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Outline

* introduce the controllability and observability matrices
e define controllable and observable system
* solve an eigenvalue placement problem for a controllable system (Ackermann formula)

e study the non fully controllable case and define stabilizable systems
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What we know

i = Az + Bu
given the system (.5)

y=Cxzx

* )\; controllable &  rank |[A- NI | Bl =n

implies the corresponding mode will appear in the state impulsive response e'B = H(t)

an uncontrollable mode give rise to hidden dynamics with eigenvalue \;

* if all the eigenvalues are controllable, the system is controllable

A— N1
* )\; observable & rank =n
C
implies the corresponding mode will appear in the output transition matrix Cet = U(t)

an unobservable mode give rise to hidden dynamics with eigenvalue \;

* if all the eigenvalues are observable, the system is observable
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equivalent controllability condition (Kalman) but different perspective

equivalent to
non-singular

system is controllable < rank |[B AB A’B ... A" !'B|=n controllability
matrix for
< (A,B) controllable SISO systems

<~ all eigenvalues are controllable

* controllability characterises a property of the input-state interaction and does not depend on

* if a system is controllable there always exists an input that will transfer any state x, in any
other state x; in finite time (new characterization, no proof)

P=|B AB A’B ... A" 'B]| is defined as the controllability matrix

Gystem is controllable < controllability matrix is nonsingularj
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equivalent observability condition (Kalman) but different perspective

o -
002142 equivalent to non-singular
system is observable <« rank =N observability matrix for
: SISO systems
_CAn_l_

< (A,C) observable

<~ all eigenvalues are observable

* observability characterises a property of the state-ouput interaction and does not depend on B

* if a system is observable it is always possible to deduce the initial state from the output ZIR,
or equivalently starting from two different initial conditions and applying the same input for
the same finite time, the ZIR will end in two different states (new characterization, no proof)

C
CA

O = , is defined as the observability matrix

_CAn_ 1_

Gystem is observable <« observability matrix is non-singularj
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Controllability

we defined the matrix P =|B AB A?B ... A" 'B| controllability matrix

we now study the two cases:

e controllable system: rank (P) = n and

* uncontrollable (or not fully controllable) system:rank (P) = m < n

B rank(P)=n iflinput case —> P nonsingular square matrix ——>» P! exists

y
vA
let v be the last row of P~! and define the matrix T as 1 = :
e T'is nonsingular (no proof) AT
» Tissuchthat TAT '=A. TB=B,
0 r ... 0 | 0
: : controller
A. = | - ‘ 0 B.= |- canonical
0 0 ... 1 0 form
_—CL() —Qa1 —an_l_ _1_

with pA(A) = \" + an_l)\”_l + s al A+ ao
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effect of a state feedback
in the new coordinates w = Tz, the

» state feedback in w in z effect of the state feedback is more

l l evident
v=Fw+v=FTx+v=Fx+v

w=Tr — w=Aw+ Bau — w=(A.+ B.F.)w+ B.v

dynamic matrix of the

v + U
—>Q > S > ClOSGd-IOOP S)’Stem

+ Acl:Ac+Bch
v assuming
Fle—

Fo=\fo fi - fo-1

0 1 0 | 0
wehave A+ B.F, = | ° 0 s [fe fioe fan]

0 0 1 0

—ag —aq —Qp—1 | 1
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* closed-loop dynamic matrix

0 1 .. 0
A, 4+ B.F,= | ° 0
0 0 . 1
_fo—ao Ji—ar ... fano — Un—1 |
e if {A\],A%,..., A} desired eigenvalues which can be seen as solutions of the polynomial

desired closed loop  p% (A) = (A —A])...(A=A)) = A" + Oén_l)\n_l + -+ a )+ g

polynomial

choosing f; =a; — 1 =20,...,n—1  we assign the n eigenvalues

* back in the original coordinates u = Fxr with F'= F.T’

but things get even simpler:

v o+ u v o+ u
S S > we can get a simple formula
+ . TN + . directly in the x original
F. k Fk coordinates without going

through w
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Th. Caley-Hamilton

Let A have the characteristic polynomial
paN) =N Fan A" a )+ ag

then A satisfies its own characteristic polynomial that is

applied to our problem
A" = —CLn_lAn_l — rr Cl,lA — CL()[

P (A)=A" +an, A"+ oA+ ol

p*(A) is not the characteristic polynomial of A
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from
Caley-Hamilton

this is not equal
to 0 since the
Caley-Hamilton
theorem
does not hold



let’s compute F'in the original coordinates

F=FET ~

B
I

[ao—Oéo ay — o1 - an—l_an—l}

= [aol +aA+ - +a, A1
_(Oé()[ + a1 A+ -+ Ckn_lAn_l)}
v[-A" = (p*(A) — A™)]

= —p (4)
x Ackermann
F=— A
[ i (4) j formula
to assign a set of desired eigenvalues {A7,3,..., A}, } solutions of the polynomial P} ()

to the matrix A+ BF, we can compute (for the controllable system case) the last row ~ of
the inverse of the controllability matrix and use the Ackermann formula
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what happens when the system is not controllable?

B rank(P) =m <n ——> dim Range(P) = dim Image (P) = dim Im (P) = m

—> Im(P) = subspace generated by m independent vectors

we can choose as base of Im (P) the m linearly independent
columns of P which we call {v1, v, ..., Um}

Im (P) = gen {v1, v1, ..., U}

define a change of coordinates T (nonsingular) such that

T 1 = [2)1 V2t Um Umtl /Un} I n components
| | 1 |
base of P completion:

choose the remaining n-m
n-dimensional vectors such that
all the columns of T are linearly
independent

note that, by construction,
no vector vk, for k = m—+1, ..., n (vector of the completion) belongs to Im (P)
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example

A=

therefore Im(P)=gen<¢ |0,

since

-

can be generated as

— DN =

=2

T =

controllability

o =

. P=10 2
matrix
) the same (1] [o]"
> subspaceis  Im(P)=gen< [0],|1] ¢
) generated by L] 0]

o = O

= —0.9

299

=
0| +0.5
_1_
1
T =10
1

\/ N

different base of Im(P
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o = O

2.0 =

|

we canh choose
different changes of
coordinates

1 0
T-'=10 1 :3
1 0

different completion but always such
that the matrix I'is nonsingular



Kalman decomposition w.r.t. controllability

under this change of coordinates z = Tx

m n-m
~ Au Al m : B m
A=TAT ! = 11~12 B_TRH— D1

O A22 n-m O n-m

C=CT = i ¢ no special structure
Cr i G (controllability depends only upon A and B))

such that

~ ~

e rank [Bl Allél A%lBl “e Aﬁ_lél] —m

e thatis (Ai1,B1) controllable

o cig {A} :eig{flll} U eig {14122}
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Kalman decomposition w.r.t. controllability (partial proof)

® property of Im (P) :invariance w.r.t A

if v belongs to Im (P) then Av also belongs to Im (P)
velm(P) = Avelm(P)

if v belongs to Im (P) then it can be expressed as a linear combination of the base of Im (P)

velIm(P) = wv= Zﬁwi
i=1

in the z coordinates, w = T v belongs to Im (P) and therefore, being

v=T"1wecIm(P) and v= Z Bivi = w= ﬁm’ i.e. if w belongs to Im (P)
i=1

. i| then its last n-m components are
. :_9
0 equal to 0 in the new coordinates

w="7Tzux
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Kalman decomposition w.r.t. controllability (partial proof)
if Im (P) is invariant w.r..t A it is also invariant w.r.t. A. = TA T (coordinate independent)

® in the new coordinates w = T x if w belongs to Im ( P) it has the last n-m

components equal to (

w € Im(P) = w:[(’;]

e if w belongs to Im (P) then also A.w belongs to Im (P) and therefore also A.w has

the last n-m components equal to (

Acw € Im(P) = Acw:[z;]

® then, for a generic A. the invariance of w belonging to Im (P) w.r.t. A. to means that
the fowling relationship must hold for any vector | |
|
v

Acin Aci2| |1]] _ |+ _ _
[A021 ACQQI [O] = [O] = Ach-H =0 = A1 =0

® note that B belongs to Im (P) then B. also belongs to Im (P) and therefore has its

last n-m components equal to 0
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Kalman decomposition w.r.t. controllability

partition z accordingly

two sets of equations

can be viewed as two

subsystems, (S1) with
state z1 and (S2) with

state 22

<

input u

> (.S2) is autonomous
(no inputs)

the state evolution of this subsystem
is not influenced, either directly or
indirectly through z1, by the input u
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AQQZQ -----------------------
Ci12z1 + Coz9
-
controllable
subsystem
2.:1:... ’__
V"A {
-> 2.,’2 — ¢ s e -
? ‘
uncontrollable
subsystem
\_

output

== >Q--->




Kalman decomposition w.r.t. controllability

-
controllable

subsystem

Input m controllable
eigenvalues \;

.f, | 4

- S

hidden dynamics | [ —————————r—

. , k
(hidden modes) ¢ n - m uncontrollable }
; eigenvalues \;  §

uncontrollable
subsystem

i

® cffect of a state feedback
(system is no more fully controllable so the previous result on eigenvalue assighment is not
applicable)

<1

w=Fz4+v=FTz+v= [Fl F2:| [z
2

| |
partitioned

accordingly to 2

[+
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closed-loop system

+
z
Fe——
effect is evident in 3 3 o 3
the new coordinates 2z ¢ =Az+ Bu=(A+ BF)z+ Bv
- A1y Ay Bi| ..
(A+ BF) = |+ F F
0 Aw| |0

_/111 + Blﬁl A12 + B1F2
0 Ao

elg {fl + BF} = elg {12111 + Blﬁ’l} U elg {14122}
we canset F, = (0 since it does not affect the eigenvalues
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the eigenvalues of the uncontrollable subsystem are fixed, no state-feedback is able to

move them

-~ o~ applying the result for controllable systems, we can
(A117 Bl) controllable ———

arbitrarily assign the m eigenvalues of the
controllable subsystem with through a state feedback

(for example with the Ackermann formula)

Fy = —Y1D7 (14111)

~

in the original coordinates F'=F1 = [—’yl p”l‘(fln) O] T
| | L]

F Fs

if we want to make the closed-loop system asymptotically stable (or stabilize the
closed loop system) with a state feedbaclk, either the eigenvalues of the
uncontrollable subsystem (if any) are already with negative real part (the system is

said to be stabilizable) or the problem has no solution
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alternatively we can say that a system (or a pair (A,B)) is stabilizable with state feedback

if every eigenvalue with positive or null real part is controllable i.e.

rank ( A— NI | B ) =n VNi / Re[\] >0

note that stabilizability is a weaker requirement w.r.t. controllability (we need controllability

only for those eigenvalues which do not have negative real part)

Lanari: CS - State space design
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Observability

Given a system S with state x described by (A,B,C') we want to find a dynamical
system S, with state £ which reconstructs asymptotically the system’s state x that is,
defining the error as e = £ - =, we want

lim e(t) = lim [£(t) — z(£)] = 0

t—00 t—00

unknown plant’s
t
initial condition x(O) 6( )

initial condition

for S, $(0)

r = Ax+ Bu
Plant

Lanari: CS - State space design
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First idea: since we know (A,B,C') we just use a copy of the plant driven by the same input

o r = Ax+ Bu c 4 B
t —
an y = Cu opy { = A + Bu

How does the reconstruction error e = £ - x change in time!?

ée=¢(—1=Af+ Bu— Ar — Bu= A({ — x) = Ae

e either | know the initial state (too strong assumption) of the plant and | initialize
the copy in £(0) = x(0) so thate(0) = 0
e or the plant is asymptotically stable and therefore the error tends to zero with a

convergence rate that depends only on the system (also a restrictive assumption)

unsatisfactory solution

We assume to know the system model (A,B,C,D ) the input u and the output y

Lanari: CS - State space design
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i Plant
A fe—
+ ¢ 3
—>| B —)Q—)- / >
+ Copy
A f—

in our previous idea we did not use
the measured output y yet

Lanari: CS - State space design
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we add a term which is proportional to the reconstructed output error (Cz - C¢)

asymptotic observer

K
Yo

— Af+ Bu+ K(Cx — C¢)

— (¢

|

|

true output
(measurable)

A 4

reconstructed output

Yo = C§

Y

>

reconstructed output

K:(nx1)
U | 5 +x'/ T
+
A e——
K
—>B—+>Q+i>/ :
+
A Je——
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error (Y - Yo ) Q

C
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the error now evolves as

e = (—1=A{+ Bu+ K(Cx —C¢) — Ax — Bu
= (A-KC)(¢(—xz)=(A—-—KC)e

and therefore the error converges asymptotically to zero if and only if all the eigenvalues of

the matrix (A - KC') have negative real part

e ceither the plant S is asymptotically stable and we can choose K = 0 but
then the convergence rate is fixed

e or we can use K (n x 1 vector) to assign the eigenvalues of (A - KC)
and therefore choose the convergence rate at which the error tends to
zero.VVe need to understand under which conditions this is possible and
then how to choose K to assign the convergence rate arbitrarily, i.e., the

eigenvalues of the matrix (A - KC)

Lanari: CS - State space design
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17K /[ eig(A— KC) ={A],)\;5,..., A}

remember that for a generic square matrix M

cig(M) = eig(M")

therefore
cig((A — KC)) = eig((A — KO)') = eig(A* — CTK™')
and defining
A=4A" B=C" F=-K'
eig(A — KC) = eig(A + BF)
therefore the question is equivalent to requiring if

7K [ eig(A—KC)={\,)s,....) X'} & J?2F / eig(A+ BF)={\i,\5,...,\%)

’n
we know that we can assign n

arbitrarily eigenvalues to A + BF
iff the pair (A, B) is controllable
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since in general

rank(M) = rank(M?)

(A, B) controllable is equivalent to

rank[B AB - A"'B] = rank[CT ATCT ... AG-DTOT
o
CA
= rank , = rank [(9} =n
_CA'n_l_
( )

\_

dK / eig(A— KC)={\,)5, ..., A}

if and only if

(A,C') is observable or equivalently the plant is observable

J

O is the observability matrix

Lanari: CS - State space design
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how do we choose K s.t. eig(A— KC) ={A],\5,..., A"}

F = —4p*(4)

e first we have that p*(f_l) = p*(AT) = [P*(A)]T

e therefore F=-K' = K=-F"= [p*(z‘_l)}TﬁT:p*(A)f_yT

* moreover, being 7 the last row of

(B AB ...A"'B] ' =[CT ATCT ... (AT =[07]"

and since for any invertible matrix [O"] - [0—1}T

-

\_

to assign n desired eigenvalues, solutions of the desired polynomial p’ (), to the
matrix A- KC which governs the observation error dynamics, the design matrix
K has to chosen as

K =p*(A)7"

where 7' is the last column of the observability matrix inverse O~1

Lanari: CS - State space design
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We can build an asymptotic observer S,
§ =AfE+Bu+ K(Cx—C¢) = (A— KC) + Bu+ Ky

such that the observation error e = £ - x decays exponentially to zero with assigned rate given

by the set of desired eigenvalues {7, A5, ..., AL}

if and only if the plant S is observable

The matrix K is given by K =p* (A~

o being the last column of the observability matrix inverse O~*

e L

~ )
asymptotic 'S
state >
>
. observer
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What happens if the plant S is not observable?

S is not observable ——>

l

l

Lanari: CS - State space design

the observability matrix is singular = rank(QO) =m <n

the kernel or nullspace has dimension n - m
recall that ker(M) = {v | Mv = 0}

ker(O) = gen{v1,v2,...,Vn—m} linear subspace
choose I'such that

T_l — |:w1 “ .. W (] V9 “ . Un—m}
| | | |

completion base of ker(O)
(such that all the columns
are linearly independent)
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Kalman decomposition w.r.t. observability

under this change of coordinates z = 1

m n-m
A=TAT ! = An 0 " B—-TB — By no special
12121 A22 n-m B2 structure
é — CT_l = [él O:|
m n-m
6
rank Cran =1m & (An,él) observable
CLATT

AN

eig{ }Ieig{z‘i11} U elg {12122}
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Kalman decomposition w.r.t. observability

partition z accordingly

two sets of equations
can be viewed as two
subsystems, (S1) with
state z1 and (.S2) with
state 22

Lanari: CS - State space design

21 m
z="Tx =
) n-m
f . t ~
z1 = Anz+ Biu
{ 22 = Ao121+ A2zo + Bau
\ y = Clzl
-
observable
subsystem
g A output
- =P 21 — e e >
\ J
r l the state evolution of this subsystem
N DR does not influence the output y,
g neither directly nor indirectly
through 21
unobservable 5
subsystem
\
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Kalman decomposition w.r.t. observability

observable

subsystem

4 A output
m observable

eigenvalues \;
\ J

hidden dynamics s Y N

(hidden modes) n - m unobservable

eigsenvalues \;
q 5 y

unobservable

subsystem
\ Y,

what happens if we try to built an observer?

first note that since now we are in the z coordinates, the observer built with the matrices
obtained in this decomposition will try to reconstruct z so the new error will be

é:g—z
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Kalman decomposition w.r.t. observability

tentative observer

A+ Bu+ K(Cz—Cé¢) = (A— KC)¢ + Bu+ Ky

C¢

the reconstruction error (in the new coordinates) evolves as

C1 0

we can set K, =0 since it does not affect the eigenvalues
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Observer desigh - unobservable case

* the eigenvalues of the unobservable subsystem are fixed in the observer

.
~

§=AE+Bu+K(Cz—C¢) =(A—KC)+ Bu+ Ky
* since (14111, C~'1) observable we can apply the result for observable systems

and arbitrarily assign the m eigenvalues of the matrix A — KiCy

by choosing K; = p*(ﬁll)ﬁlT where 77 is the last column of the inverse of the

observability matrix associated to the observable subsystem,i.e.,to (A11,C1)

* if we want to reconstruct asymptotically the state of the plant, either the
eigenvalues of the unobservable subsystem (if any) are already with negative real
part (the system is said to be detectable) or the problem has no solution

« alternatively we can say that a system (or a pair (A,C')) is detectable if every eigenvalue

with positive or null real part is observable i.e.

rank( A _C’)\il ) =n VA / RelN] >0

note that detectability is a weaker condition w.r.t. observability
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Observer desigh - unobservable case

if the system is detectable we can therefore build an observer such that

* the reconstruction error relative to the observable subsystem can be made
decaying to zero with arbitrary rate of convergence

* the reconstruction error relative to the unobservable subsystem has a rate of

convergence fixed and given by the unobservable eigenvalues (which are all with
negative real part since the system is detectable)

in the original coordinates, since z = I'x, we also have §~: Te
§ = Tl =T"YTAT ' — KCT YTt + T 'TBu+T 'Ky
= (A-T'KCO)¢+Bu+T 'Ky
= (A-KC){+ Bu+ Ky

with K =T 1K and therefore

where, being (A11,C1) observable, Ki = p* (A1) assigns m desired eigenvalues

to 12111 — f(lél

Lanari: CS - State space design
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Separation principle

We have seen that for a controllable and observable system we can

e design a state feedback u = F' x which assigns the eigenvalues to A + BF
i.e. we want z(t) to tend to 0 asymptotically

* design a dynamic system, the observer, which asymptotically reconstructs the
plant’s state (i.e. the state £ tends to x or, equivalently, the errore = £ - x
tends to () at a desired rate since we can assign the eigenvalues to the matrix

A - KC which governs the observation error dynamics

the state is usually not measurable (at least not all its components) and therefore not
available for the feedback u = F' z.We could try to use the state estimate ¢ instead of

the real state in the feedback law, that is

u=F¢ instead of u=Fux

with

E=(A— KC) + Bu+ Ky

What happens!?

Lanari: CS - State space design
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Separation principle

@ . { plant S } ’ >

output feedback

dynamic compensator

r = Ax—+ BF¢
closed-loop system :
& = KCr+(A+BF - KC)§
A BF

dynamic matrix no helpful structure

KC A+ BF—-KC

Lanari: CS - State space design
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Separation principle

we do a change of coordinates, from (x, &) to (z, e) withe = £ - x

t = Ax+ BF(x+e)
¢ = (—i=KCx+ (A+BF -—KC)(x+¢€)—[Az+ BF(z+¢)]
& = (A+ BF)x+ BFe

closed-loop system —>

e = (A—KCQ)e

A+ BF BF

dynamic matrix —
0 A—-KC

eig(A + BF) U eig(A — KC)

the dynamic output feedback controller can be designed by separately choosing F'as if we
were solving a state feedback stabilization problem and K to make the estimation error decay

with a prescribed rate: this is the separation principle
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Separation principle

Analysing the closed-loop system
¢ = (A+ BF)x+ BFe

e = (A—KC)e

we have obtained that

® the reconstruction error e goes to zero asymptotically with assigned rate of convergence

® the evolution of the state x is governed by an asymptotically stable matrix A+ BF' with
assigned eigenvalues and is forced by an input e which tends to zero asymptotically: the
ZIR tends to zero as well as the ZSR and therefore the state x will tend to zero
asymptotically with assigned rate of convergence plus a forced response which tends to 0

typically one chooses the desired eigenvalues of A-KC ten times “faster” than those of A+ BF'
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Separation principle

u y
: output feedback

observer l dynamic compensator

1

if we rewrite the asymptotic observer systemas ¢ =(A+ BF — KC){+ Ky

and note that the output of the dynamic compensator is u = F' £ we can compute the transfer

function from y to u of the controller (dynamic compensator) as

C(s)=F[sI —(A+ BF —KC)] 'K
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extras (nhot published)

* uncontrollable eigenvalues are not changed by a state feedback (see inv-sub.pdf p.
6.20-6.21).This is a dual point of view w.r.t.“if a system is controllable, a state feedback ©u = Fx

+ v does not alter controllability” in the sense that

(A,B) controllable iff (A+ BF,B) controllable for every F

(proof with PBH)

ok [A = AT B}:rk{[A_M B L{ ?]}:rk[A+BF—)\I B

* observability is affected by state feedback (choose an assigned eigenvalues coincident with a

system zero)
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