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Introduction

we consider a generic time-invariant nonlinear dynamical system

ẋ = f(x, u)
y = g(x)

with state x ∈ IRn, input u ∈ IRp, and output y ∈ IRq

stabilization via state feedback

design a control law u = k(x) such that the closed-loop system

ẋ = f(x, k(x))

has a given state xd as an asymptotically stable equilibrium point

• xd is specified by the control problem and represents a desired operating state for
the system: for example, an attitude for a satellite, a pose in space for a robotic
manipulator, a temperature for a climate-control system

• xd need not be an equilibrium point of the open-loop system; however, it must become
one for the closed-loop system

• in the following, we assume that xd is the origin; indeed, it is always possible to reduce
to this case by applying the coordinate translation z = x− xd
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• for a linear system ẋ = Ax + Bu, a state feedback is u = K x; the closed-loop system
becomes

ẋ = Ax+BK x = (A+BK)x

as is well known, the problem of stabilization via state feedback is solvable if the
pair (A,B) is stabilizable, i.e., if it is completely controllable or if any uncontrollable
eigenvalues have negative real part

• a feedback of the form u = k(x) is called static because it represents a memoryless
controller; we speak of dynamic feedback when the control is itself the output of a
dynamical system driven by the state x:

ξ̇ = φ(ξ, x)
u = k(ξ)

• state feedback assumes that all components of x can be measured; when this is not
possible, one resorts to output feedback, which may be static (u = k(y)) or, more
often, dynamic:

ξ̇ = φ(ξ, y)
u = k(ξ)

for example, this is the case in which the controller includes an asymptotic observer
used to reconstruct the state
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Stabilization via linear approximation

Lyapunov basic idea

compute the linear approximation of the system about the origin and stabilize it via linear
feedback; by Lyapunov indirect method, the origin will be locally asymptotically stable for
the nonlinear system

ex: consider the scalar system

ẋ = a x2 + u

containing the parameter a > 0; its linear approximation about the origin is ẋ = u, which is
obviously stabilized by the linear feedback u = −k x with k > 0

applying this control to the nonlinear system, the closed loop becomes

ẋ = a x2 − k x (∗)
which, by Lyapunov indirect method, has the origin as an asymptotically stable equilibrium

• the asymptotic stability property is local: indeed, system (∗) has another equilibrium
at x = k/a, and diverges for x > k/a ⇒ the region of attraction is Ω = {x : x < k/a}

• to achieve convergence from any set S = {x : |x| < r}, it is enough to set k > a r; the
stability is semi-global, in the sense that by modifying the controller parameters (here
k) one can include in Ω any neighborhood of the origin

• the stability obtained is not, however, global, since once k is chosen there exist states
(here {x : x > k/a}) from which convergence does not occur
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let’s apply the same approach to a generic time-invariant nonlinear system

ẋ = f(x, u)

under the hypothesis that (x = 0, u = 0) is an equilibrium, i.e., that the origin is an unforced
equilibrium point

the linear approximation of the system about (x = 0, u = 0) is

ẋ =
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0

(x− 0) +
∂f(x, u)

∂u

∣∣∣∣
x=0,u=0

(u− 0) = Ax+Bu

if the pair (A,B) is stabilizable, one can design a linear state feedback u = K x such
that the eigenvalues of (A + BK) have negative real part, and the linear approximation is
therefore (globally and exponentially) asymptotically stable

⇒ u = K x makes the origin (locally) asymptotically stable for the nonlinear system

• if the pair (A,B) is not stabilizable, there is no linear feedback that stabilizes the
linear approximation; however, one cannot exclude that there exists a feedback able
to stabilize the nonlinear system, and such feedback may even be linear

ex: ẋ = u3, whose linear approximation is ẋ = 0, is stabilized by u = −x

• if (A,B) is stabilizable, this approach also provides an estimate of the domain of
attraction, since it is easy to write a Lyapunov function for the nonlinear system
starting from the linear approximation; to this end, the following result is useful
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Theorem

a linear system ẋ = Ax is asymptotically stable if and only if, for any given symmetric and
positive definite matrix Q, the following Lyapunov equation

PA+ATP = −Q
admits a unique symmetric and positive definite solution in the unknown P

proof (sufficiency) it is an application of Lyapunov direct stability method; indeed, taking
as Lyapunov candidate

V (x) =
1

2
xTP x

which is PD by hypothesis, we have

V̇ = xTP ẋ = xTPAx =
1

2
(xTPAx+ xTPAx) =

1

2

(
xT(PA+ATP )x

)
= −

1

2
xTQx

which is ND by hypothesis (we used xTPAx = (xTPAx)T = xTATP x)

in our case, since the closed-loop linear approximation ẋ = (A + BK)x is asymptotically
stable, it admits as Lyapunov function

V (x) =
1

2
xTP x

where P is the unique symmetric and PD solution of the corresponding Lyapunov equation

P (A+BK) + (A+BK)TP = −Q
with Q arbitrary but symmetric and PD (for example, Q = I)

. . . and V is a Lyapunov function also for the nonlinear system!
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ex: pendulum with joint torque actuator

m

�
θ

τ

m`2 θ̈ + d θ̇ +mg ` sin θ = τ

letting x = (x1, x2) = (θ, θ̇) and τ = u the state-space equation is

ẋ1 = x2

ẋ2 = −a sinx1 − b x2 + c u

where a = g/`, b = d/m `2, c = 1/m `2 (a, b, c > 0)

suppose we wish to stabilize the pendulum at a generic angle θd; the desired equilibrium
point is therefore xd = (x1d, x2d) = (θd,0)
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we perform the coordinate transformation z = x− xd = (x1 − θd, x2)

ż1 = z2

ż2 = −a sin(z1 + θd)− b z2 + c u

to make the origin z1 = 0, z2 = 0 an unforced equilibrium point, set u = ufb + uff, where ufb
is the feedback component and uff is the feedforward component

ufb = Kz vanishes automatically at the origin, and therefore uff has the task of making that
point an equilibrium:

−a sin θd + c uff = 0 hence uff =
a

c
sin θd = mg` sin θd

that is, uff is the torque required to balance gravity when the pendulum is at θd

the closed-loop system is therefore

ż1 = z2

ż2 = −a (sin(z1 + θd)− sin θd)− b z2 + c ufb

which finally has z = 0, ufb = 0 as an equilibrium point

the linear approximation of the system is therefore characterized by the matrices

A =
∂f(z, ufb)

∂z

∣∣∣∣
z=0,ufb=0

=

(
0 1

−a cos(z1 + θd) −b

)∣∣∣∣
z=0,ufb=0

=

(
0 1

−a cos θd −b

)
B =

∂f(z, ufb)

∂ufb

∣∣∣∣
z=0,ufb=0

=

(
0
c

)
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the controllability matrix is (
B AB

)
=

(
0 c
c −b c

)
it is therefore possible to arbitrarily assign the closed-loop eigenvalues of the linear approx-
imation; it is easy to verify that with the linear feedback

ufb = Kz =
(
k1 k2

)( z1

z2

)
= k1z1 + k2z2

the eigenvalues of A+BK have negative real part provided that k1 <
a

c
cos θd and k2 <

b

c

⇒ under these assumptions, the torque

u = ufb + uff = k1 z1 + k2 z2 +
a

c
sin θd = k1(θ − θd) + k2 θ̇ +mg` sin θd

renders the point (θd,0) (locally) asymptotically stable for the pendulum

• note the physical interpretation of the term ufb, which simulates an angular spring
that pulls the pendulum back to the position θd and a viscous damper that dissipates
energy

• the domain of attraction will depend in a crucial way on the choice of k1 and k2; it
is possible to estimate its size by using, as a Lyapunov candidate for the nonlinear
system, a Lyapunov function for the linear approximation
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setting, for example, a = c = 1, b = 0, θd = π/2 and k1 = k2 = −1 we obtain

A+BK =

(
0 1
−1 −1

)
and the corresponding Lyapunov equation (for Q = I)

(
p11 p12

p12 p22

)(
0 1
−1 −1

)
+

(
0 −1
1 −1

)(
p11 p12

p12 p22

)
=

(
−1 0
0 −1

)
admits the symmetric and positive definite solution

P =

(
3/2 1/2
1/2 1

)
hence we can use the following as Lyapunov function for the nonlinear system

V (x) =
1

2
xT

(
3/2 1/2
1/2 1

)
x

at this point, identify the set where V̇ (x) is ND, and take any level curve contained in that
set; the region inside this level curve is an estimate of the domain of attraction for the
(linear) controller considered
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Stabilization via exact linearization: Basics

the main limitation of the stabilization technique via linear approximation is that conver-
gence is guaranteed only within a domain of attraction, which may be more or less large;
this may be unacceptable in practice

ex: for the scalar system

ẋ = a x2 + u

we have seen that the linear feedback u = −k x with k > 0 makes the origin asymptotically
stable, with region of attraction Ω = {x : x < k/a}

consider instead the following nonlinear control law

u = −a x2 − k x

which cancels the nonlinear term a x2 and leads to the following closed-loop system

ẋ = −k x
the system is exactly linear, and the origin is therefore a globally asymptotically stable
equilibrium

this control law has two components: one (−a x2) is in charge of exactly linearizing the
closed-loop dynamics, and the other (−k x) of stabilizing that dynamics
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ex: consider again the pendulum with joint actuator

ż1 = z2

ż2 = −a sin(z1 + θd)− b z2 + c u

for which we have already performed the coordinate transformation z = x−xd = (x1−θd, x2)
needed to shift the desired equilibrium point to the origin

inspection of the second differential equation, which is the only one containing nonlinear
terms, suggests the following choice for u

u =
a

c
sin(z1 + θd) +

v

c

the closed-loop dynamics becomes linear and completely controllable

ż1 = z2

ż2 = −b z2 + v

it is therefore possible to stabilize it globally at the origin via the new input v

v = k1 z1 + k2 z2

with k1 and k2 chosen so as to assign arbitrary eigenvalues; we thus have

u =
a

c
sin θ +

1

c

(
k1(θ − θd) + k2θ̇

)
in which all terms are in feedback (in particular, at the equilibrium the first term automat-
ically becomes the torque needed to balance gravity)
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then, it is natural to ask

how general is the idea of canceling nonlinearities via feedback? is there a structural
property of systems that guarantees this possibility?

we are certainly able to do this if the state equation has the following structure

ẋ = f(x, u) = Ax+B β(x) (u− α(x))

with β(x) a nonsingular matrix on a domain containing the origin (note that the two previous
examples have exactly this structure)

in fact, it is sufficient to set

u = α(x) + β−1(x)v

to obtain the linear system

ẋ = Ax+B v

which can be stabilized by setting v = K x (if the pair (A,B) is stabilizable); the overall
feedback law is

u = α(x) + β−1(x)K x

note that it is nonlinear!
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if the system model does not have the above structure, it may be possible to put it into
that form via a coordinate transformation

ex: for the system

ẋ1 = a sinx2

ẋ2 = −x2
1 + u

it is clear that it is not possible to cancel the nonlinearity a sinx2 through u

consider however the following coordinate transformation

z1 = x1

z2 = a sinx2 = ẋ1

we have

ż1 = z2

ż2 = a cosx2(−x2
1 + u)

it is now possible to cancel the nonlinearity with the feedback law

u = x2
1 +

1

a cosx2
v

which is well defined for −π/2 < x2 < π/2
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note that the coordinate transformation z = T (x) is well posed, since it can be inverted as
follows

x1 = z1

x2 = arcsin
(z2

a

)
in the set −a < z2 < a

moreover, both the transformation T (·) and its inverse T−1(·) are continuously differentiable
⇒ we say that T (·) is a diffeomorphism

the properties of this example can be extrapolated into the following definition

a nonlinear system

ẋ = f(x, u)

is said to be input-state linearizable if there exists a diffeomorphism z = T (x), defined on
a domain Dx containing the origin, that puts the system in the form

ż = Az +Bβ(x) (u− α(x))

with the matrix β(x) nonsingular in Dx

input-state linearizable systems can therefore be effectively controlled (for example, globally
exponentially stabilized at a point) through a coordinate transformation and a static
state feedback which has a dual role: (1) cancel the system nonlinearities (2) control the
linearized system
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• there is also the possibility of achieving input-state linearization of a system via coor-
dinate transformation and dynamic state feedback; the class of systems that can be
linearized in this way is larger than that of systems linearizable with static feedback

• in the case where the control problem is formulated at the level of the system outputs
(for example, in reference-output tracking problems), one may try to achieve input-
output linearization, again using a coordinate transformation plus static or dynamic
state feedback

• a drawback of exact linearization is that canceling nonlinearities requires exact knowl-
edge of the model parameters; for example, in the case of the system ẋ = ax2 + u the
control law computed via exact linearization (slide 11) was

u = −a x2 − k x
which contains the parameter a; instead, the control law computed via linear approxi-
mation (slide 4) was

u = −k x

⇒ for controllers designed through the exact linearization method there is a potential
problem of robustness with respect to parameter variations, which must be analyzed
carefully
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• another drawback of the exact linearization approach is that it may lead to the can-
cellation of nonlinear terms that are actually beneficial for stabilization

ex: consider the nonlinear scalar system

ẋ = a x− b x3 + u a, b > 0

a controller based on the exact linearization philosophy is the following

u = −k x+ b x3 k > a

however, the nonlinear term −b x3 can be interpreted as a nonlinear elastic force that
pushes the state toward the origin; indeed, the simple linear controller

u = −k x k > a

leads to the closed-loop system

ẋ = −(k − a)x− b x3

the origin is GAS, and trajectories converge faster than those of ẋ = −(k − a)x

a possible consequence of this unnecessary cancellation, due to the mathematical
(rather than physical) nature of the exact linearization approach, is a higher con-
trol effort (in the example, u = −k x + b x3 takes on (absolute) values much larger
than u = −k x when far from the origin)

⇒ it is sometimes preferable to avoid linearization and design the controller using the
direct Lyapunov method, which lends itself better to a physical interpretation
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