Prova scritta di CONTROLLI AUTOMATICI I modulo 5 aprile 2005

Problema 1

Per il processo descritto dalle equazioni

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -10 & -11 \end{pmatrix} x + \begin{pmatrix} 0 \\ -1 \end{pmatrix} u$$

$$y = \begin{pmatrix} 11 & 11 \end{pmatrix} x + u$$

si progetti uno schema di controllo a retroazione dall'uscita y in grado di garantire le seguenti specifiche:

- stabilità asintotica;
- errore a regime nullo per un riferimento costante;
- pulsazione di attraversamento $\omega_t \approx 10$ rad/sec e margine di fase $m_{\varphi} \geq 10^{\circ}$.

Problema 2

Con riferimento al processo considerato nel Problema 1:

- a) Si determinino gli autovalori con le relative proprietà di raggiungibilità e osservabilità.
- **b)** Si calcoli l'evoluzione libera a partire dal punto $x_0 = (0 \ 9)^T$.
- c) Si calcoli la risposta forzata all'ingresso $u(t) = \delta_{-1}(t)$.
- c) Si calcoli la risposta a regime permanente all'ingresso $u(t) = \delta_{-1}(t)$.

Problema 3

Annerire il cerchietto in corrispondenza alle affermazioni certamente 'vere'.

•	Si consideri il sistema a retroazione unitaria con funzione di trasferimento $P(s)=\frac{1-s}{s^2+1}$ sul ramo diretto.
	 Il diagramma di Nyquist presenta esattamente una chiusura all'infinito. Il diagramma di Nyquist presenta esattamente due chiusure all'infinito.
	 ○ Il diagramma di Nyquist effettua esattamente due giri intorno al punto critico. ○ La risposta a regime permanente a un ingresso unitario vale 1. ○ La risposta a regime permanente a un ingresso unitario vale -1.
•	Un sistema incognito, sollecitato da un ingresso a gradino unitario a partire da condizioni iniziali nulle, esibisce una risposta oscillatoria che tende a un valore costante.
	○ Il sistema è asintoticamente stabile.
	○ Il sistema è semplicemente stabile.
	○ Il sistema ha guadagno unitario.
	O Il sistema ha almeno due poli complessi.
	○ Il sistema ha un polo nell'origine.

Nome e cognome