
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2024/2025

Solution of Problem 1

(a) The kinematic constraints acting on the robot are the following (one pure rolling condition per wheel):

ẋ sin θ − ẏ cos θ = 0

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0,

where (x, y) are the Cartesian coordinates of the rear wheel, given by

x = xf − ` cos θ

y = yf − ` sin θ.

Computing ẋ, ẏ from these formulas and plugging them in the rear wheel constraint leads to

ẋf sin θ − ẏf cos θ + ` θ̇ = 0.

Being q = (xf , yf , θ, φ), the Pfaffian constraints are written in matrix form as

(
sin θ − cos θ ` 0

sin(θ + φ) − cos(θ + φ) 0 0

)
ẋf
ẏf

θ̇

φ̇

 = AT (q)q̇ = 0.

A basis {g1, g2} for the 2-dimensional null space of AT can be immediately written as

g1(q) =


cos(θ + φ)
sin(θ + φ)
(sinφ)/`

0

 g2(q) =


0
0
0
1

 .

The kinematic model is then

ẋf = cos(θ + φ) v

ẏf = sin(θ + φ) v

θ̇ =
sinφ

`
v

φ̇ = ω,

where v and ω are clearly the driving and steering velocity of the bicycle, both generated at the front wheel.
To study the controllability of the above kinematic model, compute

[g1, g2] (q) =


sin(θ + φ)
− cos(θ + φ)
−(cosφ)/`

0

 = g3(q) and [g1, g3] (q) =


−(sin θ)/`
(cos θ)/`

0
0

 = g4(q)

We have

rank (g1 g2 g3 g4) = rank (g1 g3 g4 g2) = rank


cos(θ + φ) sin(θ + φ) −(sin θ)/` 0
sin(θ + φ) − cos(θ + φ) (cos θ)/` 0
(sinφ)/` −(cosφ)/` 0 0

0 0 0 1

 = 4

because the determinant of the upper 3× 3 block is 1/`2. The kinematic model is then controllable.

(b) From the first two equations of the kinematic model, we obtain

θ = arctan
ẏf
ẋf
− φ ⇒ θ̇ =

ÿf ẋf − ẏf ẍf
ẋ2f + ẏ2f

− φ̇.
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From the third equation of the kinematic model we get

φ = arcsin
` θ̇

v
⇒ φ = arcsin

`

v

(
ÿf ẋf − ẏf ẍf
ẋ2f + ẏ2f

− φ̇

)
.

having used the above expression of θ̇. Since this is a differential equation, we conclude that φ (and consequently also
θ) cannot be reconstructed algebraically from xf , yf and their derivatives. Therefore, xf , yf are not flat ouputs.

This result can be interpreted as follows. For the same trajectory of the front wheel, there are infinite possible
trajectories of the rear wheel, depending on its initial condition (see the following figure). Indeed, this is consistent
with the fact that φ is governed by a differential equation.

(c) The first-order time derivatives of the outputs xf , yf are given by the first two equations of the kinematic model.
Since only v appears in them, we compute the second-order derivatives:

ẍf = − sin(θ + φ)(θ̇ + φ̇) v + cos(θ + φ) v̇

ÿf = cos(θ + φ)(θ̇ + φ̇) v + sin(θ + φ) v̇.

Setting v̇ = a (dynamic extension), using the expressions of θ̇ and φ̇ given by the kinematic model, and rearranging
terms one obtains

(
ẍf
ÿf

)
=

 − sin(θ + φ)
sinφ

`
v2

cos(θ + φ)
sinφ

`
v2

+

(
cos(θ + φ) − sin(θ + φ) v
sin(θ + φ) cos(θ + φ) v

)(
a
ω

)
= b(q, v) + T (q, v)

(
a
ω

)
.

The decoupling matrix T is obviously invertible when v 6= 0, so under this assumption we can let(
a
ω

)
= T−1(q, v)

((
u1
u2

)
− b(q, v)

)
, (1)

thus obtaining a second-order linear mapping between the output and the new inputs u1, u2:

ẍf = u1

ÿf = u2.

Globally exponential tracking of the desired trajectory x∗f (t), y∗f (t) is then guaranteed by the following PD+feedforward
control law

u1 = ẍ∗f + kp1(x∗f − xf ) + kd1(ẋ∗f − ẋf )

u2 = ÿ∗f + kp2(y∗f − yf ) + kd2(ẏ∗f − ẏf ),

as long as the control gains kp1, kd1, kp2, kd2 are positive. Note the following points.

• To compute u1, u2 we need real-time measurements of the outputs xf , yf (and their first-order derivatives).
These quantities can be directly available or, more often, reconstructed from measurements of the original state
variables x, y, θ (and numerical differentiation).

• The expression of the control inputs a, ω is found by plugging the above expressions of u1, u2 into (1); measure-
ments of the θ, φ as well as of the additional state variable v are needed for this computation.

• Finally, the driving velocity input v is obtained by integrating the acceleration input a. This means that the
proposed controller is inherently dynamic.
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Solution of Problem 2

(a) The (2,4) chained form is

ż1 = v1

ż2 = v2

ż3 = z2 v1

ż4 = z3 v1.

From the last and the first model equation, we get

z3 =
ż4
v1

=
ż4
ż1

⇒ ż3 =
z̈4ż1 − ż4z̈1

ż21
.

The equation on the left is the reconstruction formula for z3. As for z2, the third and the first model equation lead to
the reconstruction formula

z2 =
ż3
v1

=
ż3
ż1

=
z̈4ż1 − ż4z̈1

ż31
,

where we have used the previous expression for ż3. The reconstruction formulas for the inputs are

v1 = ż1

v2 = ż2 =
d

dt

z̈4ż1 − ż4z̈1
ż31

= . . .

All the reconstruction formulas are algebraic functions of z1, z4 and their time derivatives; we can therefore conclude
that z1, z4 are indeed flat outputs.

(b) Path planning from zi = (z1i, z2i, z3i, z4i) to zf = (z1f , z2f , z3f , z4f ) may be performed by interpolating the flat
outputs with the appropriate boundary conditions. Assume that the range for the path parameter s is [0, 1]. The
boundary conditions for z1 are

z1(0) = z1i and z1(1) = z1f .

A linear polynomial will then suffice:

z1(s) = z1i + s(z1f − z1i) s ∈ [0, 1].

Accordingly, it is
z′1(s) = z1f − z1i and z′′1 (s) = 0, ∀s.

As for z4, in addition to the boundary conditions

z4(0) = z4i and z4(1) = z4f

we must consider those on its derivatives coming from the initial and final values of z2, z3. In particular, isolating z′4
from the reconstruction formula1 for z3, we get z′4 = z3z

′
1 = z3(z1f − z1i), from which

z′4(0) = z3i(z1f − z1i) and z′4(1) = z3f (z1f − z1i).

Finally, isolating z′′4 from the reconstruction formula for z2 gives z′′4 = (z2(z′1)3 + z′4z
′′
1 )/z′1 = z2(z′1)2, from which we

get
z′′4 (0) = z2i(z1f − z1i)2 and z′′4 (1) = z2f (z1f − z1i)2.

There are a total of six boundary conditions for z4 and its derivatives, suggesting the use of a 5-th order polynomial:

z4(s) = as5 + bs4 + cs3 + ds2 + es+ f, s ∈ [0, 1].

The six unknown coefficients a, . . . , f can be found by solving the linear system built with the boundary conditions.

1Since we are planning a geometric path, the geometric model applies in place of the kinematic model. Accordingly, time derivatives in
the reconstruction formulas are replaced by derivatives w.r.t. s, denoted by ′, ′′ and so on.
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Solution of Problem 3

With the state x = (x, z, θ, ẋ, ż, θ̇) = (x1, . . . , x6), the continuous-time model of the system is written as

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = f1 cosx3 − f2 sinx3

ẋ5 = −g + f1 sinx3 + f2 cosx3

ẋ6 = −d f2

Using Euler integration, a discrete-time version of this model is written as

x1,k+1 = x1,k + x4,k T

x2,k+1 = x2,k + x5,k T

x3,k+1 = x3,k + x6,k T

x4,k+1 = x4,k + f1,k cosx3,k T − f2,k sinx3,k T

x5,k+1 = x5,k − g T + f1,k sinx3,k T + f2,k cosx3,k T

x6,k+1 = x6,k − d f2,k T.

This motion model is assumed to be perturbed by a white gaussian noise with zero mean and known covariance.
As for the measurement model, we have a total of four measurements coming from the sensors at each sampling

instant. The first is the bearing angle of the beacon

y1k = atan2(zb − zk, xb − xk)− θk.

The second and third measurement are the CoM velocities ẋ and ẏ:

y2k = x4,k y3k = x5,k,

while the fourth measurement is the robot angular velocity θ̇:

y4k = x6,k.

The measurement model is therefore

y =


y1k
y2k
y3k
y4k


with the previous formulas providing the expression of each component as a function of the state variables. This model
is also assumed to be perturbed by a white gaussian noise with zero mean and known covariance.

The rest of the solution is straightforward: linearize the motion and measurement models (only the fourth and fifth
equations of the former and the first equation of the latter are actually nonlinear) and then write the EKF equations.
Note that the (nominal) force inputs f1,k and f2,k coming from the control module will be needed in the prediction
stage.
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