
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2025/2026

Solution of Problem 1

(a) The extended configuration is q = (x, y, θ, φR, φL) ∈ IR2 × (SO(2))3. The associated kinematic model is obtained
by writing the unicycle equations, expressing v and ω in terms of ωR and ωL, and adding as state variables φR and
φL. We obtain:

ẋ

ẏ

θ̇

φ̇R

φ̇L

 =


a cos θ · (ωR + ωL)

a sin θ · (ωR + ωL)

b(ωR − ωL)

ωR

ωL

 =


a cos θ

a sin θ

b

1

0

ωR +


a cos θ

a sin θ

−b
0

1

ωL = g1(q)ωR + g2(q)ωL,

where a = r/2 and b = r/d, being r the wheel radius and d the distance between the wheels.

(b) To answer, we study the controllability of the above kinematic model. We easily find

[g1, g2] (q) =


−2ab sin θ
2ab cos θ

0
0
0

 = g3(q) [g1, g3] (q) =


−2ab2 cos θ
−2ab2 sin θ

0
0
0

 [g2, g3] (q) =


2ab2 cos θ
2ab2 sin θ

0
0
0

 .

Since the last two Lie brackets are linearly dependent on one another, we can conclude that the Lie Algebra rank
condition is violated (to be precise, this is true provided that third-order brackets do not increase the rank, which is
readily verified to be the case).

(c) Ignoring φL means dropping the last equation of the above kinematic model, i.e., deleting the last element of the
input vector fields g1 and g2. Call g̃1, g̃2 the amputated versions of g1, g2. One immediately finds

[g̃1, g̃2] (q) =


−2ab sin θ
2ab cos θ

0
0

 = g̃3(q) [g̃1, g̃3] (q) =


−2ab2 cos θ
−2ab2 sin θ

0
0

 [g̃2, g̃3] (q) =


2ab2 cos θ
2ab2 sin θ

0
0

 ,

i.e., the amputated versions of the previous brackets. Since1

rank (g1 g2 g3 g4) = rank


a cos θ a cos θ −2ab sin θ −2ab2 cos θ
a sin θ a sin θ 2ab cos θ −2ab2 sin θ
b −b 0 0
1 0 0 0

 = 4,

we can conclude that the amputated kinematic model is controllable. It is therefore possible to achieve any desired
value of x, y, θ and φR; one simple way to do this (not an optimal one) would be to bring x, y and θ to the desired value
using a unicycle maneuver, and then move the ground contact point of the right wheel along a circle of appropriate
radius to achieve the desired displacement of φR while x, y and θ go back to their desired value (see the solution of
Midterm Test 2016/17, Problem 1). Clearly, one may similarly ignore φR and achieve a desired value for φL.

1This can be easily proven by swapping the first and the third columns, and then the second and the fourth columns (the matrix
determinant does not change). The new matrix is block triangular, and its determinant is 4a2b4.
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Solution of Problem 2

(a) According to the problem statement, the flat outputs are

η1 = x+
cos θ

d

η2 = z +
sin θ

d

and the reconstruction formula for θ is

θ = atan2 (η̈2 + g, η̈1) + kπ = atan
η̈2 + g

η̈1
. (1)

The first two reconstruction formulas are obviously

x = η1 −
cos θ

d
= η1 −

cos(atan η̈2+gη̈1
)

d

z = η2 −
sin θ

d
= η2 −

sin(atan η̈2+gη̈1
)

d
.

Together with the formula for θ, these allow reconstruction of the whole configuration.
As for the inputs, note that first two equations of the dynamic model can be written as(

ẍ
z̈

)
=

(
cos θ − sin θ
sin θ cos θ

)(
f1
f2

)
−
(

0
g

)
= T (θ)

(
f1
f2

)
−
(

0
g

)
, (2)

with T (θ) nonsingular, from which we obtain(
f1
f2

)
= T−1(θ)

(
ẍ

z̈ + g

)
= T−1(atan

η̈2 + g

η̈1
)

(
ẍ

z̈ + g

)
. (3)

We need ẍ and z̈, which we obtain from the formulas for x and z:

ẍ = η̈1 +
1

d
(θ̇ cos θ + θ̈ sin θ)

z̈ = η̈2 −
1

d
(−θ̇ sin θ + θ̈ cos θ).

Here, one uses again (1) to express θ and its derivatives as a function of η1, η2. Plugging the resulting expressions of
ẍ and z̈ in (3) finally provides the input reconstruction formulas.

Trajectory planning from (xs, zs, θs) to (xg, zg, θg) may be performed by interpolating the flat outputs with the
appropriate boundary conditions. These would include the terminal conditions (start and goal values of η1, η2) plus
the additional boundary conditions needed to enforce the initial and final values of θ. The latter may be written using
the reconstruction formula for θ:

atan
η̈2(0) + g

η̈1(0)
= θs atan

η̈2(T ) + g

η̈1(T )
= θg,

where we assumed t ∈ [0, T ]. To allow independent interpolation for η1 and η2, these may be separated as follows:

η̈1(0) = ks cos θs
η̈2(0) + g = ks sin θs

η̈1(T ) = kg cos θg
η̈2(T ) + g = kg sin θg,

where ks and kg are arbitrary constants. The resulting algorithm is the following:

1. Compute the start and goal values of the flat outputs, respectively (η1,s, η2,s) and (η1,g, η2,g).

2. Choose η1 and η2 as two cubic polynomials in t, for t ∈ [0, T ], and impose the terminal conditions (their start
and goal values) as well as the additional boundary conditions on their initial and final accelerations.

3. From η1(t) and η2(t), reconstruct the state variables and the associated inputs using the reconstruction formulas.
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Note that we have not imposed the generalized velocities ẋ, ż, θ̇ at the start and at the goal (they are not specified
in the problem statement); this means that they will be a byproduct of the interpolation. Often, one wants the initial
and final generalized velocities to be zero (rest-to-rest motion): it is easy to realize that this translates to η̇1 and
η̇2 being zero at the start and the goal. These additional conditions can be enforced by going from cubic to quintic
polynomials.

(b) One way to solve the passigned control roblem is to perform exact input-output linearization via feedback. To this
end, consider the input-output map, which is expressed by (2). Since the decoupling matrix T (θ) is invertible, we can
set (

f1
f2

)
= T−1(θ)

(
u1

u2 + g

)
=

(
cos θ sin θ
− sin θ cos θ

)(
u1

u2 + g

)
, (4)

thus obtaining a second-order linear mapping between the outputs and the new inputs u1, u2:

ẍ = u1

z̈ = u2.

Global exponential tracking of the desired trajectory xd(t), zd(t) is then guaranteed by the following PD+feedforward
control law

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)

u2 = z̈d + kp2(zd − z) + kd2(żd − ż),

as long as the control gains kp1, kd1, kp2, kd2 are positive.
Note that to compute u1, u2 we need (in addition to the desired trajectory) the outputs x, z and their first-order

derivatives. The expression of the original control inputs f1, f2 is then found by plugging u1, u2 into (4); the orientation
θ is needed for this computation. Overall, computing the control law requires x, z, θ, ẋ and ż.

(c) Although θ̇ is not needed by our controller, we design a filter for estimating the whole state for simplicity. It is
however easy to modify the filter proposed below so as to avoid estimating θ̇.

With the state x = (x, z, θ, ẋ, ż, θ̇) = (x1, . . . , x6), the continuous-time model of the system is written as

ẋ1 = x4

ẋ2 = x5

ẋ3 = x6
(5)

ẋ4 = f1 cosx3 − f2 sinx3

ẋ5 = −g + f1 sinx3 + f2 cosx3

ẋ6 = −d f2.

Using Euler integration over the sampling interval Ts, a discrete-time version of this model is written as

x1,k+1 = x1,k + x4,k Ts

x2,k+1 = x2,k + x5,k Ts

x3,k+1 = x3,k + x6,k Ts

x4,k+1 = x4,k + f1,k cosx3,k Ts − f2,k sinx3,k Ts

x5,k+1 = x5,k − g Ts + f1,k sinx3,k Ts + f2,k cosx3,k Ts

x6,k+1 = x6,k − d f2,k Ts.

This motion model is assumed to be perturbed by a white gaussian noise with zero mean and known covariance.
As for the measurement model, we have a total of four measurements coming from the sensors at each sampling

instant. The first is the height of the CoM over the ground

y1,k = zk − sinxk = x2,k − sinx1,k

while the second is directly the robot orientation:

y2,k = θk = x3,k.

The last two measurements are the CoM accelerations ẍ, z̈. These are input-level quantities that cannot be written
as function of the states; therefore, we cannot include them as such in the measurement model. We have two options.
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1. The first is to use ẍk, z̈k to reconstruct the actual inputs, as in (3). For doing this, we need θ, which we may
replace with the current estimate: (

f1,k
f2,k

)
= T−1(θ̂k)

(
ẍk

z̈k + g

)
.

These input values would then be used in the prediction stage.

2. The second is to integrate numerically the measurements ẍk, z̈k to transform them into virtual measurements
of ẋk+1, żk+1, which are states. To do this, however, we need the velocities ẋk, żk, which we may replace with
their current estimates. This option would require using in the prediction stage the (nominal) force inputs f1,k
and f2,k coming from the controller.

Let us choose the first option. The measurement model is therefore simply

yk =

(
x2,k − sinx1,k

x3,k

)
.

This model is also assumed to be perturbed by a white gaussian noise with zero mean and known covariance.
The rest of the solution is straightforward: linearize the motion and measurement models (only the fourth and fifth

equations of the former and the first equation of the latter are actually nonlinear) and then write the EKF equations.
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Solution of Problem 3

(a) FALSE. Chow Theorem is a necessary and sufficient condition of controllability only for driftless systems. However,
the robot of Problem 2 contains a drift even when g = 0; indeed, it is a second-order model that, once converted
to state-space form, will display a drift on the first three equations, see (5).

(b) TRUE. If g = 0, the first two equations of the dynamic model are in the form(
ẍ
z̈

)
=

(
cos θ − sin θ
sin θ cos θ

)(
f1
f2

)
so that

(
f1
f2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ẍ
z̈

)
In particular, the second equation is f2 = − sin θ ẍ+ cos θ z̈. Plugging this in the third equation of the dynamic
model we get d sin θ ẍ− d cos θ z̈ − θ̈ = 0, which is a second-order constraint in the form aT (q)q̈ = 0.

An alternative reasoning is the following. For g = 0, the system equations state that

q̈ =

 cos θ
sin θ

0

 f1 +

 − sin θ
cos θ
−d

 f2 = h1(q)f1 + h2(q)f2

i.e., q̈ belongs to span{h1(q), h2(q)}. Therefore, q̈ must be orthogonal to any vector (field) a(q) which is
orthogonal to both h1(q) and h2(q), or aT (q)q̈ = 0, and the claim is true. One possible choice of a(q) is the
vector product of h1(q) and h2(q):

a(q) = h1(q)× h2(q) = det

 i j k
cos θ sin θ 0
− sin θ cos θ −d

 =

 −d sin θ
d cos θ

1


which leads to the same constraint written before (with a change of sign).

(c) FALSE. Differential flatness guarantees that we can plan a trajectory which is admissible, i.e., is consistent with
the robot model; but it does not ensure that it will be feasible, i.e., that the associated inputs will be inside
the given bounds. However, if we were dealing with a robot described by a driftless kinematic model, then the
claim would be TRUE, because for such a model any trajectory can be slowed down until the velocity bounds
are satisfied (uniform scaling).

(d) TRUE. Think about trajectory tracking based on static input-output linearization, in which point B can be driven
along arbitrary trajectories.

(e) FALSE. At steady state, the robot Cartesian coordinates will track the reference trajectory exactly. Since these
coordinates are precisely the flat outputs, the orientation will evolve as dictated by the reconstruction formula,
independently on the initial configuration. One may argue that the reconstruction formula actually provides two
evolutions of the orientation, which differ by π (forward and backward motion); in this sense, it would be TRUE
that the elicited motion depends on the initial configuration of the unicycle.
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