Control Systems

System response

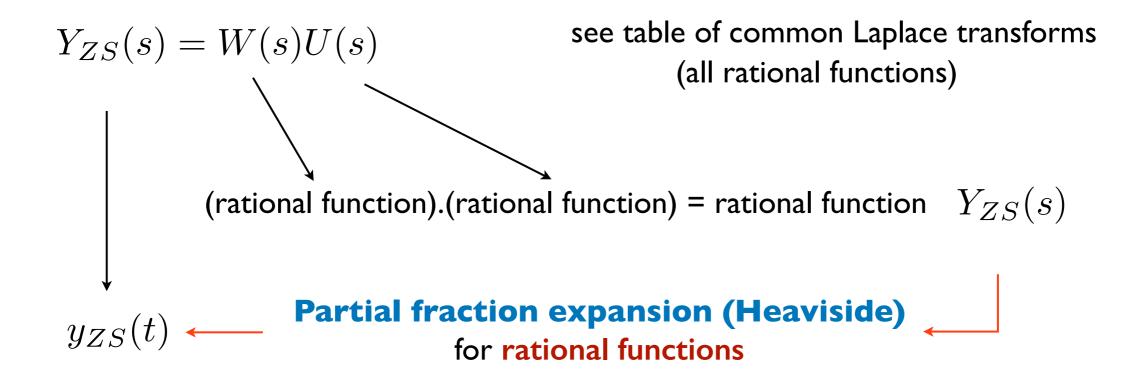
L. Lanari

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

outline

- how to compute in the s-domain the forced response (zero-state response) using the transfer function
- how to inverse transform the resulting responses so to obtain the time response
- partial fraction expansion (general case)
- integral theorem for the Laplace transform
- time shifting theorem for the Laplace transform
- transfer function of a delay
- computing the forced response to a shifted input

Zero State Response (forced response)



Basic idea: write the function, we want to find the inverse Laplace transform of, as a linear combination of "easy to transform" terms (e.g., one present in the table of transforms) and then use the linearity property of the inverse transformation

For rational functions: represent a complicated fraction as the sum of simpler fractions for which we know the inverse Laplace transform (partial fraction expansion or decomposition)

Laplace transform table

$\delta(t)$	1
$\delta_{-1}(t)$	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$rac{t^k}{k!}$	$\frac{1}{s^{k+1}}$
$\frac{t^k}{k!}e^{at}$	$\frac{1}{(s-a)^{k+1}}$

$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2} = \frac{1/2j}{s - j\omega} - \frac{1/2j}{s + j\omega}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2} = \frac{1/2}{s - j\omega} + \frac{1/2}{s + j\omega}$
$\sin(\omega t + \varphi)$	$\frac{s\sin\varphi + \omega\cos\varphi}{s^2 + \omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$
$e^{at}\cos\omega t$	$\frac{(s-a)}{(s-a)^2 + \omega^2}$

partial fraction expansion: distinct roots case

Let
$$F(s)=\dfrac{N(s)}{D(s)}$$
 be a strictly proper rational function with coprime $N(s)$ and $D(s)$ and with distinct roots of $D(s)$

i.e., we write
$$D(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_s + a_o$$

as
$$D(s) = a_n \prod_{i=1}^{n} (s - p_i)$$
 \Rightarrow $F(s) = \frac{N(s)}{a_n \prod_{i=1}^{n} (s - p_i)}$

then
$$F(s)$$
 can be expanded as
$$F(s) = \sum_{i=1}^n \frac{R_i}{s-p_i} \qquad \text{partial fraction expansion}$$

where the residues R_i are computed as

$$R_i = \left[(s - p_i)F(s) \right] \Big|_{s = p_i}$$

if F(s) is proper, rewrite it as the sum of a strictly proper rational function and a constant and then expand in partial fractions only the strictly proper part

exercises:

ullet given the transfer function W(s) of a system S, find its impulse response w(t)

$$W(s) = \frac{s+2}{s(s+1)(s+10)}$$
 (sol: just expand and inverse transform)

ullet given the dynamic matrix A, find the matrix exponential using the partial fraction expansion

$$A = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \qquad e^{A\,t} = \mathcal{L}^{-1} \left\{ (sI - A)^{-1} \right\}$$
 being $(sI - A)^{-1} = \begin{pmatrix} s + 1 & -1 \\ 0 & s - 2 \end{pmatrix}^{-1} = \frac{1}{(s+1)(s-2)} \begin{pmatrix} s - 2 & 1 \\ 0 & s + 1 \end{pmatrix}$

we expand
$$(sI - A)^{-1} = \Phi(s) = \frac{1}{s+1}R_1 + \frac{1}{s-2}R_2$$

with
$$R_1 = ((s+1)\Phi(s))\Big|_{s=-1} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
 $R_2 = ((s-2)\Phi(s))\Big|_{s=2} = \begin{pmatrix} 0 & 1/3 \\ 0 & 1 \end{pmatrix}$

and inverse transform

partial fraction expansion - general case

Let $F(s) = \frac{N(s)}{D(s)}$ be a strictly proper rational function with coprime N(s) and D(s).

Let D(s) have m roots each with multiplicity n_i that is $\sum_i n_i = n$

then
$$F(s)$$
 can be expanded as
$$F(s) = \sum_{i=1}^m \sum_{j=1}^{n_i} \frac{R_{ij}}{(s-p_i)^j}$$

with residues
$$R_{ij}$$
 computed as
$$\left[R_{ij} = \left[\frac{1}{(n_i-j)!} \frac{d^{n_i-j}}{ds^{n_i-j}} \left\{(s-p_i)^{n_i} F(s)\right\}\right]_{s=p_i}\right]$$

Example: verify that since $\frac{s-1}{s^3} = \frac{s}{s^3} - \frac{1}{s^3} = \frac{1}{s^2} - \frac{1}{s^3}$ you apply well the residue formula

and obtain $R_{11} = 0$, $R_{12} = 1$ and $R_{13} = -1$.

example:

find the zero-state output response (or output forced response) of the system characterized by the transfer function W(s) to the input u(t)=t (remember the function u(t) is assumed to be zero for t<0)

$$W(s) = \frac{s-1}{(s+1)(s+10)}$$

$$U(s) = \mathcal{L}[u(t)] = \frac{1}{s^2} \quad \Rightarrow \quad Y(s) = W(s)U(s) = \frac{s-1}{(s+1)(s+10)} \frac{1}{s^2}$$

$$Y(s) = \frac{R_{11}}{s} + \frac{R_{12}}{s^2} + \frac{R_2}{s+1} + \frac{R_3}{s+10}$$

$$R_{11} = \left[\frac{1}{(2-1)!} \frac{d^{2-1}}{ds^{2-1}} \left\{ s^{2}Y(s) \right\} \right]_{s=0} = \left[\frac{d}{ds} \left\{ \frac{s-1}{(s+1)(s+10)} \right\} \right]_{s=0} = \frac{21}{100}$$

$$R_{12} = \left[\frac{1}{(2-2)!} \frac{d^{2-2}}{ds^{2-2}} \left\{ s^{2}Y(s) \right\} \right]_{s=0} = \left[\frac{s-1}{(s+1)(s+10)} \right]_{s=0} = -\frac{1}{10}$$

$$R_{2} = \left[(s+1)Y(s) \right]_{s=-1} = \left[\frac{s-1}{s^{2}(s+10)} \right]_{s=-1} = -\frac{2}{9}$$

$$R_{3} = \left[(s+10)Y(s) \right]_{s=-10} = \left[\frac{s-1}{s^{2}(s+1)} \right]_{s=-10} = \frac{11}{900}$$

$$y(t) = \mathcal{L}^{-1}(Y(s)) = (R_{11} + R_{12}t + R_2e^{-t} + R_3e^{-10t})\delta_{-1}(t)$$

example:

system
$$F(s) = \frac{s-1}{s(s+1)(s-10)}$$

input
$$U(s) = \frac{1}{s}$$

$$Y(s) = \frac{s-1}{s^2(s+1)(s-10)}$$

$$Y(s) = \frac{s-1}{s^2(s+1)(s-10)} \longrightarrow Y(s) = \frac{R_{11}}{s} + \frac{R_{12}}{s^2} + \frac{R_2}{s+1} + \frac{R_3}{s+10}$$

$$\frac{1}{s}$$
 $\delta_{-1}(t)$

$$\frac{1}{s+1} \qquad \qquad e^{-t}\delta_{-1}(t)$$

$$e^{-t}\delta_{-1}(t)$$

$$\frac{1}{s-10}$$
 \rightarrow $e^{10\,t}\delta_{-1}(t)$

this behavior is not present in both the transfer function and the input

new time behavior t appears in the output!

these behaviors are present in either the input or the impulse response (or both)

special case: F(s) has k poles in s=0 (generic rational function)

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{s^k D'(s)} \qquad \text{(we isolated the roots in } s = 0\text{)}$$

then

$$F(s) = \frac{R_{11}}{s} + \frac{R_{12}}{s^2} + \dots + \frac{R_{1k}}{s^k} + \sum \sum \frac{R_{ij}}{(s - p_i)^j}$$

with

$$R_{1k} = \left[\frac{1}{(k-k)!} \frac{d^{k-k}}{ds^{k-k}} \left\{ s^k F(s) \right\} \right] \Big|_{s=0} = \left[s^k F(s) \right] \Big|_{s=0} = \frac{N(0)}{D'(0)}$$
 leading coefficient

N.B. this result will be useful for the steady-state response to an order k input $\frac{t^n}{k!}$ and R_{1k} will coincide with the system gain

general case

for k=1 find the residue R=a+jb associated to $p=\alpha+j\beta$ (and R^*)

$$\frac{R}{s-p} + \frac{R^*}{s-p^*} = \frac{R(s-p^*) + R^*(s-p)}{(s-\alpha)^2 + \beta^2} = \frac{s(R+R^*) - (Rp^* + R^*p)}{(s-\alpha)^2 + \beta^2}$$
$$= \frac{s(R+R^*) - \alpha(R+R^*) - j\beta(R^* - R)}{(s-\alpha)^2 + \beta^2}$$

$$R + R^* = 2a,$$
 $R^* - R = -2jb$ $A = 2a$ $B = -2(a\alpha + b\beta)$

$$\frac{R}{s-p} + \frac{R^*}{s-p^*} = \frac{2as - 2(a\alpha + b\beta)}{(s-\alpha)^2 + \beta^2} = \frac{As + B}{(s-\alpha)^2 + \beta^2}$$

with
$$As + B = A(s - \alpha) + \beta(A\alpha + B)/\beta$$

rewritten as

$$\frac{R}{s-p} + \frac{R^*}{s-p^*} = \frac{A(s-\alpha)}{(s-\alpha)^2 + \beta^2} + \frac{\beta(A\alpha+B)/\beta}{(s-\alpha)^2 + \beta^2}$$

so that we recognise

in t

$$e^{\alpha t} \left[A \cos \beta t + (A\alpha + B)/\beta \sin \beta t \right]$$

two known transforms

example:

$$H(s) = \frac{1}{(s^2+1)(s-2)^2} \qquad H(s) = \frac{R_{11}}{s-2} + \frac{R_{12}}{(s-2)^2} + \frac{R_2}{s-j} + \frac{R_3}{s+j}$$

$$R_{11} = \left[\frac{d}{ds}\left\{\frac{1}{(s^2+1)}\right\}\right]_{s=2} = -\frac{4}{25}$$

$$R_{12} = \left[\frac{1}{(s^2+1)}\right]_{s=2} = \frac{1}{5}$$

$$R_2 = \left[(s-j)H(s)\right]_{s=j} = \left[\frac{1}{(s+j)(s-2)^2}\right]_{s=j} = \frac{1}{8+6j} = \frac{2}{25} - j\frac{3}{50}$$

$$R_3 = \left[(s+j)H(s)\right]_{s=-j} = \left[\frac{1}{(s-j)(s-2)^2}\right]_{s=j} = \frac{1}{8+6j} = \frac{2}{25} + j\frac{3}{50} = R_2^* \longrightarrow a = \frac{2}{25} \quad b = \frac{3}{50}$$

$$H(s) = \frac{R_{11}}{s-2} + \frac{R_{12}}{(s-2)^2} + \frac{As+B}{s^2+1}$$
, with $A = \frac{4}{25}$, $B = -\frac{6}{50}$

$$h(t) = (R_{11}e^{2t} + R_{12}te^{2t} + A\cos t + B\sin t)\delta_{-1}(t)$$

Laplace transform (other properties)

Integral property

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}\left[f(t)\right] = \frac{1}{s}F(s)$$

direct application:

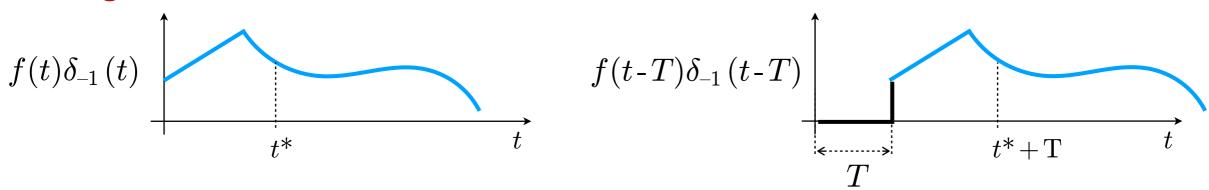
output response to a step input (with zero initial state), i.e., the step response

$$\tau = t - \vartheta$$
 in t $y(t) = \int_0^t w(t - \vartheta) \delta_{-1}(\vartheta) d\vartheta = \int_0^t w(t - \vartheta) d\vartheta = \int_0^t w(\tau) d\tau$ confirmed by integral property

the step response is the integral of the impulse response

Laplace transform (other properties)

shifted signal



or, the value of the delayed signal at t_1 is equal to the value that the original signal has at t_1 - T

Time shifting property

$$\mathcal{L}[f(t-T)\delta_{-1}(t-T)] = e^{-sT}\mathcal{L}[f(t)\delta_{-1}(t)] = e^{-sT}F(s)$$

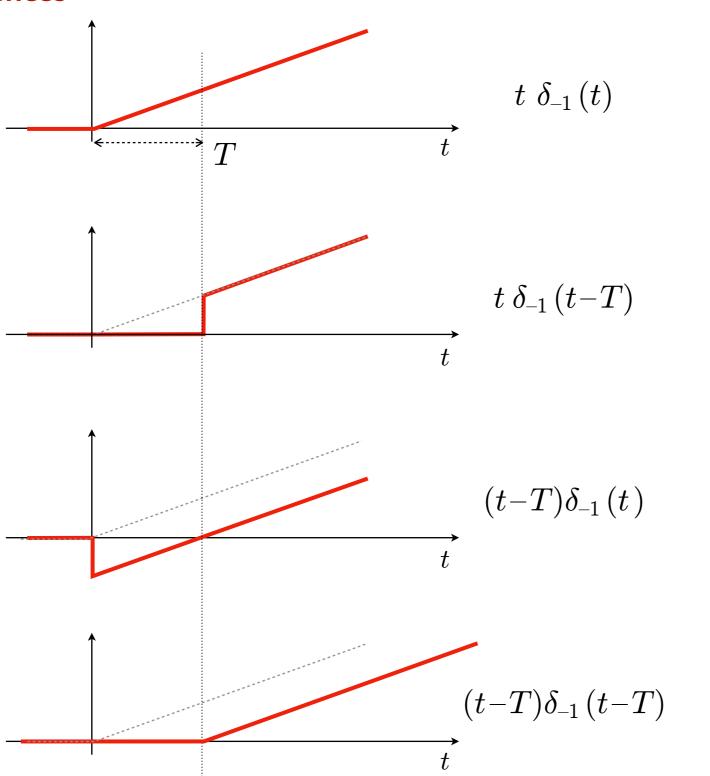
we can use this result in both directions

- if we have a time shifted time function, we find the Laplace transform
- if we have a rational function F(s) multiplied by an exponential in s, we shift the time function resulting from the inverse Laplace transform of F(s)

$$e^{-sT}F(s)$$
 \longrightarrow $f(t-T)\delta_{-1}(t-T)$

Laplace transform (time shifting)

differences



original function to be shifted by T seconds

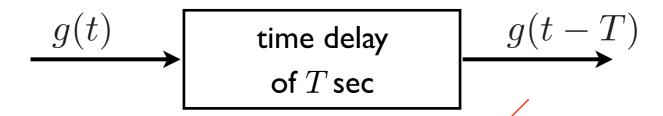
not a shift of t $\delta_{-1}(t)$

not a shift of t $\delta_{-1}(t)$

original function shifted by T seconds

time delayed signal

assume we have a block that delays a signal by T seconds



we can find its transfer function as the ratio of the Laplace transforms of the output and the input

transfer function of the time delay

$$\frac{\mathcal{L}[g(t-T)\delta_{-1}(t-T)]}{\mathcal{L}[g(t)\delta_{-1}(t)]} = \frac{G(s)e^{-sT}}{G(s)} = e^{-sT}$$
 input

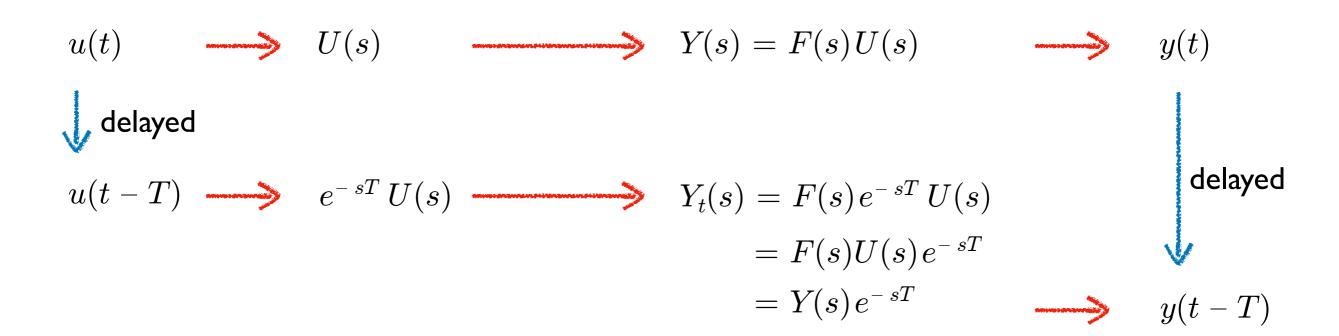
$$\begin{array}{l} {\rm transfer\ function\ of\ a} \\ {\rm time\ delay\ of\ } T \sec \end{array} = e^{-sT}$$

not a rational function

Att.: partial fraction expansion is not possible since this transfer function is not rational (it is transcendental)

response to a shifted (delayed) input

assume we know the forced response Y(s) of a system represented by the transfer function F(s) to an input U(s)

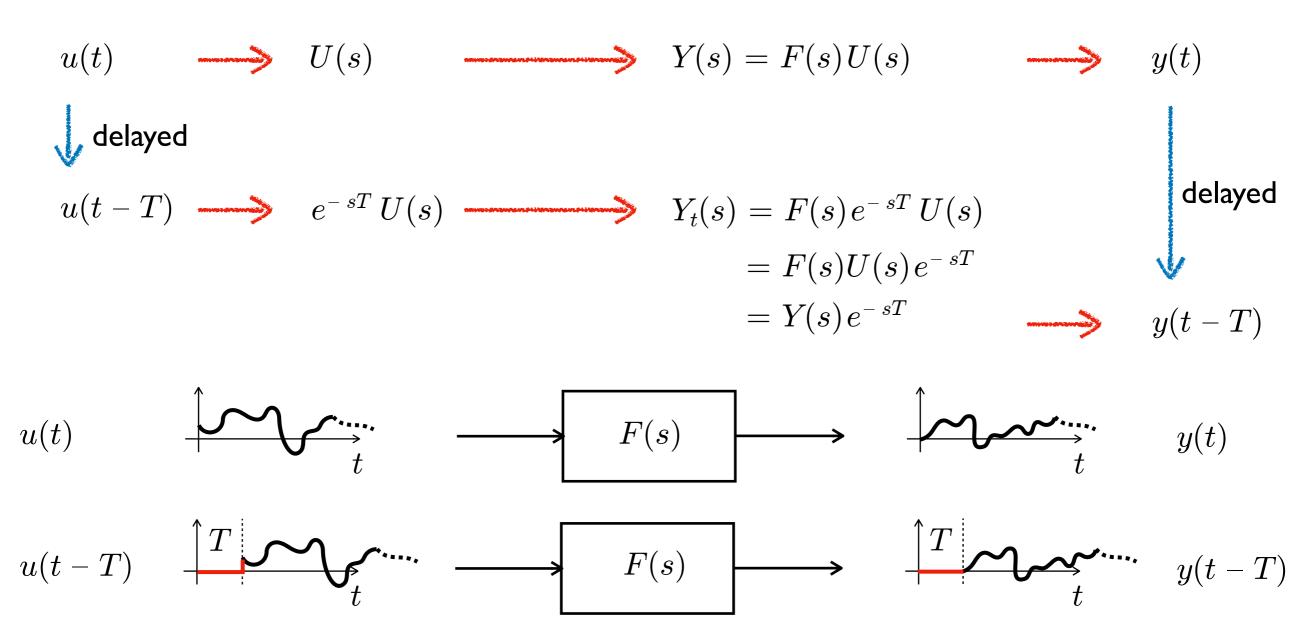


then the forced output response to a shifted by T seconds input u(t-T) is equal to the forced output response y(t) to the unshifted input u(t), shifted by T seconds, that is y(t-T)

- the same holds for the state forced response (or state zero-state response)
- ullet when we write u(t-T) we mean $u(t-T)\,\delta_{-1}(t-T)\,$ (similarly for y(t-T))

response to a shifted (delayed) input

assume we know the forced response Y(s) of a system represented by the transfer function F(s) to an input U(s)



to compute the response to u(t-T), if U(s) is a rational function, then we can still use the partial fraction expansion on Y(s) and then translate the resulting time response