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1 Exercise

Let the input u(t) and output y(t) of a system satisfy the following linear di↵erential equation

y(5)(t) + 4y(4)(t) + 3y(3)(t)� 2y(2)(t) + y(1)(t) + y(t)� u(t) = 0

where y(i)(t) denotes the i-th time derivative of y(t). For this system:

1. find a state space representation

2. compute the transfer function and say if there exists any uncontrollable or unobservable mode

3. say if the system is asymptotically stable or not.

2 Exercise

Let the system S respond, from zero initial conditions, with

y(t) =

✓
1� t+
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2
� e�t

◆
��1(t)

to the input
u(t) = �(t)� 2e�3t��1(t)

Find the impulse response w(t) of S.

3 Exercise

Find the output forced response (output zero-state response) y(t) of the system represented by

F (s) =
50

s2 + 15s+ 50

to the input u(t) shown in Fig. 1

4 Exercise

For each system having the dynamics matrix Ai discuss the stability property
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Figure 1: Ex. 3, input u(t)

5 Exercise

Assuming the coincidence of poles and eigenvalues, study the stability property of the following
systems.

P1(s) =
s� 1

s2
, P2(s) =

s� 1

s(s+ 1)
, P3(s) =

s+ 1

s3 + 12s2 + 3s
, P4(s) =
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s3 + 12s2 + s+ 10

P5(s) =
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s3 + 12s2 + s� 12
, P6(s) =

�1

s3 + 2s2 + s+ 1
, P7(s) =

s� 10

s5 + s4 + 2s3 + s2 + 3s+ 4

6 Exercise

For the system having dynamics matrix

A =

✓
k 1
0 0

◆

determine, depending upon the values of k 2 R, the natural modes and study stability.

7 Exercise

Find the forced response of the system

P (s) =
s� 1

s+ 1

to the input u(t) = et��1(t)� 2t��1(t).

8 Exercise

For the system
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find the forced zero-state response to the input u(t) shown in Fig. 2 using

L [sin(!t) ��1(t)] =
!

s2 + !2
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Figure 2: Ex. 8, input u(t)

9 Exercise

Find the natural modes of the system having dynamics matrix
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10 Exercise

Compute the free state and output response of the system

ẋ(t) =

✓
�2 �1
�1 �2

◆
x(t) +

✓
1
2

◆
u(t)
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from the initial condition

x(0) =

✓
2
0

◆

11 Exercise

Determine the initial conditions of the system

ẋ(t) =
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for which we obtain a non-diverging free output.

12 Exercise

For the system given by

ẋ(t) =
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determine the initial conditions, if any, such that the zero-input output response remains constant.
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