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preliminaries

® system linearity guarantees that

u(t) = Z A; sin(w;t)

>
input

asymptotically stable
system F'(s)

Yes(t) = Z Ai| F (jw;)| sin(w;t + ZF (jw;))

>
output at steady state

that is the steady state output of an asymptotically stable system having as input a linear
combination of sinusoids coincides with the same linear combination of the steady state
responses of the system to each individual sinusoid

® moreover recall that a periodic signal can be expanded in a Fourier series which is an
infinite sum of weighted sines and cosines

m> we can compute the steady state response to more complex signals
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example: a periodic input signhal
u(t) = —0.6sin(f1t)—0.4sin( fot)+0.5 sin( f3t)+0.5 sin(f4t)—0.3 sin( f5t)—0.2 sin( fgt)+0.2 sin( ft)—0.2 sin( fst)

f1 =270.75, fo =27w1.25, f3 =2wl.5, f4 =273, f5 = 27wh, fe = 276, f7 =278, fg = 2wll

time

adding one
contribution
at a time

| | | | | | | |
N O NDON DNDON NMON NMONNONNONDNONDN
o

Frequency spectrum of the input

same
T information |
0 in the frequency
J “ l domain time
magnitude of
-0.% e e B I the sine function
at that frequency

frequency (rad/s)
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behavior at steady state: example |

4 different systems
(all first order and with unit gain)

1 1 1
T i0s =1 Bl =g Fals)

(dB)

Magnitude

10 10’ 10°
frequency (rad/s)
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frequency

1077 107" 10 10" 10°

each input component with frequency wij is
amplified/attenuated by | P(j wi) |

>< we need to multiply (-‘

magnitude
not in dB

~ [——systenm 2]

system

Magnitude
(@)
(@]
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System 3
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magnitude vs phase

2 systems with same magnitude but different phase

T 1+s/10

B (52 —0.25+1)(1 — 10s)
~ (s240.25 4+ 1)(1 4+ 10s)(1 + s/10)

Magnitude

-600H ——"F3

-7005

differences in the system phase can
lead to noticeable output difference

System A System B

< >

* | output (at steady state) it is not
L | | | | sufficient to require that the
el | system has unitary magnitude at

Input

omepue| | | | the input frequencies

0 10 20 30 40 50 o) 10 20 30 40 50
time (s) time (s)

0.5/ \A to replicate an input signal at the

Input
Output
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behavior at steady state: example 2

4 different systems
(all second order with same damping and unit gain)

1 ¢ =10.2
F(s) = '
(1 +2¢s/wp + 5% /w;) wn = {1, 8, 10, 100}
10
5_. ..................
3
$ o 7 - |
il
S
g1 -
F
2
F
3
F4
-10 -2 io 2
10 10 10

. . £ q
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System 1

Magnitude

10°
frequency

(¢, wn)
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System 2
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System 3

Magnitude

0.5r (<:7Lu7l) —

(0.2,10)

10° 10
frequency (rad/s)

System 4
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transient

If a system is asymptotically stable it admits a steady state (not necessarily constant) to any
persistent input: for example ramp, parabola, sinusoid. In this case we can also define the
transient as the difference between the forced and the steady state response, that is transient
exists also for inputs which differ from the step.

However we decided to characterize the transient with specific quantities on the step input.

transient as the difference
between the forced response
and the steady state

System 3 System 3 - transient
T T T T

example: transient for a sinusoidal input

forced response and steady state

(s) time (s)

0 1
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transient: bandwidth

for the typical magnitude plots encountered so far, we define the bandwidth B3 as the first

frequency such that for all frequencies greater than the bandwidth the magnitude is attenuated
by a factor greater than 1/\/§ w.rtits valuein w = 0. Recall that 1/\/5 ~ 0.707

{Bgz W (jBy)] = W(jo)}

V2
d being 201 ( ! ) 3dB
and being 0g10 7 ~ —
2
[ Bs : (W (3B3)|lag = [W(30)|a — 3] | Wa (jw) |

* characterizes the filtering capacities of the dynamical system with transfer function W (s)

L w the first system

| W1 (jw) /|1 W1 (50)| 1}

P Wi (jw) cuts off
| | 1 = Bs1< B 1{J
| Wa (Jw) /| W2 (50)| 1 \ 3.1 39 more frequencies
B;Q K than the second

* relative to the static gain | (50)]
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transient: simplest example

K

Wi(s) = s asymptotically stable system (therefore 7 > 0)
1/]7]
v SRR R A
m 'IIIIIIi :
o) _____________
magnitude plot X f—g :
normalized w.r.t. | K|aB Tézo ]
%_30_ . o . ﬁﬁﬁﬁﬁﬁﬁi
= |
_40
frequency (rad/s)
being (W(iw)lag = IW(0)las = [W(jw)la — |Klas
= |Klap +[1/(1 + jwT)|ap — |[Klas
= |1/(1+ jwT)|aB
and 11+ j7/|7| lag = 201og,, V2 ~ 3dB

1
for a first order system, the bandwidth coincides with the cutoff frequency [Bg = ;}

* similarly for higher order systems in the presence of a dominant pole
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transient: resonant peak

we define the resonant peak M, as the maximum value of the frequency response magnitude

referred to its value in w = 0

4 )
M, - Tmax !W(jw)l

W (50)]

\_ J

or in dB

[Mr\dB = max |W(jw)|ap — !W(J'O)\dB]

a high resonant peak indicates that the system behaves similarly to a second order system

With IOW damping COefﬁCient Magnitude trinomial factor at denominator

—(=05
—(=03
¢=0.1

o
T

w
T

Magnitude (absolute)

Mol

102 107" 10° 10’ 102
frequency (rad/s)
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transient: resonant peak

* Note that the resonant peak is defined w.r.t. the value of the magnitude in w = 0 and it is not

just the maximum value (a constant gain F'(s) = K would not give any resonant peak)

* since the presence of a peak in a frequency response is similar to the peak of a second order
system with complex conjugate poles and low values of the damping coefficient, the higher
the peak the smaller the “equivalent damping” value and therefore the higher the overshoot

in the step response

* from the frequency response we get not only information on the steady state but also on

the transient
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transient: frequency domain characterization

Transient parameters in the frequency domain: on a plot with normalized magnitude (not in dB)

W (jw)]
w [V
I R N
1

transfer function

is strictly proper

and therefore the
magnitude tends

to 0 as w tends to oo

magnitude
plot not in dB

any sinusoidal signal with frequency greater than B3
will be attenuated at steady state by more than 0.707

* a similar plot can be drawn when the magnitude is in dB
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transient: relationships in ¢t and w

typically (with some exceptions)

in frequency in time

/3 P
B3 t, =~ constant

* higher bandwidth B3 (higher frequency components of the input signal are not attenuated and

therefore are allowed to go through) leads to smaller rise time ¢, (faster system response)

in time  ----oeeeeseneeeeeees > 1+ M,

~ constant
in frequency ----eeeeeeeeeeeeees > M,

* higher resonant peak M (as if we had a second order system with lower damping

coefficient) leads to higher overshoot M, (the oscillation damps out slower)

* very useful relationships in order to understand the connections between time and

frequency domain response characteristics
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transient: explicit relations for second order system

1 for a second order system
Wi(s) = 5 0< (<1 some explicit expressions
S s .
14+20—+ — can be obtained (as an example)
Wy w2
1 —Cwnt 2 1 — CQ
* step response 1 — me "' v 1 —(*wy,t + arctan :
TG o |
« overshoot M, =¢ V 1 —¢ T e (1 being = 100%)

1
resonance peak M, = valid for (< ﬁ

1
20+/1 — (2

bandwidth Bs :wn\/l — 22 + \/2—4C2—|—4§4

1 1
rise time (up to roughly (= 0.7 t, =
(up ghly ¢ ) R ire

=

|:7T — arctan
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example: a discontinuous signal

square wave approximation

12 -

0.8 -

06 -

04

02

5
9
n=13
n=29

==
o

detail of the truncated Fourier expansion of a
pulse train (square wave): the more components

wnneos || with higher frequency we include in the sum the

better the approximation is.

| 142 (=1)'6_1(t —iT)

— pulse train
T T T T T T T

time

the discontinuous signal (pulse train) is made

0 | |
0 2 4

6 8
time

10

of infinite sinusoidal components

12

almost similarly, the step function has an infinite frequency content

5, (t)

time domain

N
>

t

continuous spectrum
73 (WA in the frequency domain

[~

> [l

we can therefore see in the frequency domain the filtering effect of a system on a step input
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system as a filter (transient)

| input frequency content

N
I . .
I I I I I I LLLLUJJJ_L (this is not the frequency content of a step
I function, it’s just for illustration purposes)

: w : E w
l systems with different bandwidths l l
1} ' B31 < B3 : :
L e 1AW | B () A
Bs,1 | B3 2
: output frequency content : :
LTy ; pHLIrequency HERRERAN NN .
, o is different | T w
! /l\ ! A !
A i A
faster response
_/ > emeeeeeeeeeee ponse .. > f -
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Mass - Spring - Damper

transfer function
U 1

F —
> (5) ms? + us + k

p
1 m
asymptotically stable system for p > 0

~B gy fa(E) - (£)7
2

* under-damped 0<pu<2Vkm

P12 =
complex conjugate poles
__ K
e critically-damped  p =2V ikm P12==5"
real coincident poles
B \/ 22 4 (E
e over-damped > 2V km pro = — (T;) (m)

real distinct poles
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Mass - Spring - Damper
gain = 1/k
* under-damped 0<pu<2Vkm

trinomial factor

e critically-damped = 2VEm

two coincident binomial factors

> 2V km

* over-damped

two distinct binomial factors
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Mass - Spring - Damper

m = 1 kg magnitude in terms of the damping factor u
k =100 N/m

, MSD - Magnitude with g variable
-25 ; e ; ; ;

35 -

40 f——— ,.

45 +

-55 - '

Magnitude (dB)
3
I

-60 '

65 L real coinc,'t'dent @ =2vVkm
real disti'flct © > 2y km

70 - complex’ conjugate pu < 2vkm
single b'inomials
-75 A/ S ———
107" ' 10°
N frequency (rad/s)

the two single binomials are,"also shown (over-damped case) in order to put in evidence
the dominant pole (corresponding to the real pole closest to the origin)
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7-mass

input force on mass 1

output position on mass 3

resonance peaks

ky
ky 3 A ' :
[ DN Bt P e e
q F—V\\N— .
ke W
oW kg
5 m :
31 kg % ot
k, L AA—]
My m,
n;
ko
— WM
| mg
position AR
mass 1m3 ]
4
10

. <
anti-resonance =
eak E
P S 150}
-200 5
7 - MSD 1o
system | ;
(with damping)
=200
é -400
ol
-600
-800 5
10
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natural frequencies

119.6311
107.5098
78.7957
73.3411
42.2283
19.0596
11.0478

natural frequencies
very close to each
other
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microphones

+20

+10

-10
__—-/' .

-0
10Hz 20H:z 100 Hz 200 H:x 1kHz 2kHz 10kHz 20kH:z

recall that 1 Hz = 27 rad/s and that voice is in the
frequency rance roughly from 300 to 3000 Hz

+20

+10 o
_d S
-
0 =T LT e » —
-10 \
-20
10Hz 20H:z 100 Hz 200 H:z 1kHz 2kHz 10kHz 20kH:z
+20
+10
A
-10 - \
-20
10Hz 20H:z 100 Hz 200 H:z 1kHz 2kHz 10kHz 20kH:z
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a 10.000 € voice microphone ...

dynamic bass microphone
(tailored for kick drum, works well
with any low frequency instrument,
low frequency peak at 100 Hz)

electric guitar microphone
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quarter-car suspension model
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quarter=-car suspension model

r N
™My Lb
—»
bod
\_ oy Y,
ks bS fs
1
-
Mw Lw
—»
wheel
\_
ki
r
—>
road
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A

Model of a quarter part of a car with its wheel and tire

The body with mass my represents the car chassis
connected to the wheel by a passive spring (ks), and a
shock absorber represented by a damper (bs).

The spring (k:) models the compressibility of the tire
pheumatic.

In an active suspension a hydraulic actuator (fs)

between the chassis and wheel assembly may help in

balancing conflicting objectives as passenger comfort,
road handling and suspension deflection.

mbféb"i_ks(xb _xw) ‘|’b5(33b _wa) — fs
mij _ks(xb _mw) _|_bs(5tb_j:w) +kt(xw _T) — _fs

fs acts on both the body and the wheel assembly

r can be seen as an input affecting the evolution of the system
through the tire (disturbance)

r(t) generic
terrain profile
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. AT
state vector |y &y Ty Ty

several outputs of interest

Ci = [1 0 0 ()} body (passenger) position

Cy = |—ks/my —bs/my ks/mp bs/my|  body (passenger) acceleration

C3=1[1 0 -1 0] suspension deflection

two inputs (one, fs, can be controlled, the other is the disturbance r)

by setting one of the two inputs to zero and choosing the output of interest, we have a
SISO system with corresponding transfer function

Passenger comfort is associated to small passenger acceleration

Physical limitation of the actuator (limits on maximum displacements) defines a constraint

these are two of the possible outputs
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road to body acceleration
frequency response magnitude

actuator to body acceleration ...~~~
frequency response magnitude

Magnitude (dB)

actuator to suspension deflection

frequency response magnitude -

road to suspension deflection
frequency response magnitude
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100

tire-hop frequency

Magnitude from road disturbace and actuator force (fs) to body acceleration and 's‘uspension travel

Input: road disturbance (r) |: S S DR R R

Input: actuator force (fs)

10' 10°

Frequency (rad/sec)

rattlesnake frequency
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tire-hop frequency: pure imaginary zeros in the transfer function from the actuator to
the body acceleration (also from actuator to body position), anti-resonance at 56.27 rad/s

rattlesnake frequency: pure imaginary zeros in the transfer function from the
actuator to the suspension deflection, anti-resonance at 22.97 rad/s

at these frequencies it is difficult to counteract any effect of the road on acceleration or on
the suspension deflection (no control “authority”)
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