

is unobservable is observable
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pOIGS & eigenvalues (general case)

Theorem
Every pole is an eigenvalue.
An eigenvalue \; becomes a pole with the multiplicity m. (algebraic multiplicity) if and only if

both PBH rank tests are verified

A— N1
rank(A—)\iI‘B):n rank - —n
controllability observability

NB - If one of the two conditions is not verified then the eigenvalue \; will appear as a pole with
multiplicity strictly less than the algebraic multiplicity, possibly even 0 (in this case we will have a
hidden eigenvalue). In particular the eigenvalue will appear at most as a pole with multiplicity

equal to its index (dimension of the largest Jordan block).

NB - If for an eigenvalue )\; the geometric mg(Ai;) >1 then there exists a hidden dynamics.

Lanari: CS - Laplace domain analysis
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example

A1 1 0 V]
Ag=10 A 1| PEETERESE gty | o= [£0 vV V]
O O )\1 veriried ror # O_
) ) 010
> easily seen from —— Ag— Al = {O 0 1}
0 0 O
1 _(S— )\1)2 (S— )\1) 1 ]
(sT — Ag)™" = (5—A)3 0 (s=A1)? (s—A\1)
R 0 (5 —A1)?
0 |
B1 — (1) Cl — [1 0 O} — Fl(s) — (S . )\1@% index of \1
B—_(l)- C,=C,=[1 0 0] —> Fy(s) = B=A) 1
2 = X 2 — L1 = 28_(3—)\1)3_5—)\1
BB
By =By = |0 03:[0 0 1} —_— Fg(S)—O
0
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example

the PBH rank test will never be

A 10 0 1 0 satisfied independently from B
As=10 X O since A4—MI=(0 0 O and C. At most the eigenvalue
0 0 N\ 0 0 0 will appear as a pole with
- - multiplicity = index of A1 = 2
. 1 (S—)\l)z (S—)\1)2 0 1 (S—)\l) 1 0
I—Ay) ' = 0 — A 0 — 0 —\ 0
(s 2 (s = A1)? 0 ¢ 0 1) (s — A1)? (s = M)y 0 ¢ 0 ! (s — A1)
o 1
p— — F p—
By é Ci=1[1 0 0 A(s) CESWE
B s — A 1
Bs = |0 Cs=Ci=[1 0 0 Fs(s) = — L =
5 0 5 1 [ } 5(8) (S—)\1)2 5_)\1
o
Bs =B, = |0 Co=Cr=[1 0 0 Fs(s) =0
1
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example

A 0 0
A7 — 0 )\1 0 (SI — A7)_1
0 0 A

the PBH rank test will never be
satisfied independently from B
and C. At most the eigenvalue
will appear as a pole with
multiplicity = index of A1 = 1

Lanari: CS - Laplace domain analysis
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example

is the system characterized by the transfer function ~ —  stable?
S

* when we start from the transfer function, we implicitly assume that the
eigenvalues (and their algebraic multiplicity) coincide with the poles

* we have seen that an eigenvalue appears as a pole with multiplicity at most equal

to its index (dimension of its larger Jordan block)

* for the pole multiplicity to be equal to both the index and the algebraic

multiplicity of the eigenvalue, there must be only one Jordan block

fundamental
assumption

thus the system has the eigenvalue in A = 0 with geometric multiplicity = 1 and index = 2

system is unstable

1
can also be seen by computing the impulse response L1 {—2} =td_1(t)
S
1
similarly for (s +1)2

Lanari: CS - Laplace domain analysis
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Laplace transform table

1/29 1/29
o(t) 1 sin wt 2w — /] _ /J
2+ w?  s—jw S+ jw
1 S 1/2 . 1/2
d_1(t) - cos wt 2 s—iw st i0
1 . S sIin ¢ + w cos
at sin(wt +
& s—q ( SO) 82—|—w2
tk 1 e W
o ] e”” s wt (s — a)? 4+ w?
t" t 1 t (s — a)
—e" e*" coswt
k!e (S—a)k—l_l (S—a,)2—|—(,d2
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realizations

4, 5,6,D) > W(s)=C(sI —A)'B+D
L |
how 7
realization infinite solutions
W(s) = C(sI = A)"'B+D - (A,B,C,D)

e state dimension ?

* how can we easily find one state space representation (A4, B, C, D) ?

* may be complicated for MIMO systems (here SISO)

* we see only one, obtainable directly from the coefficients of the transfer
function (others are obtainable by simple similarity transformations) with

state dimension = n (i.e.a minimal realization)

Lanari: CS - Laplace domain analysis
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realizations

N (s)
iven S) = with N(s) & D(s) coprime
given W (s) D(s) (s) & D(s) cop

: ] : ictl a non-zero D leads
- first we determine D if W(s) is proper strictly W

proper to W(s) proper
bp—15" "L+ by_08" 2+ -+ byis+b
s"+a,_18"" " +a,_98" 4+ -4+ a18 + ag

- the state has dimension 1 and therefore the dynamic matrix is n x n

- one possible choice for A, B, C' (D has already been determined) is

0 1 0 - 0 i} 8
0 0 1 - 0
A= | B.=| :
0 0 0 . 1 0
@ —a1 —az - —0p-1 1
Ce=1[bo b1 b2 -+ bp ] controller canonical form

(useful for eigenvalue assignment)
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realizations

the matrix A. is called a companion matrix and has as characteristic polynomial

0 1 0 0
0 0 1 0
A, = @ pAc()\):)\”+an_1)\n_1+---+a1)\+ao
0 0 0 1
| —Gp —a1 —a2 —Ap—1 |

the pair (A¢, B.) has, by construction, all its natural modes controllable
we then say that the pair (A., B.) is, by construction, controllable

recall that the poles of the transfer function are also eigenvalues and therefore the matrix A.
of the realization has the minimum necessary number of eigenvalues

Lanari: CS - Laplace domain analysis
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realizations (examples)

1 1
P(s) = — 3
(5) 32+ 25 +6  s2+4 2s+2
| 0 1 0
—] Ac_[_2 _2/3] Bc_L] C.=[1/3 0] D.=0
243 243 1 s2+3 1 -3 —3/2 1
P(s) = 28+ _ s+ :_28—|— Ly S :2/3 L1
252 +6s+2 2(s°+3s+1) 2s?+4+3s+1 2 s24+3s+1 s24+3s+1 2
0 1 0 1
ey Ac_[_l _3] Bc_L] C.=10 —3/2 D=
P(s) 25% + 1353 + 652 + 65+ 7 353 + 25+ 5 o
S) = —
st + 553 4+352+2s5+1 st + 5534+ 352 4+2s5+1
0 1 0 0] 0
| O 0 1 0 0
mm.} A, = 0 o0 o0 1 B.= |, C.=1[5 2 0 3 D.=2
-1 -2 -3 -5 1
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