
——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 1

Laurea In Ingegneria dell’Informazione

Esercitazioni Guidate di Tecniche della Programmazione

Note introduttive:
1) Nel titolo di ogni sezione di questo documento è specificato tra parentesi il nome del (o dei) file in cui

è proposta una soluzione (se disponibile nella directory “programmi” di questa EG).
2) I programmi che scriveremo dovranno essere in accordo con la definizione standard ANSI C del

linguaggio C.
a. Se usate un sistema diverso dal DEV, provvedete a che la compilazione avvenga con il

compilatore standard C.
b. Ricordate che un programma C e’ in un file con estensione “.c”
c. Se usate il DEVC++, per configurare bene la compilazione bisogna

i. andare nel menù “Tools”, selezionare “Compiler Options”, scegliere “Settings” e poi
“C Compiler”; poi selezionare almeno “Support all ANSI Standard C Programs”)

ii. (se l’interfaccia è in italiano …) andare nel menu’ “Strumenti”, selezionare “Opzioni
di compilazione”, “Compilatore”, “Generazione di Codice …”, “Compilatore C” e
poi far apparire “Yes” almeno accanto a “Supporto programmi ANSI standard C.

NB Spesso ci sono svariati esercizi proposti nelle slide delle lezioni; questi esercizi potrebbero essere affrontati
durante la EG, anche se non vi compaiono. A meno che non li abbiate già fatti …. Se li avete affrontati potete
sempre farmeli vedere per chiarire eventuali dubbi. Se non li avete affrontati provate a farli …

6. Esercitazione Guidata 6

6.1. Uso di struct (punto.c, punto2.c).

Scrivere un programma in cui
- sia definito il tipo struct punto adatto a rappresentare i punti colorati nel piano cartesiano

(due dimensioni);
- vengano lette coordinate e colori di due punti e venga costruito il punto intermedio,

stampandone i dati (il punto intermedia ha il medesimo colore dei due punti letti, se questi
hanno il medesimo colore; altrimenti ha colore “NERO”).

Scrivere poi il medesimo programma, in cui il tipo dei punti colorati sia TipoPunto, definito
mediante typedef ed usato nelle dichiarazioni dei punti usati nel programma.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 2

6.2. Uso di struct (distanze.c).

Scrivere un programma in cui viene letta una sequenza di punti colorati (definiti come negli esercizi
precedenti) e, per ogni punto letto, dal secondo in poi, viene stampata la distanza colorata tra esso e
il precedente.

Ci sono dei colori prestabiliti come ammissibili: “bianco”, “rosso”, “giallo”,
“celeste”, “blu”, “NERO”
Quando viene letto il colore di un punto, se questo è al di fuori dei colori prestabiliti, sarà considerato
“NERO”.

La distanza colorata tra due punti è definita come la coppia
<dl, dc>, dove

- dl=distanza lineare tra i due punti e
- dc=distanza tra i colori dei due punti (stabilita in base alla definizione dei colori prestabiliti

data in precedenza: ad es. la distanza tra bianco e rosso è 1, quella tra bianco e giallo è 2,
quella tra giallo e nero è 3).

Qualche suggerimento per la soluzione segue: non li leggete tutti d’un fiato ...

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 3

Suggerimento 0

Quando il programma compila, probabilmente siamo solo a metà dell’opera. Provare il programma
anche usando le funzionalità di debugging:

debugging? What’s debugging??

- la linea rossa che si vede in figura è una linea su cui è stato impostato un breakpoint (basta
cliccare accanto alla linea per impostare il breakpoint o per rimuoverlo).

- Un breakpoint nel punto indicato è utile: cosi’ possiamo scegliere l’opzione di compilazione

con debug (F8) e usare F7 (Next Step) per far avanzare l’esecuzione del programma passo
passo (un’istruzione alla volta).

- Durante l’esecuzione passo passo è utile tener d’occhio il contenuto di alcune variabili

significative: in figura si vede che è stata impostata la visualizzazione del contenuto delle
variabili p1, p2, dc: è stato usato il comando Add Watch. (Nell’aggiungere una nuova watch,
può essere necessario eseguire il passo successivo – F7– prima di vederla effettivamente.).

- La figura mostra un momento dell’esecuzione in cui tutte le istruzioni di lettura del punto p1

sono state eseguite (la watch su p1 mostra quei valori: 1, 5, rosso).

- Se una watch corrisponde a variabili non nello scope dell’istruzione in esecuzione, ciò viene

indicato (ad esempio nel punto del programma in esecuzione non potremmo vedere il
contenuto della variabile i definita nella funzione colorePrestabilito().

- Quando è in esecuzione un’istruzione di lettura, bisogna andare nella finestra di esecuzione e

inserire il dato da leggere …
- Se non si vuole più procedere passo passo, Shift F7 (Continue) procura l’avanzamento

dell’esecuzione fino alla prossima occorrenza di un breakpoint.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 4

Suggerimento 1di5

la struttura del TipoPunto è quella già vista; inoltre potrebbe convenire dare una definizione di un
tipo apposito per la DistanzaColorata. (una struct con un campo double per la distanza lineare
e uno int per la distanza tra i colori.

Inoltre è bene che sia data una chiara definizione dei colori prestabiliti. Questa potrebbe anche non
essere la definizione di un tipo vero e proprio. Una possibilità è quella di usare un array top level di
stringhe inizializzato opportunamente COLORI[]={bianco, rosso, giallo, celeste,
blu, nero}.

Suggerimento 2di5

All’array COLORI potrebbe essere affiancata una funzione colorePrestabilito che,
ricevendo un colore, col, dica se col è o no uno di colori ammessi. Nella soluzione proposta questa
è una funzione intera che restituisce –1 se col non è ammissibile, oppure l’indice di col nell’array
COLORI.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 5

Suggerimento 3di5

La funzione colorePrestabilito() (sempre nella soluzione proposta) viene usata anche per
calcolare lo seconda parte della distanza colorata (infatti se il colore di p1 è k1 e il colore di p2 è
k2, la distanza tra i colori sarà k1-k2 o k2-k1 ...)

Suggerimento 4di5

Schema del programma

- lettura primo punto (p1)
- ciclo del tipo while (continua!=0) {

...
}

con richiesta finale all’utente di inserire 1 se vuole continuare o 0 se vuole terminare (scelta
che viene letta in continua).

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 6

Suggerimento 5di5

- durante ogni iterazione del ciclo
o si legge il punto p2 (si leggono le sue coordinate e colore)
o si calcola la distanza colorata tra p1 e p2 (e la si stampa)
o l’utente indica la sua scelta (se continuare o meno) e di conseguenza, in accordo con

questa scelta, viene assegnata la variabile continua.
o Infine viene copiato p2 in p1, così in p1 ci sarà l’ultimo punto letto da input, e se ne

potrà calcolare la distanza da quello successivamente inserito

6.3. Funzioni che ricevono e/o restituiscono struct (punto3.c).

Riscrivere il programma del punto 1.1, definendo ed usando le seguenti funzioni:

/*funzione che riceve un punto e lo stampa */
void stampaPunto(struct Punto p)

/* funzione che riceve due punti e ne restituisce
 il punto medio */
struct Punto puntoMedio(struct Punto pr, struct Punto sec)

6.4. Funzioni che ricevono puntatori a struct (punto4.c).

Scrivere un programma che soddisfi i seguenti requisiti:
- il programma legge i dati relativi a due punti colorati (definiti come in precedenza)
- il programma calcola e stampa i dati relativi al punto medio tra i due letti da input;
- poi il programma chiede in input un colore e assegna tale colore a tutti e tre i punti,

stampandone successivamente i dati in output.

Il programma deve far uso delle funzioni definite nell’esercizio precedente e della funzione
void cambiaColoreA(TipoPunto *p, char col[])

che, ricevendo un punto (o meglio, il suo indirizzo), e un colore (col), modifica il punto
assegnandogli col come colore. Suggerimenti seguono.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 7

Suggerimento:

conviene prendere come punto di partenza il programma fatto per l’esercizio precedente,
aggiungendo la nuova funzione e modificando opportunamente la main().

6.5. Funzioni che ricevono puntatori a struct (punto5.c).

Ripetere l’esercizio del 2.3, definendo e utilizzando, per la lettura di ciascun punto, una funzione
leggiPunto(...)

Suggerimento 1di2: la funzione deve ricevere un punto e riempirlo con dati letti da input.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 8

Suggerimento 2di2: quindi la funzione deve ricevere l’indirizzo del punto da riempire.

6.6. Funzioni che restituiscono puntatori a struct (punto6.c).

Rifacendosi a quanto fatto in precedenza, scrivere una funzione creaPuntoMedio(...) che,
ricevendo due punti, restituisce una struct appositamente allocata dinamicamente, contenente la
rappresentazione del punto medio tra i due parametri.

Suggerimento 1di2:

Si tratta di rifare l’esercizio precedente, ma sostituendo la funzione puntoMedio con quella qui
richiesta (che restituisce un puntatore a struct Punto e non una struct Punto.

Suggerimento 2di2:

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 9

ecco uno stralcio del programma PUNTO6.C in cui si vede come viene usata la funzione
creaPuntoMedio():

int main(){
 TipoPunto p1, p2,
 pM; / puntatore per il punto medio */

 printf("primo punto:");
 leggiPunto(&p1);
 printf("secondo punto:");
 leggiPunto(&p2);

 pM = creaPMedio(p1, p2);
 /* la chiamata a pMedio restituisce il puntatore ad una struct
che e' stata allocata appositamente, e che rappresenta il punto
medio tra p1 e p2 */

 printf(" - adesso i tre punti sono:\n - p1 = ");

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 10

6.7. Quadrilateri (quadri.c).

L’oggetto di questo esercizio è un programma capace di gestire quadrilateri dati in input.
Un quadrilatero viene specificato come l’insieme dei suoi quattro vertici, che sono punti colorati
sul piano (cioè variabili del tipo TipoPunto definito precedentemente).
Supponiamo che i punti dati in input siano tutti distinti e diano luogo ad una figura in cui i lati
sono “a 90 gradi”.

Cio’ assunto, il programma
- costruisce un quadrilatero allocando dinamicamente un array di quattro punti e leggendo i dati

relativi ai quattro vertici;
- verifica se il quadrilatero è un quadrato
- verifica se il quadrilatero è isotetico, cioè i suoi lati sono paralleli agli assi cartesiani;
- stampa i dati dei quattro vertici e stampa un messaggio in cui sia specificato se il quadrilatero

è o no un quadrato ed è o no isotetico.

Se quad è l’identificatore usato per il quadrilatero nel programma, si assume anche che i punti
siano distribuiti come nel disegno qui sotto:

quad[0] quad[1]
 +-------------+
 | |
 | |
 | |
 | |
 +-------------+
quad[3] quad[2]

Usare nel programma le seguenti funzioni:
- void stampaPunto(TipoPunto) (per stampare i dati di un punto passato per

parametro)
- void leggiPunto(TipoPunto *) (per leggere un punto)
- void leggiQuadrilatero(TipoPunto q[4]) (per leggere l’intero quadrilatero,

usando leggiPunto());
- void stampaQuadrilatero(TipoPunto q[4]) (per stampare i dati del

quadrilatero, ad esempio come sequenza dei punti che ne sono vertici);
- double lunghezza(TipoPunto primo, TipoPunto secondo) (per calcolare

la distanza tra due punti)

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 11

Suggerimento 1di2:

per verificare che il quadrilatero quad sia un quadrato basta verificare che siano uguali le misure
dei suoi lati (cioè delle distanze tra vertici consecutivi: quad[0]--quad[1], quad[1]--
quad[2], quad[2]--quad[3], quad[3]--quad[0],).
Per calcolare la lunghezza del lato quad[k]--quad[h] si usa la funzione lunghezza().

Suggerimento 2di2:

per verificare che i lati sono paralleli agli assi, bisogna verificare che i lati
- quad[0]--quad[1] e quad[2]--quad[3] sian paralleli all'asse delle ascisse
- quad[1]--quad[2] e quad[3]--quad[0] sian paralleli all'asse delle ordinate.

——————————————————————————————
Tecniche della Programmazione (M.Temperini) – Laurea Ing. dell’Informazione – esercitazioni guidate 12

6.8. Poligoni

Scrivere un programma in cui viene ottenuto da input un poligono regolare, e viene prodotto un
nuovo poligono, i cui vertici sono i punti medi dei lati del poligono di partenza.

(Come rappresentare un poligono? Come rappresentare il poligono risultante? Ci aiuta l’esercizio
precedente …)

	6. Esercitazione Guidata 6
	6.1. Uso di struct (punto.c, punto2.c).
	6.2. Uso di struct (distanze.c).
	6.3. Funzioni che ricevono e/o restituiscono struct (punto3.c).
	6.4. Funzioni che ricevono puntatori a struct (punto4.c).
	6.5. Funzioni che ricevono puntatori a struct (punto5.c).
	6.6. Funzioni che restituiscono puntatori a struct (punto6.c).
	6.7. Quadrilateri (quadri.c).
	6.8. Poligoni

