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Outline

* General interconnected system state and interconnection equations
* Series

e Parallel

e Feedback
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Consider a number of systems which influence each other through interconnections.

We want to find a representation (state-space or transfer function) of the interconnected
overall system

jji — AZ.CIJZ + Biui
Let the single system be represented by S; : x; € R™
yi = Cizi+ Dy
The overall system has state x given by
z1(1) m
x(t) = ; r € R" nzzni
T, (t) 1=1

and its representation (and behavior) depends upon how the subsystems are interconnected

3 different interconnections:
® series

e parallel

o feedback
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series (state space
( 2 ) s, { 1 = Az + Biug

1y = Cixy 4+ Diwg

u = Y1 = uz Y2i=y { P9 = Asxg + Bous
: E Sa
Yo = Coxo + Dous

S with state z(t) = <x1(t)) input u and output y

* series system state space representation

interconnection equations
Y = U2, U=Ur, Y =1Y2

_________________________________

T = T1 _ A1$1 + Blul ) : A1$1 + Blu _ A1$1—|—B1u
T2 Ao + Baug © A + Bay Aoxo 4+ Bo{Ciz1 + Diu)

_ Al 0 X1 Bl o A
N (3201 Ag)(x2>+<B2D1>U—A£E+Bu
y = y2=Caxz+ Doup = Comz + D2(Crz1 + Diwg) = ( D201 Oz ) ( i; ) + Do D1u

= (Cz+ Du
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series (state space)

: block
;erlzs system 0 A 0 triangular cig{ A} = eig{A }Uei (A,)
as dynamics —\ B, A, > g — €181 A1 g1412

matrix

in general, the eigenvalues of the series of subsystems are given

by the union of the single subsystem’s eigenvalues

and therefore

* the series of asymptotically stable systems is also asymptotically stable

* if in a series a system is unstable, so is the interconnected system in series

* special care when interconnection two marginally stable systems
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series

1
e butif S1: — and Sy each marginally stable, however when interconnected in series
S

s(s+1)
marginally marginally
stable stable
U S So|
1 1 Y : .
> - > : > S :series system - transfer function
s s(s+1) : .
5 unstable
S unstable (s +1)

new behavior

* interconnection of marginally stable systems does not necessarily lead to instability

 ceries of s+ 1 4 1 s+1 1
€eX.. Series o S(S T 2) an 2 110 S(S T 2) 32 110
marginally marginally still marginally
stable stable stable

therefore in general there is no unique answer about stability when interconnecting in series two
marginally stable systems
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series (transfer function)

_______________________________________________________________ S i Fy(s) — y1(s)

U =:u1 Y1 = U2 Yai=y ( ) Ul(S)
>|  Fi(s) > Fb(s) >

_________________________________________________________________ s S Fale) = 20

Hyp: for every subsystem S; we assume coincidence of eigenvalues and poles

(which does not imply that if we multiply two transfer functions there will be common factors)

F(S) — @ _ y2(8) uQ(S) _ yQ(S) yl(s) _ yQ(S) yl(S) _ FQ(S)Fl(S) _ Fl(S)FQ(S)

u(s)  wi(s)ua(s) wui(s)ua(s)  u2(s)ui(s)

transfer functions of systems in series multiply together

* series can alter the filtering capacity
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example (cancellations)

o F(s)inseries with F,(s)

s—1 2
p— — - S F (8) = p— 1—
u Ui Yir = u2 Y2:=1y 1 1
> Fi(s) > F(s) — Slel s+1
i S Fy(s) =
_________________________________________________________________ S 2 2(8) s —1
F(s)= Fi(s)Fy(s) = =D 1 1 only
o T D) (s—1)  s41 < 1 pole but

2 eigenvalues
® the interconnection has generated a hidden mode

® the interconnected system remains unstable since the eigenvalues have not

changed and one is real positive.

rank( A— N1 ‘ B ) =n =—> )\, controllable

recall the general PBH rank tests

A— N1
rank - =n —> )\; observable
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* for the considered two systems we can find the following two realizations

81: Alz—l, Blzl, 01:—2, D1:1 A1 = -1
822 A2:1, 32:1, 02:1, DQZO )\2:1

* series state-space representation

A:(Bfél £2>:(:; ?),B:(Bil%):(}),cz(o Co )=(0 1), D=0

* PBH rank test

rk( A— X1 B ) — rk( :3 8 i ) =1<n=2, = Ay uncontrollable
-2 0
rk ( A _CAQI ) = k| =2 0 | =2=n, = Ao oObservable
0 1

* the series interconnection has generated, for the given example, an uncontrollable mode

(the hidden dynamics characterized by the eigenvalue \»)
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series interconnection but in different order

e F,(s)in series with F) (s)

_ _ - S Fi(s) = =1-
U =:U2 Y2 = Ul Y=y 1 1
> F3(s) > Fi(s) > 5 Jlr 1 s+ 1
i Fy(s) =
________________________________________________________________ S S2 2(8) = —
1 (s—1) 1 .
F(s) = Fa(s)Fi(s) = = same transfer function as before, but

rk( A—)XI B ) — rk( =2 (1) (1) ) = 2 =n, = Ao controllable
-2 1
rk ( A _C)\QI ) = rk 0 0 | =1<n=2, = Ay unobservable
-2 1

* the series interconnection has generated, for the given example, an unobservable mode

(the hidden dynamics characterized by the eigenvalue \2)
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If, in the series of two systems F'(s) = Ni(s)/D1(s) and Fy(s) = Na(s)/Da2(s)
we have cancellations of common factors between Ni(s) and D>(s) (zero/pole

cancellation) or between D1(s) and N2(s) (pole/zero cancellation), we generate

hidden dynamics which can either be uncontrollable or unobservable

For the system in figure (with the output of F)(s) being the input of F;(s))

e ifa zero )\ of F(s) cancels out with a pole ). of F,(s) (zero/pole cancellation) we

have generated uncontrollable hidden dynamics characterized by the eigenvalue .

o ifa pole ). of Fj(s) cancels out with a zero ). of F,(s) (pole/zero cancellation) we

have generated unobservable hidden dynamics characterized by the eigenvalue A.
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example

natural modes when starting from non-zero initial conditions and applying an impulse

recall that

the zero state response to a generic input u(t) can be computed as the convolution of
impulsive response and w (t)

with

¢ impulse

ot) = M)+ [ A Bu(nar e a(t) = eMa(0) + 4B
0

y(t) = CeM'a() + [ N Bu(r)dr y(t) = Cea(0) + e B

0
et B displays all the controllable natural modes
Cet displays all the observable natural modes

CetB  displays all the controllable and observable natural modes
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parallel (state space)

1 = Az + Biug

§ i = Ciz1+ Diwg
> Sl ; .

g > y2 = Caoxg + Dous
o
> 82 : i
S

interconnection equations
- _ [z _ _
S with state x(t) = 2o (1) input u and output y Y=y +yY2, U=1U = U
2

* parallel system state space representation

( Zifl ) B ( A1£131 —|—B1U1 ) B ( Alxl —|—B1u )
T2 Asxo + Bous Aszs + Bou
Al 0 I Bl
= Ax+ B
<0 A2)($2>+<B2>u e

y1 +y2 = Crx1 + Diug + Coxg + Doug = ( C:1 (s ) (
Cx + Du
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parallel (state space)

block

parallel system has A 0 diagonal
dynamic matrix N

> {eig{A} = eig{ A1} U eig{Az}J

BZ(g;)a C=(Ci Cy), D=Di+ D,

in general, the eigenvalues of the parallel of subsystems are

given by the union of the single subsystem’s eigenvalues

No new time behaviors can appear

the parallel of asymptotically stable systems is asymptotically stable

if one of the system in the parallel interconnection is unstable, so is the whole system

the parallel of a marginally stable system and an asymptotically stable system is marginally stable

the parallel of two marginally stable systems is marginally stable
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parallel (transfer function)

F
1 ¥ a St Fis) = 2
U =Ul = U2 Y1 +iy2 =y u1(s)
>
+ F _ yQ(S)
Fh(s) 52 2(5) us(S)
_____________________________________________________________________________ S
for every subsystem S; we assume coincidence of eigenvalues and poles
Cyls) yi(s) +ya(s)  wals) [ wals)  wil(s) | yals)
70T wm w0 T ue) wme) wl) R

transfer function of systems in parallel add together
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example (cancellations)

> F1(s) s —1 2
+ s S Fi(s) = —1-
E 1
E S F>(s) =
f  Fh(s) + ? 2(5) s+1
___________________________________________________________________ S
. . | only
s — s
F :F F o p— p— 1 — € 1 POIe bUt
(5) 1(8) + Fals) s+ 1 N s+1  s+1 s+ 1 2 eigenvalues

since there is a cancellation (creation of a hidden dynamics) we need to look at the state-space
representation to understand if it’s a loss of controllability or observability

we first realize each subsytem and the interconnect them

81 . A1 — —1, Bl — 1, Cl — —2, D1 =1
82 . A2 —1, B2 — 1, 02 — 1, D2 =0

—1 0 1
S A:< O _1), B:(l), C—(—2 1), D=Dy—1
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example (cancellations)

> F1(s) s —1 2
=+ 5 S F — —1—
E 1
| S Fs5(s) =
f  Fh(s) T : 2(5) s+ 1
S

PBH test for controllability and observability for A = -1

0O 0 1
rk(A—)\I B) — rk(o 0 1>:1<n:2 = A= -1 uncontrollable

0O O
rk ( A—A ) = rk 0O O =1l<n=2 = A=—1 unobservable
¢ —2 1

the parallel interconnection has generated, for the given example, an unobservable

and uncontrollable eigenvalue and corresponding natural mode mode e

Lanari: CS - Interconnected systems 17



Let two systems Fi(s) and F3(s) have a common pole p;

) — Nl(S) . Nl(S) ) — NQ(S) _ NQ(S)
M= 000 e-pDis) YT Duls) T G- p0Dh)
1 T
put in evidence the common pole
parallel = F(s)=Fi(s)+ Fa(s) = N1 (s) + N?(S)

................................

degree has been lowered by 1

In general if two systems have eigenvalues (poles) in common then in the parallel
interconnection we generate an unobservable and uncontrollable hidden dynamics

(here with dynamics characterized by the eigenvalue p;)
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feedback (state space)

- i S . r1 = A1z + Biug
i _ i s, - <’ To = Asxo + Bouso
L y2 = Coxa + Daug

2 U
Y S § ? assume D1 and D- equal to 0
2 (special case, other cases as exercises)
(1) interconnection equations
. x .
S with state z(t) = (xl(t)> input v and output y Up =u—Y2, Y=Y = U2
2

* state space representation of the feedback interconnection of the two system
A T1 _ Aiz1 + By <’LL — yg) _ Aix1 — B1Coxs + Biu
T2 Aoz + Bayn Agwe + BoChwy
. Al —3102 I Bl .
— (3201 A, )(xz + 0 u = Az + Bu
x
y = n=Cuo=(C 0)( ! >:Cx
L2
since we are feeding back the output (measured variable) it is also called an output feedback
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feedback (state space)

feedback system A — A
has dynamics —\ ByCj
matrix

B = 0

—B1C5
A

no special

structure
) > {eig{A} + eig{ A1} U eig{AQ}}

(Bl) C=(Ci 0) D=0

in general, the eigenvalues of the feedback of two

subsystems differ from those of the single subsystems

new time behaviors usually appear

Lanari: CS - Interconnected systems
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feedback (transfer function)

forward path

v
NS

1(s)

U + U1 Yy =1y ui(s
- y2(s)
S Fs(s) =
v BT L
A2 Fi(s) e for every subsystem §; we assume
<
: coincidence of eigenvalues and poles

S g S (no hidden dynamics)
feedback path

y(s) y1(s) = F1(s)[u(s) — y2(s)] = F1(s)[u(s) — Fa(s)uz(s)]

Fi(s)F>(s) is called B B
loop function u(s) 1+ Fi(s)Fa(s)
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unit (negative) feedback

{ 1 = A1z + Biug
_____________________________________________________________________________ 81 .
; y1 = Chag
> 1 — y1(S)
: : F p—
- 51 1(8) U1 (8)
S S1 open-loop system
S  closed-loop system
Uupr =4u—%Y1, Y=1uU
r = Zi?l — A1£U1 —+ Bl(u — yl) — A1£L“1 — BlClzz:l + Blu
= (A1 — BiC1)x + Byu = Ax + Bu
Yy = ylzCla:l:Cx
elg{A} 7é elg{Al} <€ A= Al — BlC’l B = B1 C = Cl
4 )
F
Py~ Y8 __Fi(s)
u(s) 14 Fi(s)
g J
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unit positive feedback

U -+ u1 Yy1 =y
> S1 >
4 positive feedback system
S F(s) = y(s) _ Fy(s)
u(s) 11— Fi(s)
4 U1 s Yyr =y change
> 1 >
-1
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stability of the closed loop system

example (unit feedback):

2 Fi(s) 2/(s—1) 2 2
W) = 77 ) =TT FRG) 1126-10 s-1+2 511
open-loop unstable »  closed-loop asymptotically stable
Fy(s) — s—3 F(s) = Fyr(s)  s5—3
T 24541 14+ Fy(s) 524252
open-loop asymptotically stable » closed-loop unstable

Lanari: CS - Interconnected systems
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stability of the closed loop system

example (unit feedback):

K(s—1 F3(s K(s—1
F3(s) = ( 2) F(s) = 3%8) — 2 | )
(s+1) 1+ F5(s) s2+s24+K)+1-K
open-loop > closed-loop
e asymptotically stable for -2 < K < 1
* marginally stable for K =1 or K = -2
e unstable in all other cases
open-loop K could be seen as
- . a design parameter
T i i s—1 (controller)
> > (s + 1) . >

Lanari: CS - Interconnected systems 25



feedback (cancellations)

(7 -+ U1 Yy = Y r @ F 1(8) ___________
)Q | 1 g ) u(s)  1+:iF1(s)Fa(s)
-_— [ — e e ,f\ """""
Y2 U2 :
F>(s) e § we may have
S cancellations here
e if a zero of Fi(s) cancels out with a pole of F(s) (zero/pole cancellation)
......... > (s+a)Ni(s o Na(s Fi(s): n1 poles
Fl(S) ( ) 1( ) FQ(S) -, 2( ), 1( ) 1 p
D1 (s) (s +a)Dh(s) F>(s): n2 poles
- (5 +a)2N{(s) Dh (s)
S —
(s +a)[D1(s)Dj5(s) + Ni(s)Na(s)]
_ (s +a)Ni(s)Ds(s)
D1(s)D5(s) + N{(s)Na(s) oo > F(s): n1+ n2- 1 poles

the cancelled pole of F> becomes a hidden eigenvalue

Lanari: CS - Interconnected systems 26



feedback (cancellations)

e if a pole of Fi(s) cancels out with a zero of F5(s) (pole/zero cancellation)

s) — N1i(s) ) — (s + a)N3(s) Fi(s): n1 poles
Fils) (s +a)Di(s) F2(s) Ds(s) F>(s): na2 poles
|
F(s) = N1(5)Das) F(s): n1 + n2 poles

(s +a)|[D1(s)D2(s) + N1(s)Ny(s)]

e if a zero ). of Fi(s) cancels out with a pole ). of F>(s) (zero/pole cancellation) we
have generated uncontrollable and unobservable hidden dynamics characterized
by the eigenvalue \.

e ifa pole )\ of Fi(s) cancels out with a zero ). of F3(s) (pole/zero cancellation) there

are no hidden dynamics but the pole A\ remains unchanged at closed-loop
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U -+ U1 yr =y what happens if the open-loop

system &1 has hidden modes?

(i.e., for the open-loop system, not

S all the eigenvalues become poles)
_ (s+a)Ni(s)
B = D)
_ (s +a)Ni(s) _ (s +a)Ni(s)
- = (s +a)Ni(s) + (s +a)Di(s)  (s+a)[N{(s) + Di(s)
_ N{(s)
Ni(s) + Dy(s)

* in a unit feedback system, the closed-loop system has hidden modes if and only if
the open-loop has them

* the open-loop hidden modes are inherited unchanged by the closed-loop
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some useful block manipulations

U Y U Y
fj E(s) — ﬁ F(s)
] Att.:
these are purely algebraic block
u Y, manipulations and do not correspond
u J F(s) to real systems manipulation
F(s) = 1 (compare, for example, systems
Ys F(s) dimension)
Ys

u, () u, Y

= F(s)(u1(s) + ux(s))
F(s)ui(s) + F(s)uz(s)

M@
L
I
T
if
M@
.
Jog [ e
< A
N
|

u n U, Y. Yy u 1 + Yy . :
O—— F(s) = O—AF(s) - F(s) equivalence can be easily shown
- ! E(s)| - 2 ! : .
comparing the signals
Y2 E(s) Ya (their Laplace transforms)
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fundamental transfer functions

the superposition principle allows us to compute separately each contribution to the

chosen output

1 1
where S(s) = 1+ G(s)C(s) =7 +L(s) sensitivity function
T(s) = 1 fg)(sc;(ézs) =1 f(zis) complementary sensitivity function
Su(s) = C(s) = Cs) control sensitivity function
1+ G(s)C(s) 1+ L(s
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example |

ﬁ— K(s)

A

2 d

|

A
';U >

G(s)

imagine that, for the feedback system shown
in figure, we are interested in analyzing the
effect of the input d (disturbance) on the
output of the system G(s), that is on z

the superposition principle allows us to compute separately the contribution to z(s) of
d (s) and the contribution of r (s)

2(8) = Wy, (s)d(s) + W,.(s)r(s)

* we can isolate the effect of d on z by setting the other inputs (here only r) to zero and derive

the transfer function W.(s)

* in order to obtain Wy.(s) we can either manipulate, using the previous blocks manipulation

rules, the feedback system or proceed algebraically

Lanari: CS - Interconnected systems
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* block manipulation (with a little imagination)

-K(s)

I
G20, = Lo K(s)G(s) 2

* algebraic solution
0=r

Lanari: CS - Interconnected systems
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example Il

d
O o) Y J\+ Fs) () find the two transfer functions

N % N 1
: Way(s) and Wiy(s)
Fy(s)

* block manipulations
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d + 1 Y

Yy
TR T T R o)
»
C(s)

and analogously

Lanari: CS - Interconnected systems

we know the formula for this scheme

Fl(S)

1+ [F1<S) + FQ(S)] C(S)

34



* algebraic solution

- identify all the signals which appear in the interconnected system

- write down the relationships between these signals in the s domain (we are

considering only forced responses so we use the simple relationship between the

input, the output and the transfer function)

- solve for the ratio output/input which characterizes the sought transfer function

/Ld
=0+~ o(s) U ta F(s) b +

Yy

$
Fy(s)

y = b+4+c=FIu+ Fi(u+d)
= Fyd— (F1+ F»)Cy

Lanari: CS - Interconnected systems

S &

)
Va »

<

o

/N N N /N /N
V)

N—r’' e e N NS

solve for y/d

S
—~
V)
~—
_|_
o
—~
V)
~—

Gl
/N N
Va)
SN—"
~
VN
Va)
~—
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example Il

Consider the chemical reactor modeled as a continuously stirred tank (CSTR) where
an exothermic reaction A — B occurs.

In order to remove the heat of the reaction, the reactor is surrounded by a jacket in

which a cooling liquid flows with flow f,

I'reactor tem perature

Ti(t)
; J | L f Twi T jacket input and output temperatures
. o L 1o
e I = fi f reactor inlet and outlet flow
Tt)E] A—B Tt
I C'4i Cainlet and outlet concentrations of A
1
C = KOy K — K3T
A(s) s KCai(s) + Ko f(s) — KaT'(s))
1
simplified model I(s) = o (Eaf(s) + KsTi(s) — K6Cal(s) + KrTa(s))
2
1
Ta(s) = 17— (Ksfa(s) + KoTui(s) + K10T'(s))
+ 73
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example Il

Jol$) Ii(s) f(s) lq‘”(8>

, | g K

K, K

5 K,
Toi(s) e+ 0" [ 1 ] Za(s) ! oy [ ) y S | G)
K9 _’QT 111758 K7 h _)—’ 1+ 7,8 ‘KB - i 1+ 7,8 ]
K
Ky

Finding how the different inputs contribute to the output could be a useful exercise
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