
——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

1

Laurea In Ingegneria dell’Informazione

Esercitazioni Guidate di Tecniche della Programmazione

Note introduttive:
1) Nel titolo di ogni sezione di questo documento è specificato tra parentesi il nome del (o dei) file in cui è

proposta una soluzione (se disponibile nella directory “programmi” di questa EG).
2) I programmi che scriveremo dovranno essere in accordo con la definizione standard ANSI C del

linguaggio C.
a. Se usate un sistema diverso dal DEV, provvedete a che la compilazione avvenga con il

compilatore standard C.
b. Ricordate che un programma C e’ in un file con estensione “.c”
c. Se usate il DEVC++, per configurare bene la compilazione bisogna

i. andare nel menù “Tools”, selezionare “Compiler Options”, scegliere “Settings” e poi “C
Compiler”; poi selezionare almeno “Support all ANSI Standard C Programs”)

ii. (se l’interfaccia è in italiano …) andare nel menu’ “Strumenti”, selezionare “Opzioni di
compilazione”, “Compilatore”, “Generazione di Codice …”, “Compilatore C” e poi far
apparire “Yes” almeno accanto a “Supporto programmi ANSI standard C.

d. NB le immagini in queste dispense sono prese dalla versione 4.9.9.2 del DEV. La versione 5.11
è probabilmente la più recente e può differire solo in qualche dettaglio.

4-EXTRA. Esercitazione Facoltativa

Se vi piace approfondire il giochino degli undici fiammiferi, potete arrivare fino alle estreme
conseguenze: qui c’è una summa di quel che abbiamo imparato nelle prime 10-11 lezioni del corso.
Fatela QVP (Quando Vi Pare), se volete.

4-EXTRA.1. Il gioco dell’11, no, del 15, no, del 21, e altri giochi
Tanti anni fa, in una galassia lontana lontana, qualcuno mi spiegò il gioco degli 11 fiammiferi …

- Ci sono 11 fiammiferi sul tavolo, e due giocatori (intorno al tavolo).
- Ogni giocatore, quando è il suo turno, deve prelevare almeno un fiammifero. E può prenderne

fino a 3.
- Perde chi prende l’ultimo fiammifero.

Ovvero … Vince chi lascia l’avversario con un solo fiammifero sul tavolo.

In questo esercizio scriveremo programmi per far giocare una persona (Human, persona, unità a
carbonio …) contro una macchina (Machine) …

Prima di scrivere codice però, è bene cercare di capire quale strategia vincente si può codificare nel
programma, per farlo vincere (cioè per far vincere la macchina).

Esegui o, anche meglio, eseguite almeno una dozzina di partite, giocatore1 contro giocatore2.
Cercate di capire come un giocatore può decidere quanti fiammiferi prendere quando è il suo turno.
Cercate anche di capire se iniziare per primi procura un vantaggio.

Di seguito un’immagine di come potrebbe essere il programma che realizza una partita.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

2

Dopo aver fatto la dozzina di partite (e in due di solito si ragiona meglio) potreste intanto provare a
scrivere il programma che fornisca l’output qui sopra.

Per farlo, prima scrivete l’algoritmo in linguaggio naturale e pseudocodice.

Cosa c’è nel passo 0) ? (Che si può completare strada facendo, al solito)
Quali passi si eseguono, a parte stampare il dialogo e le informazioni su quanti fiammiferi sono
correntemente sul tavolo?

- Calcolare ed applicare la prima mossa (che per definizione spetta alla macchina, sennò
finisce la magia)

- Ricevere ed applicare la mossa della persona
- Calcolare ed applicare la mossa della macchina
(e queste ultime due operazioni si eseguono ripetutamente … mentre ci sono fiammiferi sul
tavolo)

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

3

Se non è chiaro come calcolare la mossa della macchina, scegliete di farle prendere un fiammifero.
Questo ovviamente non è il metodo per vincere, ma così il programma riesce a funzionare … sul
calcolo esatto della mossa si rifletterà dopo, se non è chiaro.

Un programma-soluzione è in fiammiferi0.C ma non andate subito a guardare.
Prima l’algoritmo.
Poi, guardate l’algoritmo … incompleto … proposto nella prossima pagina.

Nel frattempo, in base agli esperimenti di gioco che avete fatto, cercate di capire come la macchina (che
parte per prima) decide le proprie mosse. Ci sono delle regolarità?
! Come sarebbe non avete preso nota delle mosse fatte nelle partite sperimentali??
Rifatele e prendete nota!

Poi segue un suggerimento.

Qui ci sono due ulteriori esecuzioni del programma

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

4

Suggerimento
Si nota, forse, che la macchina sceglie la propria mossa in base alla mossa del giocatore (tranne la
prima). E la scelta dipende anche dal fatto che i fiammiferi sono 11, e/o che si possono prendere al più
tre fiammiferi.

Un suggerimento per l’algoritmo segue …

Suggerimento
Il programma dovrà realizzare un algoritmo di questo tipo

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

5

0) Intanto definiamo delle grandezze costanti per il numero di fiammiferi e per la dimensione della
presa (3 nel caso descritto sopra); poi servono variabili per rappresentare il numero di fiammiferi
presenti sul tavolo (nFiamm, che cambia durante il gioco), la mossa del giocatore (mossaG) e
quella della macchina (mossaM). La mossa e’ il numero di fiammiferi che si preleva.

1) Comincia la macchina. E prende 2 fiammiferi. mossaM=2

2) Ripeti
a. Aggiorna nFiamm (nFiamm = nFiamm – mossaM) (dopo la mossa nFiamm deve cambiare, per continuare a

dire quanti fiammiferi sono disponibili sul tavolo …)
b. Mostra nFiamm all’utente (mostrare la situazione attuale sul tavolo)
c. Chiedi mossaG
d. Aggiorna nFiamm (dopo la mossa nFiamm deve cambiare, per continuare a dire quanti fiammiferi sono disponibili sul tavolo …)
e. Mostra nFiamm (mostrare la situazione attuale sul tavolo)
f. Calcola la prossima mossa della macchina: mossaM =  qualcosa in relazione all’ultima mossaG

Mentre nFiamm!=0
3) Stampare “hai perso”
4) fine

Vabbè, facciamo il programma?

Chiamate il file che contiene questo programma mioFiammiferi1.c
O come vi pare …
Quando avete fatto e avete testato il programma giocandoci varie volte … proseguite

Non era vero che il programma soluzione si chiama fiammiferi0.c … in realtà si chiama
fiammiferi1.c
La versione 0 è quella corrispondente all’algoritmo suggerito sopra, senza l’istruzione clou …

Fatto questo, proseguite

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

6

Ok, fatto questo programma, miglioriamolo …

Ad esempio, nella soluzione proposta in fiammiferi1.c
 “ci sono 1 fiammiferi” è brutto. Anche “prendere 1 fiammiferi” è brutto.

Si può correggere e ottenere un programma che produca l’output come di seguito.
Chiamate il file mioFiammiferi2.c

Una possibile soluzione è in fiammiferi2.C

Un suggerimento su come scrivere “fiammifero” oppure “fiammiferi” segue

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

7

Suggerimento 1 di 2
Nel programma soluzione c’e` questa printf
 printf("\n\n[Sul tavolo ci sono %d fiammiferi]\n", nFiamm);

Il fatto è che quando nFiamm vale 1 bisognerebbe scrivere “fiammifero” … con la ‘o’

Quindi basta un controllo:

 se nFiamm==1

si fa printf("\n\n[Sul tavolo ci sono %d fiammiferi]\n", nFiamm);
 sennò nella printf ci va "\n\n[Sul tavolo c’e` un solo fiammifero]\n"

Questo però risolve solo una occorrenza del problema …
Ci sono altri punti in cui il problema appare e vanno corretti

Correggili, sempre nel medesimo file .c che stai usando.

Poi guarda il suggerimento seguente.

Suggerimento 2/2

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

8

Dunque, nel programma c’è
 printf("MACHINE **** Oh Human, la mia mossa e` prendere %d fiammiferi ", mossaM);

si può migliorare la stampa, ottenendo quel che si vede nell’immagine precedente, facendo in modo che
venga stampata la sequenza di caratteri

"...fiammifer%c"

dove il carattere stampato al posto di %c è un’espressione che produce il valore carattere ‘o’ oppure il
valore carattere ‘i’, a seconda del valore di mossaM

come si fa?
Vedi in fondo alla pagina

Con un’espressione condizionale, in cui viene valutata la condizione (mossaM==1) e prodotto un
carattere o l’altro …vedi fiammiferi2.c

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

9

4-EXTRA.2. Miglioriamo di più il programma …

Nei due programmi precedenti, se siete stati disattenti come me, l’inserimento di input illegali non viene
gestito bene e provoca problemi
… se non lo avete fatto … provate a inserire una mossa troppo grande, o troppo piccola, o a dire 2
quando dovreste prendere l’ultimo fiammifero (e quindi dovreste invece scrivere 1) …

Correggere prego … qui sotto un esempio di output

(Poi guardate fiammiferi3.C, del quale l’output di una esecuzione era quello qui sopra).

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

10

Disquisizione
Ok, questo è un gioco “deterministico”; in particolare, chi comincia per primo e non commette errori
vince.

Quindi se programmiamo le mosse come visto sopra (mossa della macchina = 4 – mossa del giocatore)
e facciamo cominciare la macchina … la macchina vince.

Se comincia l’umano, e non commette errori, vince l’umano. (Ma questo programma non lo abbiamo
fatto).

Guardate qualche formalizzazione e spiegazione relativa al gioco e a giochi consimili …

- Qui (https://mathbox.latteseditori.it/matematica-ricreativa/vuoi-un-fiammifero) c’è una

disamina delle caratteristiche del gioco, da cui si capisce che si possono ottenere tante
varianti, con numero iniziale di fiammiferi e dimensione della presa diverse.
(15 fiammiferi, con prese fino a 4, o 5 … 21 fiammiferi con prese da 4 o 5 o 6 … etc.)

- Qui (http://utenti.quipo.it/base5/jsmarienbad/jsmarienbad.htm) c’è un esame di un gioco
simile (ma diverso) che a sua volta è basato su un altro gioco (Nim) … chissà, magari vi
piace fare esercizi anche su questi giochi.
Si tratta di altri giochi deterministici in cui ci si imbatte quando si cerca qualcosa sul gioco
degli 11, o 15, fiammiferi.

Dovreste riuscire a capire come, in base al numero iniziale di fiammiferi (11, 15, 21, 88 …) e alla
dimensione massima della presa (3, 4, 5, …) si possa determinare una sequenza di “configurazioni
perdenti” …
… in realtà solo in base alla dimensione massima della presa …

Una configurazione perdente è un numero di fiammiferi sul tavolo per il quale si può dire che “chi
riceve quella configurazione e su quella deve fare la sua mossa, perderà … a meno che l’avversario
non faccia errori”.

Fine della disquisizione

https://mathbox.latteseditori.it/matematica-ricreativa/vuoi-un-fiammifero
http://utenti.quipo.it/base5/jsmarienbad/jsmarienbad.htm

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

11

4-EXTRA.3. Rilassiamoci per migliorare ancora di più

Dopo averci un po’ pensato, rilassatevi modificando fiammiferi3.c (anzi … mioFiammiferi3.c, se
avete chiamato così il vostro programma).

Le modifiche devono permettere di svolgere più partite nella stessa esecuzione del programma, tenendo
il conto di quante ne ha vinte il computer e quante la persona.

Un esempio di output segue, ma dopo ci sono specifiche da leggere, prima di mettersi a programmare.

In queste modifiche useremo delle funzioni:

- una per ricevere l'input sulla mossa della persona;
- una per stampare il numero di fiammiferi attualmente sul tavolo;

queste due funzioni ci consentono di avere una main() più pulita ...
- e una per giocare una partita (in pratica il programma precedente).

Prima scrivete l’algoritmo:

le variabili relative alla partita saranno nella funzione che la gioca, chiamata unaPartita();

la main() avrà bisogno di variabili nuove

- per far scegliere se continuare a fare partite,
- e per contenere il punteggio delle vittorie di macchina e persona … anche se, nella situazione

attuale, la persona è condannata …

Provare a scrivere l’algoritmo del programma principale, in cui al momento giusto vengono chiamate le
funzioni sopra accennate

segue un suggerimento per la main …
(ricordiamo che è lì che iniziamo a progettare le funzioni …)

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

12

Suggerimento per l’algoritmo della main

Il programma principale in sostanza chiede se si vuole giocare e tiene traccia dei risultati delle partite
…

0) nFiamm, dimPresa come prima,
score sarebbe il risultato di una partita,
scoreG, scoreM le partite vinte da G ed M …
nPartite il numero di partite giocate

La funzione unaPartita() viene chiamata quando l’utente ha espresso la scelta di giocarne
un’altra (la prima e` obbligatoria …)
Che parametri deve ricevere? Pensarci e poi vedere dopo

riceve come parametri il numero iniziale di fiammiferi e la dimensione massima della presa,
gioca una partita e poi restituisce 1 se ha vinto la persona, 0 se ha vinto la macchina …

1) Chiedere e leggere se si vuole fare una partita (var scelta)

2) Ripetere, mentre scelta è diversa da zero
a. score = unaPartita(…); (pensare a come completare questa chiamata … con i

necessari parametri attuali: da che dipende lo svolgimento di una partita? Dal fatto che
ci sono due giocatori? Dal numero di fiammiferi inziali? Dalla dimensione della presa
legittima? Dall’età dei giocatori? Dal numero di partite già giocate?
Inoltre, cosa restituisce questa funzione? Restituisce un valore che indichi se ha vinto la
persona o la macchina …)

b. incrementare nPartite
c. incrementare scoreG o scoreM a seconda del valore di score
d. chiedere e leggere in scelta se si vuole giocare ancora

3) stampare i risultati (tante vinte da chi …)

4) fine

Iniziare con la funzione main(), e le costanti, e l’include … nel file mioFiammiferi4.c

Inserite anche la chiamata a unaPartita() come riuscite a farlo. Ragionate sulla forma di questa
chiamata. Quali sono i parametri attuali?
In cima, inserite il prototipo, secondo le riflessioni che avete fatto.

Una soluzione è in fiammiferi4.c

Poi qui sotto c’è un suggerimento sulla chiamata della funzione.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

13

Suggerimento sulla chiamata di unaPartita()

In sunto

“11 fiammiferi con prese da 3” e “15 fiammiferi con prese da 4”,
sono giochi in cui la strategia di gioco è diversa.

… unaPartita() potrebbe avere come parametri attuali (nella chiamata)

e quindi formali nella definizione della funzione)
il numero iniziale di fiammiferi e la dimensione della presa: non è una cosa indispensabile adesso, dato
che questi valori sono più o meno fissati nel programma.
Ma questa organizzazione verrà buona quando dovremo generalizzare il programma a qualsiasi gioco,
in cui il numero iniziale dei fiammiferi e la presa massima siano diversi.

La possibilità di far cominciare la persona … verrà considerata in un altro momento.

Fatto il riassunto, analizziamo in dettaglio il punto 2-a) visto prima

score = unaPartita(…);
… da che dipende lo svolgimento di una partita?

- Dal fatto che ci sono due giocatori?
No … il gioco e` per due giocatori; questo non e` un parametro per specificare
comportamenti speciali della funzione … non serve farglielo sapere … lo sa per definizione

- Dal numero di fiammiferi iniziali?
In effetti, se avete visto i riferimenti web … possiamo avere versioni diverse del gioco. Il
gioco stesso e` parametrico e puo` essere giocato con diversi numeri di fiammiferi … e
funziona in base a questo numero prestabilito: quindi si`, questo è un parametro
caratterizzante il comportamento della funzione.
E` vero che potremmo fare riferimento alla costante definita all’inizio del file, e non usare
questo parametro. Ma è verosimile che vorremmo usare questa funzione anche in altri
programmi, ed allora è bene progettarla in modo che non dipenda da elementi definiti in un
particolare programma.
(Gli altri programmi che volessero usare unaPartita() dovrebbero avere anche loro certe
costanti, con i medesimi nomi di quelle in questo programma, e questa è una “dipendenza”
che è meglio non introdurre …)
Quindi sì … questo è un parametro attuale (nFiamm)

Dalla dimensione della presa legittima? Stesse considerazioni appena fatte per nFiamm.
Anche dimPresa e` un parametro attuale in questa chiamata.

- Dall’età dei giocatori? … andiamo …

- Dal numero di partite già giocate? La terza partita funziona diversamente dalla 12ma? (no)

Inoltre, cosa restituisce questa funzione? Restituisce un valore che indichi se ha vinto la
persona o la macchina … cioè 0 o 1 … in effetti è sempre zero, ma chissà`, un giorno le

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

14

cose cambieranno, quindi è bene che facciamo restituire questo risultato dalla funzione,
anche se con un return 0 …

Segue un suggerimento definitivo sulla chiamata

Ma forse conviene riposarsi un po’ …

Ok, riprendiamo …

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

15

int unaPartita(int fiammiferi, int presa);
riceve le caratteristiche fondamentali del gioco, cioè il numero iniziale di fiammiferi e la dimensione
massima della presa (quella minima è sempre 1) e gioca una partita come visto nelle pagine precedenti.

segue un suggerimento sull’algoritmo per unaPartita()
ma prima un’osservazione: avete provato il programma con diversi valori di numero fiammiferi e
dimensione massima presa?

[
Osservazione: anticipando quel che faremo dopo, notiamo che se vogliamo usare questo programma per altri
giochi dei fiammiferi, con diversi numeri iniziali di fiammiferi, in molti casi – ma non tutti – il programma
funziona ancora bene … potete provare e vedere in quali casi non funziona … se avete letto bene le pagine linkate
sopra sapete già perché’;
se no, facendo queste prove, e pensando a come farle, sarà più facile capire cosa sono le configurazioni perdenti.
Tutto questo non è indispensabile adesso.
]

Suggerimento, segue

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

16

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

17

La funzione unaPartita() riceve il numero iniziale di fiammiferi e la dimensione massima della
presa e gioca una partita.

L’algoritmo che la guida è molto simile al primo visto in questo esercizio (fiammiferi1.c)

0) fiammiferi, presa
1) Comincia la macchina. E prende 2 fiammiferi. mossaM=2
2) Ripeti

a. Aggiorna fiammiferi

b. Stampa dei fiammiferi ora disponibili:
questo è un sottoproblema, risolto con una chiamata di funzione …
stampaFiammiferi(fiammiferi)
questa e’ una funzione che stampa in output il numero di fiammiferi ricevuti. Lo fa
usando bene le parole “fiammiferi” e “fiammifero” come visto sopra;

c. Chiedi mossaG.
Anche questo è un sottoproblema: si usa una funzione che restituisce la mossa dichiarata,
se legittima, oppure 1.
Per sapere se una mossa è legittima la funzione ha bisogno di conoscere tre informazioni
cruciali: il valore della presa minima, quello della presa massima, il numero attuale di
fiammiferi.

d. Aggiorna fiammiferi

e. stampaFiammiferi(fiammiferi)

f. Calcola la prossima mossaM: mossaM = 4-…
Mentre fiammiferi>0

3) Stampare “hai perso”
4) fine

Scrivere la definizione della funzione.

Aggiungere nel file che state usando (mioFiammiferi4.c, speriamo) i prototipi per

stampaFiammiferi()
letturaMossPersona()

E poi scrivere queste funzioni …

Suggerimenti sulle intestazioni delle funzioni seguono

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

18

Suggerimento

int letturaMossaPersona(int, int, int);

La mossa legittima deve corrispondere ad una presa compresa tra il minimo e massimo valore
consentito, AND non superiore al numero di fiammiferi rimasti sul tavolo.

I parametri sono la mossa minima (in questo esercizio finora sempre 1), la presa massima (in questo
esercizio finora sempre 3) e il numero attuale di fiammiferi sul tavolo.
Il terzo serve perché se la mossa cercasse di superarlo non sarebbe legittima.

Suggerimento

void stampaFiammiferi(int);
riceve il numero attale di fiammiferi sul tavolo e lo stampa correttamente

Ora potete completare il programma.
E` sensato riusare tutto il codice su cui avete lavorato per i precedenti programmi …

Quando il programma è fatto e testato, proseguite, se ve la sentite …

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

19

4-EXTRA.4. Dopo il quarto programma … bisogna fare uno sforzo di astrazione

Dopo il quarto programma … bisogna fare uno sforzo di astrazione
E capire bene quali strumenti abbiamo per generalizzare il programma
al caso di una qualsiasi coppia

<N, D>

dove N = numero iniziale di fiammiferi
e D = dimensione max delle prese (dim. minima assumiamo sempre 1)

Dalla documentazione proposta prima, si dovrebbe evincere un fatto fondamentale:

dato D è possibile determinare una sequenza di “configurazioni perdenti”, che inizia
con 1 e prosegue con numeri ottenuti dal precedente mediante l’aggiunta di D+1.

Ad esempio, per D=3 la sequenza delle configurazioni perdenti è ottenuta a partire da 1 aggiungendo
ogni volta 4 …

[1, 5, 9, 13, 17, 21, …]
Il che ci dice anche che se fosse il “gioco dei 21 fiammiferi”, con presa massima 3, chi iniziasse partirebbe da una configurazione
perdente … (cioè perderebbe sempre, a meno di errori dell’avversario).

Se la configurazione iniziale (N fiammiferi sul tavolo) “non è perdente”, chi ha il primo turno vince
sempre, a meno di imbrogliarsi da solo facendo un errore (presa sbagliata).

È per questo che il programma, nel gioco degli undici fiammiferi vuole sempre partire per primo … ma
lo avevate capito …

La strategia vincente, a patto di iniziare per primi, è di fare in modo che quando tocca all’avversario,
questi abbia sul tavolo una configurazione perdente.

Nel caso degli 11 fiammiferi, qualunque mossa M faccia l’avversario, se la successiva mossa (nostra, o
della macchina) è 4-M, ricacciamo l’avversario in una configurazione perdente.

Lo stessoo vale per 15 fiammiferi iniziali, o 22, o 23, o 24 … provvisto che D sia 3
(21 no … è perdente …).

OK, abbiamo capito che D ha un ruolo importante, nel definire le configurazioni perdenti, e la mossa
giusta.

Quali sono le configurazioni perdenti, dato N, se D = 4?
E se D = 5?

Risposta più avanti … prima pero` scrivetela

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

20

Scrivetela adesso però …

Caso D=4; configurazioni perdenti: [1, 6, 11, 16, 21, 26, 31, …]

Caso D=5; configurazioni perdenti: [1, 7, 13, 19, 25, 31, 37, …]

OK, adesso l’esercizio finale è …

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

21

Esercizio Finale
fare un programma in cui, assegnati come costanti N e D, sia possibile eseguire una serie di partite al

gioco degli N fiammiferi con presa massima D,
ottenendo alla fine la classifica

Numero di vittorie della macchina
Numero di vittorie della persona

La macchina ha la prima mossa, come nei programmi precedenti.
(Dopo, chi vuole può aggiungere la possibilità di far decidere all’utente chi inizia prima – ma non ora).

Il programma deve

- Procedere assumendo che N non sia una configurazione perdente …

- usare un array di 40 elementi interi, riempito con le prime 40 configurazioni perdenti relative

a D (vedi la nota successiva …)

- durante una partita, per ogni mossa della macchina, determinare la mossa in modo da far
raggiungere ai fiammiferi sul tavolo la prossima configurazione perdente (che viene così
servita all’avversario umano).
Per fare questo si scandisce l’array, cercando il valore massimo nell’array, che sia più piccolo
del numero attuale di fiammiferi; chiamiamo proxConf questo elemento dell’array: allora
la mossa sarà calcolata in modo da far rimanere sul tavolo proxConf fiammiferi …

Per scandire l’array, usare una funzione chiamata maxMinoreDi(), che

- ricevendo un array di interi, arr, e un valore intero, val
- restituisca il valore massimo nell’array che è anche minore di val, oppure -1 se un tale

valore non c’è.

NB
40 è un numero di configurazioni perdenti che assumiamo abbastanza grande da non darci problemi …
In particolare, se usassimo fino a 155 fiammiferi, con presa massima uguale a 3, saremmo sempre sicuri
di trovare nell’array la configurazione perdente più vicina al numero di fiammiferi attualmente sul tavolo
…
Per numeri più grandi questa sicurezza non c’è e il programma va corretto (con un array più grande …)
Ma chi vuole usare più di 155 fiammiferi???
Davvero … anche con prese da 4, 5, 6 se N è più di 30-40 … la partita diventa troppo lunga e ripetitiva
… meglio limitarsi …

L’algoritmo del programma è lo stesso di prima …
L’unica differenza è che ora c’è un array (configurazioniPerdenti) da inizializzare: per
inizializzarlo usare una funzione
inizializzaArray() che riceve l’array e il valore della presa massima, e riempie l’array.

Scrivere l’algoritmo della funzione che modifica unaPartita() in modo da renderla capace di giocare
partite di qualsiasi tipo, dati il numero iniziale di fiammiferi, la dimensione della presa massima e l’array
con le configurazioni perdenti (di dimensione nota 40).
Chiamare questa funzione unaPartitaQualsiasi()

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

22

Poi ottenere il programma complessivo.
Questa è un’estensione di fiammiferi4.c molto più attraente …
(io la chiamo fiammiferi5.c - chiamatela mioFiammiferi5.c …)

Segue un esempio di output, ottenuto dal programma soluzione

Suggerimenti sulle funzioni seguono

Suggerimento sull’algoritmo di unaPartitaQualsiasi()

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

23

è molto simile a quello visto per unaPartita()

Qui però, quando si deve definire la prossima mossa (MossaM) della macchina,

- intanto non iniziamo con la prima mossa che prende 2 fiammiferi … qui dobbiamo lavorare
qualsiasi siano i valori di N e D (2 andava bene per 11 fiammiferi e prese al massimo di 3
… in quel modo portavamo l’avversario a 9 fiammiferi (cioe’ nella piu’ vicina
configurazione perdente)

- e poi il calcolo si basa
- sulla determinazione del valore della configurazione perdente piu’ vicna cui possiamo

arrivare togliendo tra 1 e D fiammiferi (proxConf)
- sul numero attuale di fiammiferi sul tavolo (all’inizio N … poi di meno, conservato in

una variabile apposita, ad esempio actualFiamm)
Quanti fiammiferi bisogna togliere da actualFiamm per portare il numero dei fiammiferi a proxConf?
Quella è la mossaM, in qualsiasi turno della macchina, anche il primo..

Ci sarà un altro suggerimento su questa funzione alla fine, se serve.

Suggerimento su inizializzaArray() segue

Suggerimento su inizializzaArray()

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

24

void inizializzaArray(int arr[DIM], int);

in fiammiferi5.c, ad esempio, riceve, con la chiamata

inizializzaArray(configurazioniPerdenti,dimPresa);

l’array che deve essere inizializzato con le configurazioni perdenti e il valore della presa massima

Segue un suggerimento su come definire la configurazione perdente i-esima

Suggerimento

La prima configurazione perdente è sempre 1 …

La i-esima è arr[i] = arr[i-1] + d + 1;
dove arr è l’array da inizializzare e d è la dimensione massima della presa

segue un suggerimento sulla funzione maxMinoreDi()
cioè la funzione che deve calcolare il valore che è la prossima configurazione perdente da servire
all’avversario …

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

25

Suggerimento

int maxMinoreDi(int arr[DIM], int val) {

si tratta di scandire l’array, quindi serve un classico contatore i

al crescere di i,

se i è troppo grande (cioè ha raggiunto il limite dell’array … non ci sono più elementi
dell’array da analizzare

se stiamo analizzando arr[i] dobbiamo verificare se arr[i] è maggiore del numero
attuale di fiammiferi

quindi questa funzione deve ricevere sia l’array che il numero attuale di fiammiferi sul tavolo,

la sua chiamata:
maxMinoreDi(confPerdenti, actualFiamm);

Quando effettuiamo questa chiamata la macchina sta determinando la sua prossima mossa:

- siamo nella funzione unaPartitaQualsiasi()
- il valore calcolato dalla chiamata è la prossima configurazione perdente da servire

all’avversario …

- Quindi effettivamente la chiamata andrebbe fatta per assegnare ad una variabile questa
prossima configurazione (abbiamo chiamato proxConf la variabile che contiene questo
valore):
 proxConf = maxMinoreDi(confPerdenti, actualFiamm);

Cosa si fa effettivamente con proxComf viene accennato nel prossimo suggerimento, che riguarda la
funzione unaPartitaQualsiasi()

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate

26

Ultimo Suggerimento

int unaPartitaQualsiasi(int nInitFiam, int presaMax, int confPerdenti[DIM]);

fa giocare una partita e restituisce 0 o 1 a seconda di chi ha vinto

viene chiamata dalla main()

riceve

- il numero iniziale di fiammiferi stabilito per il tipo di gioco usato dalla main()
- la dimensione della presa massima

- (i due valori qui sopra sono le caratteristiche del tipo di gioco dei fiammiferi che si gioca
nel programma, e sono stabilite, nella main() da due costanti

- La funzione riceve anche l’array delle configurazioni perdenti, riempito per bene in ordine
crescente a partire da 1

Una variabile proxConf viene assegnata con la prossima configurazione perdente da servire al
malcapitato avversario.

Si può calcolare la prossima mossa come

Numero attuale di fiammiferi – proxConf

E` dura, lo so …
Ma prova a realizzare il programma completo in un file mioFiammiferi5.c

fiammiferi5.c contiene una implementazione del programma qui descritto.
Eseguilo, per trovare ispirazione. Puoi anche confrontarlo con quel che stai facendo.

Quel file contiene anche qualche indicazione per eventuali azioni di debugging, corrispondenti a
situazioni prevedibili di errore …

	4-EXTRA. Esercitazione Facoltativa
	4-EXTRA.1. Il gioco dell’11, no, del 15, no, del 21, e altri giochi
	4-EXTRA.2. Miglioriamo di più il programma …
	4-EXTRA.3. Rilassiamoci per migliorare ancora di più
	4-EXTRA.4. Dopo il quarto programma … bisogna fare uno sforzo di astrazione
	Dopo il quarto programma … bisogna fare uno sforzo di astrazione

