Control Systems

Interconnected systems L. Lanari

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Outline

- General interconnected system state and interconnection equations
- Series
- Parallel
- Feedback

Consider a number of systems which influence each other through interconnections. We want to find a representation (state-space or transfer function) of the interconnected overall system

Let the single system be represented by S_i : $\begin{cases} \dot{x}_i &= A_i x_i + B_i u_i \\ y_i &= C_i x_i + D_i u_i \end{cases} x_i \in \mathbb{R}^{n_i}$

The overall system has **state** x given by

$$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_m(t) \end{pmatrix} \qquad x \in \mathbb{R}^n \qquad n = \sum_{i=1}^m n_i$$

and its representation (and behavior) depends upon how the subsystems are interconnected

3 different interconnections:

- series
- parallel
- feedback

series (state space)

$$S_1: \begin{cases} \dot{x}_1 = A_1 x_1 + B_1 u_1 \\ y_1 = C_1 x_1 + D_1 u_1 \end{cases}$$

$$S_2: \begin{cases} \dot{x}_2 = A_2x_2 + B_2u_2 \\ y_2 = C_2x_2 + D_2u_2 \end{cases}$$

$$\mathcal{S} \quad \text{ with state } x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \ \text{ input } u \text{ and output } y$$

• series system state space representation

interconnection equations

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u_1 \\ A_2 x_2 + B_2 u_2 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u \\ A_2 x_2 + B_2 y_1 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u \\ A_2 x_2 + B_2 y_1 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u \\ A_2 x_2 + B_2 (C_1 x_1 + D_1 u) \end{pmatrix} \\
= \begin{pmatrix} A_1 & 0 \\ B_2 C_1 & A_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} B_1 \\ B_2 D_1 \end{pmatrix} u = Ax + Bu \\
y = y_2 = C_2 x_2 + D_2 u_2 = C_2 x_2 + D_2 (C_1 x_1 + D_1 u_1) = \begin{pmatrix} D_2 C_1 & C_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + D_2 D_1 u \\
= Cx + Du$$

series (state space)

series system has dynamics matrix

$$A = \begin{pmatrix} A_1 & 0 \\ B_2C_1 & A_2 \end{pmatrix} \xrightarrow{\text{triangular}} eig\{A\} = eig\{A_1\} \bigcup eig\{A_2\}$$

$$B = \begin{pmatrix} B_1 \\ B_2 D_1 \end{pmatrix} \quad C = \begin{pmatrix} D_2 C_1 & C_2 \end{pmatrix} \quad D = D_1 D_2$$

in general, the eigenvalues of the series of subsystems are given by the **union** of the single subsystem's eigenvalues

and therefore

- the series of asymptotically stable systems is also asymptotically stable
- if in a series a system is unstable, so is the interconnected system in series
- special care when interconnection two marginally stable systems

series

• but if $S_1:rac{1}{s}$ and $S_2:rac{1}{s(s+1)}$ each marginally stable, however when interconnected in series

 ${\mathcal S}\,\,$: series system - transfer function

$$\frac{1}{s^2(s+1)}$$
 unstable new behavior

• interconnection of marginally stable systems does not necessarily lead to instability

ex.: series of
$$\frac{s+1}{s(s+2)} \text{ and } \frac{1}{s^2+10} \qquad \frac{s+1}{s(s+2)} \cdot \frac{1}{s^2+10}$$
 marginally stable stable stable

therefore in general there is no unique answer about stability when interconnecting in series two marginally stable systems

series (transfer function)

$$S_1: F_1(s) = \frac{y_1(s)}{u_1(s)}$$

$$S_2: F_2(s) = \frac{y_2(s)}{u_2(s)}$$

Hyp: for every subsystem S_i we assume coincidence of eigenvalues and poles (which does not imply that if we multiply two transfer functions there will be common factors)

$$F(s) = \frac{y(s)}{u(s)} = \frac{y_2(s)}{u_1(s)} \frac{u_2(s)}{u_2(s)} = \frac{y_2(s)}{u_1(s)} \frac{y_1(s)}{u_2(s)} = \frac{y_2(s)}{u_2(s)} \frac{y_1(s)}{u_1(s)} = F_2(s)F_1(s) = F_1(s)F_2(s)$$

transfer functions of systems in series multiply together

series can alter the filtering capacity

example (cancellations)

• $F_1(s)$ in series with $F_2(s)$

$$F(s) = F_1(s)F_2(s) = \frac{(s-1)}{(s+1)}\frac{1}{(s-1)} = \frac{1}{s+1}$$
 only 1 pole but 2 eigenvalues

- the interconnection has generated a hidden mode
- the interconnected system remains unstable since the eigenvalues have not changed and one is real positive.

$$\operatorname{rank} (A - \lambda_i I \mid B) = n \longrightarrow \lambda_i \text{ controllable}$$

recall the general PBH rank tests

$$\operatorname{rank}\left(\frac{A - \lambda_i I}{C}\right) = n \longrightarrow \lambda_i \text{ observable}$$

• for the considered two systems we can find the following two realizations

$$S_1: A_1 = -1, B_1 = 1, C_1 = -2, D_1 = 1$$
 $\lambda_1 = -1$

$$S_2: A_2 = 1, B_2 = 1, C_2 = 1, D_2 = 0$$
 $\lambda_2 = 1$

• series state-space representation

$$A = \begin{pmatrix} A_1 & 0 \\ B_2 C_1 & A_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -2 & 1 \end{pmatrix}, B = \begin{pmatrix} B_1 \\ B_2 D_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 0 & C_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}, D = 0$$

• PBH rank test

$$\operatorname{rk}\left(\begin{array}{ccc}A-\lambda_2I & B\end{array}\right) &=& \operatorname{rk}\left(\begin{array}{ccc}-2 & 0 & 1\\ -2 & 0 & 1\end{array}\right) = 1 < n = 2, \quad \Rightarrow \lambda_2 \quad \text{uncontrollable}$$

$$\operatorname{rk}\left(\begin{array}{ccc}A-\lambda_2I \\ C\end{array}\right) &=& \operatorname{rk}\left(\begin{array}{ccc}-2 & 0\\ -2 & 0\\ 0 & 1\end{array}\right) = 2 = n, \qquad \Rightarrow \lambda_2 \quad \text{observable}$$

• the series interconnection has generated, for the given example, an uncontrollable mode (the hidden dynamics characterized by the eigenvalue λ_2)

series interconnection but in different order

• $F_2(s)$ in series with $F_1(s)$

$$u = \underbrace{u_2}_{P_2(s)} \underbrace{y_2 = u_1}_{S_1(s)} \underbrace{y_1}_{P_1(s)} = \underbrace{y}_{S_2(s)} \underbrace{S_1}_{S_2(s)} : F_1(s) = \underbrace{\frac{1}{s+1}}_{S_2(s)} = \underbrace{\frac{1}{s-1}}_{S_2(s)} =$$

• the series interconnection has generated, for the given example, an unobservable mode (the hidden dynamics characterized by the eigenvalue λ_2)

If, in the series of two systems $F_1(s) = N_1(s)/D_1(s)$ and $F_2(s) = N_2(s)/D_2(s)$ we have cancellations of common factors between $N_1(s)$ and $D_2(s)$ (zero/pole cancellation) or between $D_1(s)$ and $N_2(s)$ (pole/zero cancellation), we generate hidden dynamics which can either be uncontrollable or unobservable

For the system in figure (with the output of $F_1(s)$ being the input of $F_2(s)$)

- if a zero λ_c of $F_1(s)$ cancels out with a pole λ_c of $F_2(s)$ (zero/pole cancellation) we have generated uncontrollable hidden dynamics characterized by the eigenvalue λ_c
- if a pole λ_c of $F_1(s)$ cancels out with a zero λ_c of $F_2(s)$ (pole/zero cancellation) we have generated unobservable hidden dynamics characterized by the eigenvalue λ_c

example

natural modes when starting from non-zero initial conditions and applying an impulse

recall that

the zero state response to a generic input $u\left(t\right)$ can be computed as the convolution of

impulsive response and u(t)

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

with impulse input

input
$$x(t) = e^{At}x(0) + e^{At}B$$

$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau$$

$$y(t) = Ce^{At}x(0) + Ce^{At}B$$

 $e^{At}B$ displays all the controllable natural modes

 Ce^{At} displays all the observable natural modes

 $Ce^{At}B$ displays all the controllable and observable natural modes

parallel (state space)

$$S_1: \begin{cases} \dot{x}_1 = A_1 x_1 + B_1 u_1 \\ y_1 = C_1 x_1 + D_1 u_1 \end{cases}$$

$$y_1 + y_2 = y$$
 $S_2:$
$$\begin{cases} \dot{x}_2 = A_2x_2 + B_2u_2 \\ y_2 = C_2x_2 + D_2u_2 \end{cases}$$

$$\mathcal{S} \quad \text{ with state } x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \text{ input } u \text{ and output } y$$

interconnection equations

$$y = y_1 + y_2, \quad u = u_1 = u_2$$

parallel system state space representation

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u_1 \\ A_2 x_2 + B_2 u_2 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 u \\ A_2 x_2 + B_2 u \end{pmatrix}
= \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} u = Ax + Bu
y = y_1 + y_2 = C_1 x_1 + D_1 u_1 + C_2 x_2 + D_2 u_2 = \begin{pmatrix} C_1 & C_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (D_1 + D_2) u
= Cx + Du$$

parallel (state space)

parallel system has dynamic matrix

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \xrightarrow{\text{diagonal}} eig\{A\} = eig\{A_1\} \bigcup eig\{A_2\}$$

$$B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, \quad C = \begin{pmatrix} C_1 & C_2 \end{pmatrix}, \quad D = D_1 + D_2$$

in general, the eigenvalues of the parallel of subsystems are given by the union of the single subsystem's eigenvalues

no new time behaviors can appear

- the parallel of asymptotically stable systems is asymptotically stable
- if one of the system in the parallel interconnection is unstable, so is the whole system
- the parallel of a marginally stable system and an asymptotically stable system is marginally stable
- the parallel of two marginally stable systems is marginally stable

parallel (transfer function)

$$S_1: F_1(s) = \frac{y_1(s)}{u_1(s)}$$

$$S_2: F_2(s) = \frac{y_2(s)}{u_2(s)}$$

for every subsystem S_i we assume coincidence of eigenvalues and poles

$$F(s) = \frac{y(s)}{u(s)} = \frac{y_1(s) + y_2(s)}{u(s)} = \frac{y_1(s)}{u(s)} + \frac{y_2(s)}{u(s)} = \frac{y_1(s)}{u_1(s)} + \frac{y_2(s)}{u_2(s)} = F_1(s) + F_2(s)$$

transfer function of systems in parallel add together

example (cancellations)

$$F(s) = F_1(s) + F_2(s) = \frac{s-1}{s+1} + \frac{1}{s+1} = \frac{s}{s+1} = 1 - \frac{1}{s+1} \quad \bullet \quad \quad 1 \text{ pole but 2 eigenvalues}$$

since there is a cancellation (creation of a hidden dynamics) we need to look at the state-space representation to understand if it's a loss of controllability or observability

we first realize each subsytem and the interconnect them

$$S_1: A_1 = -1, B_1 = 1, C_1 = -2, D_1 = 1$$

$$S_2: A_2 = -1, B_2 = 1, C_2 = 1, D_2 = 0$$

$$\mathcal{S}: A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, C = \begin{pmatrix} -2 & 1 \end{pmatrix}, D = D_1 = 1$$

example (cancellations)

PBH test for controllability and observability for $\lambda = -1$

$$\operatorname{rk}\left(\begin{array}{ccc} A - \lambda I & B \end{array}\right) & = & \operatorname{rk}\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) = 1 < n = 2 \quad \Rightarrow \quad \lambda = -1 \quad \text{uncontrollable}$$

$$\operatorname{rk}\left(\begin{array}{ccc} A - \lambda I \\ C \end{array}\right) & = & \operatorname{rk}\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ -2 & 1 \end{array}\right) = 1 < n = 2 \quad \Rightarrow \quad \lambda = -1 \quad \text{unobservable}$$

the parallel interconnection has generated, for the given example, an unobservable and uncontrollable eigenvalue and corresponding natural mode mode e^{-t}

Let two systems $F_1(s)$ and $F_2(s)$ have a common pole p_i

$$F_1(s) = \frac{N_1(s)}{D_1(s)} = \frac{N_1(s)}{(s - p_i)D_1'(s)} \qquad F_2(s) = \frac{N_2(s)}{D_2(s)} = \frac{N_2(s)}{(s - p_i)D_2'(s)}$$

put in evidence the common pole

parallel
$$\Rightarrow F(s) = F_1(s) + F_2(s) = \frac{N_1(s)}{(s - p_i)D_1'(s)} + \frac{N_2(s)}{(s - p_i)D_2'(s)}$$

$$= \frac{N_1(s)D_2'(s) + N_2(s)D_1'(s)}{(s - p_i)D_1'(s)D_2'(s)}$$
degree has been lowered by 1

In general if two systems have eigenvalues (poles) in common then in the parallel interconnection we generate an unobservable and uncontrollable hidden dynamics (here with dynamics characterized by the eigenvalue p_i)

feedback (state space)

$$S_1: \begin{cases} \dot{x}_1 = A_1x_1 + B_1u_1 \\ y_1 = C_1x_1 + D_1u_1 \end{cases}$$

$$S_2: \begin{cases} \dot{x}_2 = A_2x_2 + B_2u_2 \\ y_2 = C_2x_2 + D_2u_2 \end{cases}$$

assume D_1 and D_2 equal to 0 (special case, other cases as exercises)

$$\mathcal{S} \quad \text{ with state } x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \text{ input } u \text{ and output } y$$

interconnection equations

$$u_1 = u - y_2, \quad y = y_1 = u_2$$

• state space representation of the feedback interconnection of the two system

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} A_1 x_1 + B_1 (u - y_2) \\ A_2 x_2 + B_2 y_1 \end{pmatrix} = \begin{pmatrix} A_1 x_1 - B_1 C_2 x_2 + B_1 u \\ A_2 x_2 + B_2 C_1 x_1 \end{pmatrix}
= \begin{pmatrix} A_1 & -B_1 C_2 \\ B_2 C_1 & A_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} B_1 \\ 0 \end{pmatrix} u = Ax + Bu
y = y_1 = C_1 x_1 = \begin{pmatrix} C_1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Cx$$

since we are feeding back the output (measured variable) it is also called an output feedback

feedback (state space)

feedback system has dynamics matrix

$$A = \begin{pmatrix} A_1 & -B_1C_2 \\ B_2C_1 & A_2 \end{pmatrix} \xrightarrow{\text{structure}} eig\{A\} \neq eig\{A_1\} \bigcup eig\{A_2\}$$

$$B = \begin{pmatrix} B_1 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} C_1 & 0 \end{pmatrix} \quad D = 0$$

in general, the **eigenvalues** of the feedback of two subsystems **differ** from those of the single subsystems

new time behaviors usually appear

feedback (transfer function)

$$S_1: F_1(s) = \frac{y_1(s)}{u_1(s)}$$

$$S_2: \quad F_2(s) = \frac{y_2(s)}{u_2(s)}$$

for every subsystem S_i we assume coincidence of eigenvalues and poles (no hidden dynamics)

$$y(s) = y_1(s) = F_1(s)[u(s) - y_2(s)] = F_1(s)[u(s) - F_2(s)u_2(s)]$$

$$= F_1(s)[u(s) - F_2(s)y(s)]$$

$$\Rightarrow [1 + F_1(s)F_2(s)]y(s) = F_1(s)u(s)$$

$$F_1(s)F_2(s)$$
 is called loop function

$$F(s) = \frac{y(s)}{u(s)} = \frac{F_1(s)}{1 + F_1(s)F_2(s)}$$

unit (negative) feedback

$$S_1: \begin{cases} \dot{x}_1 = A_1x_1 + B_1u_1 \\ y_1 = C_1x_1 \end{cases}$$

$$S_1: \quad F_1(s) = \frac{y_1(s)}{u_1(s)}$$

 \mathcal{S}_1 open-loop system

 \mathcal{S} closed-loop system

$$u_1 = u - y_1, \quad y = y_1$$

 $\dot{x} = \dot{x}_1 = A_1 x_1 + B_1 (u - y_1) = A_1 x_1 - B_1 C_1 x_1 + B_1 u$
 $= (A_1 - B_1 C_1) x + B_1 u = A x + B u$
 $y = y_1 = C_1 x_1 = C x$

$$eig\{A\} \neq eig\{A_1\}$$
 \leftarrow $A = A_1 - B_1C_1$ $B = B_1$ $C = C_1$

$$F(s) = \frac{y(s)}{u(s)} = \frac{F_1(s)}{1 + F_1(s)}$$

unit positive feedback

positive feedback system

$$F(s) = \frac{y(s)}{u(s)} = \frac{F_1(s)}{1 - F_1(s)}$$

$$\uparrow$$

$$\mathsf{change}$$

stability of the closed loop system

example (unit feedback):

$$F_1(s) = \frac{2}{s-1}$$
 \Rightarrow $F(s) = \frac{F_1(s)}{1+F_1(s)} = \frac{2/(s-1)}{1+2/(s-1)} = \frac{2}{s-1+2} = \frac{2}{s+1}$

open-loop unstable —————— closed-loop asymptotically stable

$$F_2(s) = \frac{s-3}{s^2+s+1}$$

$$F(s) = \frac{F_2(s)}{1+F_2(s)} = \frac{s-3}{s^2+2s-2}$$

stability of the closed loop system

example (unit feedback):

$$F_3(s) = \frac{K(s-1)}{(s+1)^2}$$

$$F(s) = \frac{F_3(s)}{1 + F_3(s)} = \frac{K(s-1)}{s^2 + s(2+K) + 1 - K}$$

open-loop

closed-loop

- ullet asymptotically stable for -2 < K < 1
- marginally stable for K=1 or K=-2
- unstable in all other cases

K could be seen as a design parameter (controller)

feedback (cancellations)

• if a zero of $F_1(s)$ cancels out with a **pole** of $F_2(s)$ (zero/pole cancellation)

$$F_1(s) = \frac{(s+a)N_1'(s)}{D_1(s)} \qquad F_2(s) = \frac{N_2(s)}{(s+a)D_2'(s)} \qquad F_1(s) \colon n_1 \text{ poles}$$

$$F(s) = \frac{(s+a)^2N_1'(s)D_2'(s)}{(s+a)[D_1(s)D_2'(s) + N_1'(s)N_2(s)]}$$

$$= \frac{(s+a)N_1'(s)D_2'(s)}{D_1(s)D_2'(s) + N_1'(s)N_2(s)} \qquad F(s) \colon n_1 + n_2 - 1 \text{ poles}$$

the cancelled pole of F_2 becomes a hidden eigenvalue

feedback (cancellations)

• if a **pole** of $F_1(s)$ cancels out with a **zero** of $F_2(s)$ (pole/zero cancellation)

$$F_1(s) = \frac{N_1(s)}{(s+a)D_1'(s)} \qquad F_2(s) = \frac{(s+a)N_2'(s)}{D_2(s)} \qquad F_1(s) \colon n_1 \text{ poles}$$

$$F_2(s) \colon n_2 \text{ poles}$$

$$| |$$

$$F(s) = \frac{N_1(s)D_2(s)}{(s+a)[D_1'(s)D_2(s) + N_1(s)N_2'(s)]} \qquad F(s) \colon n_1 + n_2 \text{ poles}$$

- if a zero λ_c of $F_1(s)$ cancels out with a pole λ_c of $F_2(s)$ (zero/pole cancellation) we have generated uncontrollable and unobservable hidden dynamics characterized by the eigenvalue λ_c
- if a pole λ_c of $F_1(s)$ cancels out with a zero λ_c of $F_2(s)$ (pole/zero cancellation) there are no hidden dynamics but the pole λ_c remains unchanged at closed-loop

feedback (cancellations)

what happens if the open-loop system S_1 has hidden modes?

(i.e., for the open-loop system, not all the eigenvalues become poles)

$$F_{1}(s) = \frac{(s+a)N'_{1}(s)}{(s+a)D'_{1}(s)}$$

$$\Rightarrow F(s) = \frac{(s+a)N'_{1}(s)}{(s+a)N'_{1}(s) + (s+a)D'_{1}(s)} = \frac{(s+a)N'_{1}(s)}{(s+a)[N'_{1}(s) + D'_{1}(s)]}$$

$$= \frac{N'_{1}(s)}{N'_{1}(s) + D'_{1}(s)}$$

- in a unit feedback system, the closed-loop system has hidden modes if and only if the open-loop has them
- the open-loop hidden modes are inherited unchanged by the closed-loop

some useful block manipulations

Att.:

these are purely algebraic block manipulations and do not correspond to real systems manipulation (compare, for example, systems dimension)

$$y(s) = F(s)(u_1(s) + u_2(s))$$

= $F(s)u_1(s) + F(s)u_2(s)$

equivalence can be easily shown comparing the signals (their Laplace transforms)

fundamental transfer functions

the superposition principle allows us to compute separately each contribution to the chosen output

$$y(s) = T(s)r(s) + P(s)S(s)d_1(s) + S(s)d_2(s) - T(s)n(s)$$

$$e(s) = S(s)r(s) - P(s)S(s)d_1(s) - S(s)d_2(s) - S(s)n(s)$$

$$m(s) = S_u(s)r(s) - T(s)d_1(s) - S_u(s)d_2(s) - S_u(s)n(s)$$

where

$$S(s) = \frac{1}{1 + G(s)C(s)} = \frac{1}{1 + L(s)}$$
 sensitivity function

$$T(s) = \frac{G(s)C(s)}{1+G(s)C(s)} = \frac{L(s)}{1+L(s)} \quad \text{ complementary sensitivity function}$$

$$S_u(s) = \frac{C(s)}{1 + G(s)C(s)} = \frac{C(s)}{1 + L(s)} \quad \text{ control sensitivity function}$$

example I

imagine that, for the feedback system shown in figure, we are interested in analyzing the effect of the input d (disturbance) on the output of the system G(s), that is on z

the superposition principle allows us to compute separately the contribution to z(s) of d(s) and the contribution of r(s)

$$z(s) = W_{dz}(s)d(s) + W_{rz}(s)r(s)$$

- we can isolate the effect of d on z by setting the other inputs (here only r) to zero and derive the transfer function $W_{dz}(s)$
- in order to obtain $W_{dz}(s)$ we can either manipulate, using the previous blocks manipulation rules, the feedback system or proceed algebraically

block manipulation (with a little imagination)

• algebraic solution

$$z(s) = G(s)a(s) = -G(s)K(s)y(s) = -G(s)K(s)[d(s) + z(s)]$$

$$W_{dz}(s) = \frac{z(s)}{d(s)} = \frac{-K(s)G(s)}{1 - [-K(s)G(s)]} = -\frac{K(s)G(s)}{1 + K(s)G(s)}$$

example II

find the two transfer functions $W_{dy}(s)$ and $W_{ry}(s)$

block manipulations

we know the formula for this scheme

$$W_{dy}(s) = \frac{F_1(s)}{1 + [F_1(s) + F_2(s)] C(s)}$$

and analogously

$$W_{ry}(s) = \frac{[F_1(s) + F_2(s)] C(s)}{1 + [F_1(s) + F_2(s)] C(s)}$$

- algebraic solution
 - identify all the signals which appear in the interconnected system
 - write down the relationships between these signals in the s domain (we are considering only forced responses so we use the simple relationship between the input, the output and the transfer function)
 - solve for the ratio output/input which characterizes the sought transfer function

$$y(s) = b(s) + c(s)$$

$$b(s) = F_1(s)a(s)$$

$$c(s) = F_2(s)u(s)$$

$$c(s) = F_2(s)u(s)$$

$$a(s) = u(s) + d(s)$$

$$u(s) = -C(s)y(s)$$

$$y = b + c = F_2 u + F_1 (u + d)$$

= $F_1 d - (F_1 + F_2)Cy$

solve for y/d

example III

Consider the chemical reactor modeled as a continuously stirred tank (CSTR) where an exothermic reaction $A \longrightarrow B$ occurs.

In order to remove the heat of the reaction, the reactor is surrounded by a jacket in which a cooling liquid flows with flow f_a

 ${\cal T}$ reactor temperature

 T_{ai} T_a jacket input and output temperatures

 C_{Ai} C_A inlet and outlet concentrations of A

$$C_A(s) = \frac{1}{1+\tau_1 s} (K_1 C_{Ai}(s) + K_2 f(s) - K_3 T(s))$$

$$T(s) = \frac{1}{1+\tau_2 s} (K_4 f(s) + K_5 T_i(s) - K_6 C_A(s) + K_7 T_a(s))$$

$$T_a(s) = \frac{1}{1+\tau_3} (K_8 f_a(s) + K_9 T_{ai}(s) + K_{10} T(s))$$

example III

Finding how the different inputs contribute to the output could be a useful exercise