Complemento al corso di Tecniche della Programmazione
Laurea in ingegneria dell'informazione

Rappresentazione di numeri

Un numero e’ un’entita teorica, un concetto. Un numero puo vivere bene nel mondo delle idee (e anche nella
nostra mente).

Per usare i numeri in modo coerente bisogna pero poterli rappresentare nel mondo reale (ad esempio
sulla carta).

Un numerale ¢ una scrittura che serve a rappresentare un numero. Si tratta di una sequenza di cifire. Ad esempio
il numero dodici e’ rappresentato usualmente dal numerale 12.

Il numerale che rappresenta un certo numero viene usato concretamente per comunicare quel numero o
eseguirci dei calcoli.

In particolare, il metodo usato per rappresentare i numeri, cio¢ per scrivere, dato un numero, il numerale
corrispondente, deve essere tale che ogni numero abbia il suo numerale e che tale numerale non rappresenti altri
che quel numero.

Perod sappiamo che i numeri sono infiniti e lo spazio per scrivere numerali ¢ finito. Quindi dovremo
sempre accontentarci di dire che i metodi di rappresentazione dei numeri sono tali da assegnate ad ogni “numero
rappresentabile” (cioe’ effettivamente esprimibile con i numerali che possiamo scrivere), il corrispondente
numerale, in modo biunivoco (quel numerale rappresenta quel numero e solo quello).

Banalmente queste limitazioni di spazio per la scrittura di numerali corrispondono a limiti sulla
lunghezza dei numerali stessi, cioe’ a limiti sul numero di cifre utilizzabili per scrivere i numerali.

Ad esempio, se stabilissi che non posso usare numerali piu’ lunghi di una cifra (numero di cifre = 1),
saprei anche implicitamente che i numeri rappresentabili (secondo il metodo usuale che ci e’ familiare) sono
quelli da zero (0) fino a nove (9). Se invece stabilissi che non posso usare numerali piu’ lunghi di due cifre
(numero di cifre = 2), saprei anche implicitamente che i numeri rappresentabili (secondo il metodo usuale che ci
¢’ familiare) sono quelli da zero (0 oppure 00) fino a novantanove (99). Se i numerali sono di 4 cifre potremo
rappresentare tutti i numeri che vanno da 0000 (zero) fino a 9999 (novemilanovecentonovantanove). Solo questi
10.000 numeri sono rappresentabili con 4 “cifre decimali”.

I metodi per rappresentare numeri sono tanti e diversi, e basati su concetti diversi:
ad esempio il numero dodici puo’ essere rappresentato con
- 12, usando il sistema decimale che ci ¢ familiare: un sistema posizionale (cio¢ tale che le cifre di un
numerale hanno un valore numerico diverso a seconda di quali sono e di quale posizione occupano nel
numerale) in cui le cifre usate sono 0, 1, 2, 3,4, 5, 6,7 ,8, 9;
- XII, nel sistema additivo che usa le cifre romane (I sistemi additivi sono quelli in cui una cifra ha un
valore in generale prestabilito, indipendentemente — in generale — dalla sua posizione)
- 1010, nel sistema binario (sistema posizionale con cifre binarie 0, 1) con numerali di quattro cifre;
- 001010, nel sistema binario con numerali di quattro cifre;
- 14, nel sistema ottale con numerali di due cifre);
- 000C nel sistema esadecimale (numerali di quattro cifre)

Se vogliamo usare una notazione binaria, cioe’ una scrittura dei numerali usando solo le cifre O e 1, e ci
limitiamo a tre cifre, possiamo usare i numerali 000, 001, 010, ..., 111 per rappresentare i numeri da 0 a 7:

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7




Se i numerali sono di n cifre, abbiamo 2" diversi possibili numerali (2" diverse combinazioni di cifre); i numeri
che possiamo rappresentare univocamente sono quindi 2" e di norma sono i numeri da 0 a (2" - 1).

(Eh si’, se n=3, 2" =8 ¢ i numeri rappresentabili sono quellida0a 7 ...).

Questo tipo di rappresentazione si chiama “in binario puro” e rende possibile rappresentare i numeri positivi
(solo quelli rappresentabili, cioe” appartenenti all’intervallo di rappresentazione [0, 2" — 1]).

Se vogliamo rappresentare nelle locazioni di memoria i numeri interi relativi (cioe’ positivi e negativi) le cose
cambiano.

Una prima possibilita’ e’ la rappresentazione in modulo e segno:

Sia V il numero intero relativo; e siano n i bit (le cifre) disponibili per scrivere i numerali: il primo bit viene
usato per rappresentare il segno del numero (0 positivo, 1 negativo); gli altri n-1 bit vengono usati per

rappresentare il valore assoluto di V (sempre che siano abbastanza ...).

Ad esempio, con n=3, ecco i numerali (sopra) che rappresentano i numeri (sotto) da —3 a +3 in modulo e segno:

000 001 010 011 100 101 110 111

0 1 2 3 -0 -1 -2 -3

(come viene rappresentato —27 il primo bit vale 1, perche’ —2 e’ negativo; i successivi bit sono quelli che
rappresentano 2 in binario puro su n-1 cifre: 10)

Se i numerali sono di n bit, in generale, questa tecnica di rappresentazione consente di rappresentare i numeri
interi nell’intervallo (chiuso) seguente

[-2"'-1), 2"-1]
eh gia’, [-3, 3] nell’esempio sopra (con n=3)

Ci sono due numerali dedicati allo zero: brutto; sprechiamo un numerale per rappresentare un numero gia’
rappresentato. Anche solo per una questione di estetica, questa rappresentazione non ci piace.

Inoltre questa rappresentazione rende necessario usare circuiti “piu’ complicati” per eseguire le
operazioni tra numeri cosi’ rappresentati.

La rappresentazione realmente usata e’ piu’ simile alla seguente e si chiama rappresentazione in
complemento a due.

Essa permette di rappresentare i numeri interi relativi senza perdere numerali e con alcune possibilita’ di
maggiore efficienza nei calcoli.

Non si tratta di una “combinazione tra modulo e segno e qualcosa d’altro”; si tratta di una tecnica di
rappresentazione a se’ stante.

L’idea di fondo e’ la seguente: sia n il numero di bit con cui scriviamo i numerali e sia V il numero intero di cui
vogliamo calcolare la rappresentazione in complemento a due (che chiamiamo comp(V)); allora

{ se V>=0 rappresentazione binaria in n bit di V
compl (V)= {
{ se V<0 rappresentazione binaria del numero 2"-V



Sia n=3, ecco la distribuzione dei numeri rappresentabili (sopra i numerali e sotto i corrispondenti numeri)

000

001

010

011

100

101

110

111

0

1

2

3

-4

-3

-2

-1

I numeri rappresentabili in complemento a 2 con n bit, sono quelli nell’intervallo

[_211-1, 2]1-1_1]

Quindi, per n=3, da 4 a +3.

Stavolta non c’e’ un numerale doppione per lo zero.

Adesso risolviamo un esercizio d’esame.

Siano N=121, M=591

1)
2)

3)

4)

Stabilire il numero minimo B tale che sia N che M possano essere rappresentati come numeri
binari puri con B cifre;

Scrivere la rappresentazione di N ed M come numeri binari puri con B cifre ed eseguire la
somma N+M;

Stabilire il numero minimo di cifre necessarie per rappresentare tanto N quanto —M in
complemento a due e mostrare tali rappresentazioni, dettagliando il procedimento usato per
ottenerle;

Infine eseguire I'operazione N-M, e scrivere il risultato usando 16 bit.

1) Stabilire il numero minimo B tale che sia N che M possano essere rappresentati come numeri binari puri con

B cifre;

Risparmiando i conti, ecco la rappresentazione in binario puro dei due numeri (dato che per il primo sono
sufficienti 7 bit e per il secondo ne servono almeno 10, il numero B e’ 10)

N=121(10)= 1111001(2)

M=591(1o): 1001001111 (2)

Dunque sono necessari 10 bit per rappresentare i due numeri in binario (B=10)




2) Scrivere la rappresentazione di N ed M come numeri binari puri con B cifre ed eseguire la somma N+M,;

essendo il sistema binario un sietema posizionale, per scrivere il numerale 1111001 su 10 bit basta
aggiungere zeri a sinistra (sono zeri; non pesano nel calcolo del numero rappresentato, che rimane lo
stesso)

N=0001111001,, (aggiungiamo alcuni O per rappresentare il numero con 10 bit)

M=1001001111 (s

1111111 € riporto
0001111001 +
1001001111 =

1011001000
N+M=1011001000

facciamo la prova: 1011001000 dovrebbe essere (121+591) cioe’ 712
le varie cifre hanno peso diverso, a seconda della posizione
cifrel 0 1 1 0 01000

peso 512 256 128 64 32 16 8 4 2 1
e 512+128+64+8=712

3) Stabilire il numero minimo di cifre necessarie per rappresentare tanto N quanto —M in complemento a due e
mostrare tali rappresentazioni, dettagliando il procedimento usato per ottenerle;

Il minimo intervallo di numeri rappresentabili in complemento a duie, che contenga N, e’
[_28'1, 28'1_1]

quindi il numero di bit da usare per rappresentare N in complemento a due e’ n=8 (7 non bastano; 9, 10, 11, ...
ovviamente vanno bene lo stesso, ma non sono minimali.

Inoltre N e’ positivo, quindi non faccimao altro che scriverne la rappresentazione binaria pura in 8 cifre e
abbiamo il complemento a due:

N=121 ;0= 01111001

Per uanto riguarda —M, che ¢ —591, si tratta di un numero negativo e
a. il minimo intervallo di numeri rappresentabili in complemento a due in cui -M ¢’ contenuto ¢’ [-2'"",
2" = [-1024, 1023], quindi servono 11 bit almeno per rappresentare —M in
complemento a due;
b. la sua rappresentazione in complemento a due ¢ il numero binario puro 2''-M = 2048 — 591 = 1457,
cioe’ 10110110001.



c. Pero’ se non si vogliono fare i calcoli di cui al punto b., c’e’ un triste ma efficace algoritmino: per
ottenere il complemento a due di un numero negativo si possono invertire tutti i bit del suo valore
assoluto (ottenendone il complemento a 1) e aggiungere 1: in altre parole, dovendo ottenere il
complemento a due di —591,

a. stabilito che servono 11 bit,

b. 591 in 11 bite’ 01001001111
¢. rivoltando i bit si ha 10110110000
d. eaggiungendo 1 siha 10110110001

insomma

- 11 numero minimo di bit necessari per rappresentare in complemento a due
tanto N quanto -M e’ 11;

- N = 121(10) = 00001111001

- M = —591(10) = 10110110001

4) Infine eseguire I'operazione N-M, e scrivere il risultato usando 16 bit. Facciamo tutto usando 16 bit!

N = 0000000001111001
-M= 1111110110110001

dato che —M e’ negativo, si aggiungono 1 a sinistra

(

e non puo’ che essere cosi’: se ad esempio 111 ¢’ la rappresentazione in complemento a due di —1 con tre cifre,
se voglio rappresentare il medesimo numero con quattro cifre, non e’ che aggiungo uno 0 a sinistra, no? Certo
che no! Se facessi cosi’ otterrei 0111 che rappresenta 7 in complemento a due su quattro cifre; invece 1111 ¢’ il
numerale per rappresentare —1 in quattro cifre: curiosono? 111111 e’ -1, 11111111 e—1, 1111111111111111 ¢’
-1...

)

L’ operazione N-M si fa semplicemente sommando le rappresentazioni di N e
-M. Posto che non si abbia overflow, il risultato la rappresentazione in
complemento a due di N-M.

0000000001111001
1111110110110001

1111111000101010

N-M = 1111111000101010

La prova che e’ proprio cosi’ si ottiene vedendo se questa e’ proprio la rappresentazione in
complemento a due su 16 bit di 470 (121-591). Ed e’ lasciata ai discenti volenterosi ...




