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Abstract-In this paper, we derive conditions under which a 
nonlinear system can be rendered passive via smooth state 
feedback and we show that, as in the case linear systems, this is 
possible if and only if the system in question has relative degree 
1 and is weakly minimum phase. Then, we prove that weakly 
minimum phase nonlinear systems having relative degree 1 can 
be globally asymptotically stabilized by smooth state feedback, 
provided that suitable controllability-like rank conditions are 
satisfied. This result incorporates and extends a number of 
stabilization schemes recently proposed in the literature for 
global asymptotic stabilization of certain classes of nonlinear 
systems. 

I. INTRODUCTION 
HE feedback stabilization of nonlinear systems has occu- T pied a central role in the nonlinear systems literature for 

at least three decades. Widely recognized as an important 
problem in its own right, feedback stabilization is also impor- 
tant as a preliminary step in achieving additional control 
objectives, e.g., asymptotic tracking, disturbance attenuation, 
etc. This role hints at a broader version of this important 
problem, a version which would require facilitating further 
analysis of the overall behavior of more general interconnec- 
tions involving the system to be controlled in one of its inner 
loops. Analysis of this broader problem was one of the 
starting points in the 1960’s for the development of the 
operator theoretic approach to the analysis of input-output 
systems. 

For example, the “small gain” theorem yields a number 
of interesting corollaries concerning the overall stability of 
various important interconnections of linear and nonlinear 
systems. Also, the notion of “passivity” of an input-output 
system, motivated by the dissipation of energy across resis- 
tors in an electrical circuit, has been widely used in order to 
analyze stability of a general class of interconnected nonlin- 
ear systems (see, e.g., [6], [20]-[23], [25]). Beginning in 
the early 1970’s, passivity was also studied for state-space 
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representations of nonlinear systems, allowing for a more 
geometric interpretation of notions such as available, stored, 
and dissipated energy in terms of Lyapunov functions 
[26]-[27]. This point of view, leading to a Lyapunov-theo- 
retic counterpart of many stability results developed within 
an input-output point of view approach as well as to a 
nonlinear form of the Kalman-Yacubovitch-Popov lemma, 
has since been specifically developed in the series of papers 
[9]-[13]. In particular, in addition to basic stability results, 
we now know a fairly complete answer to the fundamental 
question: when is a finite-dimensional nonlinear system 
passive? 

Passive systems, like linear circuits containing only posi- 
tive resistors, are stable. However, there are many engineer- 
ing systems (e.g., high-performance aircraft or even some 
more exotic circuits) which are even designed to be unstable 
for some range of initial conditions in order to take advantage 
of improved performance for other ranges of initial data. 
Such systems provide examples of the desirability of using 
feedback to stabilize unstable systems and in fact, during the 
last two decades, there has been a considerable attention, in 
the literature on geometric control of nonlinear systems, to 
the problem of stabilization via state feedback. Among the 
major trends which focus on this problem, there are three 
somewhat distinct approaches which are related to the prob- 
lems and techniques presented in this paper: global asymp- 
totic stabilization of Lyapunov stable systems under suitable 
‘ ‘controllability’ ’ conditions, feedback linearization of non- 
linear systems, and asymptotic stabilization of the nonlinear 
equivalent of minimum phase linear systems. 

As one might hope, a synthesis of concepts and techniques 
drawn from the theory of passive systems and from the 
geometric nonlinear control theory leads to a more powerful 
methodology for the design of nonlinear feedback systems. In 
particular, in view of the role played by the concept of 
passivity not just in terms of system stability but also in the 
analysis of the stability of interconnected feedback systems, 
another fundamental question arises, which appears to have a 
variety of rather interesting consequences: when can a f i-  
nite-dimensional nonlinear system be rendered passive via 
state feedback? 

In this paper, we shall address this question and provide a 
rather complete answer in terms of geometric nonlinear 
system theory. Perhaps surprisingly, the characterization we 
obtain is a nonlinear enhancement of some very classical 
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facts concerning passivity in a linear system. For example, 
passive nonlinear systems enjoy the nonlinear analog of the 
minimum phase property (expressed in terms of the system's 
zero dynamics). And, in terms of such a nonlinear feedback 
invariant we are able to solve, under mild regularity assump- 
tions, the problem of identifying those nonlinear systems 
which are feedback equivalent to passive systems, In one 
of its forms, this problem is a generalization of the problem 
of feedback equivalence to linear systems, in a precise 
technical sense. But more importantly, because passive sys- 
tems represent a class of systems for which feedback analysis 
and design is comparatively more simple, more intuitive, and 
better understood, the problem of feedback equivalence to a 
passive nonlinear system is a less stringent yet very appealing 
version of the problem of feedback equivalence to a linear 
system. 

The main results of this paper are contained in Section IV, 
in which we solve the problem of feedback equivalence to a 
passive system under some mild regularity hypotheses, which 
can be relaxed in certain circumstances. In Section 11, we fix 
our notation and nomenclature, reviewing some of the basic 
definitions and concepts from the theory of dissipative sys- 
tems as developed in [26] -[27] and [ 101 - [ 131. In Section 111, 
we revisit some basic results concerning the asymptotic stabi- 
lization of passive systems via static output feedback (see, 
e.g., [lo]). In particular, we show that the frequently as- 
sumed property of observability can be weakened by requir- 
ing only detectability, and present a criterion implying de- 
tectability, which is stated in terms usually associated with 
accessibility and controllability criteria. This somehow in- 
triguing relationship between accessibility conditions and a 
dual property of detectability reposes on the nonlinear ver- 
sion of Kalman-Yacubovitch-Popov lemma (see [lo]), which 
of course relates the system output to the control vector field. 
As a consequence, we also obtain as corollaries a series of 
previous results on global feedback stabilization of Lyapunov 
stable nonlinear systems which satisfy certain controllability 
conditions [7], [15], [16], [18]. 

In Section V, we combine the stability results for passive 
systems discussed in Section I11 with the feedback equiva- 
lence criteria derived in Section IV to obtain a further class 
of state feedback stabilization methods for various intercon- 
nections of nonlinear systems. In particular, we give a new 
proof of previous global stabilization results for minimum 
phase nonlinear systems and a rather powerful extension for 
feedback stabilization of " weakly" minimum phase nonlin- 
ear systems. These results also yield a fully nonlinear version 
of a stabilization criterion for a cascade-interconnected con- 
figuration which has recently attracted some attention in the 
geometric nonlinear control literature [ 171, [24]. 

11. DISSIPATIVE AND PASSIVE SYSTEMS. 

In this paper, we consider nonlinear systems described by 

x = f ( x )  + g ( x ) u  (2.1a) 

Y = h ( x )  (2.lb) 

with state space X = R", set of,input values U = R m  and 

equations of the form 

set of output values Y = R". The set @ of admissible inputs 
consists of all U-valued piecewise continuous functions de- 
fined on R . f and the rn columns of g are smooth (i.e., 
C") vector fields and h is a smooth mapping. We suppose 
that the vector field f has at least one equilibrium; thus, 
without loss of generality, after possibly a coordinates shift, 
we can assume f ( 0 )  = 0 and h(0) = 0. 

We review in this section a number of basic concepts 
related to the notions of dissipativity and passivity; the reader 
is referred to [26] and [12] for additional details. Let w be a 
real-valued function defined on U x Y ,  called the supply 
rate. We assume that for any U E @ and for any x o  E X ,  the 
output y ( t )  = h ( @ ( t ,  x " ,  U)) of (2.1) is such that w(s)  = 
( w ( u ( s ) ,  y ( s ) )  satisfies 

Definition 2.1: A system C of the form (2.1) with supply 
rate w is said to be dissipative if there exists a C" nonnega- 
tive function V :  X +  R ,  called the storage function, such 
that for all M E  @, x" E X ,  c L 0 

V ( x )  - V ( x " )  5 JO(w(s)ds 

where x = @ ( t ,  x o ,  U). n 
The above inequality is called the dissipation inequality. 

The next definition characterizes the notion of available 
storage, which plays an important role in determining whether 
or not a given system is dissipative. 

Definition 2.2: The available storage, denote V,, of a 
system C with supply rate w is the function V,: X - *  R 
defined by 

V a ( x )  = sup ( - l f w ( s ) d s ) .  
x e = x  

a 
U€ '@ 
t > O  

Note that the available storage, whenever defined, is non- 
negative, since Va( x )  is the supremum over a set of numbers 
which contains the zero element. The following statement 
illustrates the properties of such a function. 

Proposition 2.3 [26]: If a system C with supply rate w is 
dissipative, the available storage Va(x)  is finite for each 
x E X .  Moreover, any possible storage function V satisfies 

0 I V a ( x )  I V ( x )  

for each x E X ,  and if Va is CO, then Va itself is a possible 
storage function. Conversely, if V,(x) is finite for each 
x E X  and C " ,  then the system C is dissipative. 

Throughout the paper, we shall be interested in studying 
dissipative systems with supply rate given by the inner prod- 
uct. 

w = (U, y )  = Y T U  

(where the superscript "T" denotes transpose). For conve- 
nience, we characterize this choice by means of a separate 
definition. 

Definition 2.4: A system C is said to be passive if it is 
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dissipative with supply rate w = ( U ,  y ) ,  and the storage 
a 

In other words, a system C is passive if there exists a C" 
nonnegative function V :  X +  R ,  which satisfies V(0) = 0, 
such that 

function V satisfies V(0) = 0. 

V ( X )  - V ( X " )  5 yT(S)U(S)dS. (2.2) I,' 
Remark 2.5: Setting U = 0, we see from this definition 

that V is decreasing along any unforced trajectory of (2.1); it 
follows then that passive systems having a positive definite 
storage function V are Lyapunov stable. Reciprocally, we 
see also that V is decreasing along any trajectory of (2.1) 
consistent with the constraint y = 0. Since all such trajecto- 
ries define what are called the zero dynamics of a system 
[l], we can deduce that passive systems having a positive 
definite storage function I/ have a Lyapunov stable zero 

Sometimes, among the passive systems, it is convenient to 
identify those systems corresponding to the two limiting 
situations in which the dissipation inequality (2.2) becomes 
either a strict equality or (somewhat loosely speaking) a strict 
inequality. These two classes are characterized by the follow- 
ing definitions. 

Definition 2.6: A passive system C with storage function 
V is said to be lossless if for all U E k?L, X "  E X ,  t 2 0 

dynamics. a 

V ( x )  - V ( x " )  = / 'y ' . (s)u(s)ds .  

I,' 1' 

a 

Definition 2.7: A passive system C with storage function 
V is said to be strictly passive if there exists a positive 
definite function S :  X + R such that for all U E q ,  x o  E X ,  
t r o  

0 

V ( X )  - V ( X " )  = y'(s)U(s)ds - S(X(s ) )dS .  A 

Passive systems are related to positive real systems. The 

Definition 2.8: A system C is said to be positive real if 
latter can be defined as follows. 

for all U E ha ,  t 2 0 

0 5 J0 'yT(s )u(s )ds  

whenever x(0) = 0. a 
Remark 2.9: In the case of a linear system, it is easily 

seen from Parseval's identity that the integral inequality for 
t = co is equivalent to nonnegativity of the real part of the 
system transfer function on the imaginary axis. More gener- 
ally, it follows from an integral transform argument that the 
integral inequality for all nonnegative t is equivalent to 
positive realness of the transfer function, i.e., that the trans- 
fer function be analytic and have nonnegative real part in the 

The relation between passive and positive real systems 
depends on the property, of the state-space realization, of 
being reachable from the equilibrium point x = 0. We recall 
that a state x is reachable from 0 if there exists t > 0 and 
U E  @ such that x = cP(t,O, U ) .  

open right-half plane. a 

Proposition 2.10 [26J: A dissipative system C with sup- 
ply rate w = yTu is positive real if and only if its available 
storage satisfies VJO) = 0. A passive system is positive real. 
Conversely, if a system is positive real, its available storage 
is finite at each x which is reachable from the origin; as a 
consequence, a positive real system in which any state is 
reachable from the origin and in which Vu is C" is passive. 

Proof: The first part of the statement is a straightfor- 
ward consequence of the definition of available storage be- 
cause Va(0) 2 0 and 

V,(O) = sup ( - ~ f y T ( s ) ~ ( s ) d s ] .  
x' = o  
U €  @ 
'20 

The second part of the statement is a straightforward conse- 
quence of the dissipation inequality (2.2), because V is 
nonnegative and vanishes at x = 0. The last part of the 

a 
We now turn to another fundamental property of passive 

systems which is one nonlinear enhancement of the ubiqui- 
tous Kalman-Yacubovitch-Popov lemma for positive real 
linear systems. 

Definition 2.11: A system C has the KYP property if 
there exists a C' nonnegative function V : X  + R ,  with 
V(0) = 0, such that 

L / V ( X )  I O  (2.3a) 

statement has been proven in [26] (see also [lo]). 

L g V ( x >  = hT(X)  (2.3b) 

for each x E X .  a 
The two relations (2.3) can be interpreted as the injinites- 

imal version of the dissipation inequality (2.2) for a passive 
system (although one could, as in the papers [ 1 11, [ 121, [ 131, 
view the dissipation inequality itself as another nonlinear 
version of the Kalman-Yacubovitch-Popov lemma). Con- 
cerning (2.3) it is possible to prove, as in [lo], the following 
result. 

Proposition 2.12 [IO]: A system C which has the KYP 
property is passive, with storage function I/. Conversely, a 
passive system having a C' storage function has the KYP 
property. 

Proof: If C has the KYP property, then along any of its 
trajectories 

d V ( x ( t ) )  = L / V ( X ( t ) )  + L g V ( x ( t ) ) u ( t )  5 y ' ( t ) u ( t )  
dt 

(2.4) 

and integration form 0 to t yields the dissipation inequality 
(2.2) for the storage function V. Conversely, if C is passive 
with a C' storage function V ,  taking the derivative with 
respect to time of the left-hand side of the dissipation inequal- 

Remark 2.13: Note that, in a lossless system with C' 
ity yields (2.4), which clearly implies (2.3). a 
storage function V 

L / V ( X )  = 0 

for all X E X ,  and, in a strictly passive system with C' 
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storage function V 

L,V(x)  = - S ( x )  

for all X E  X ,  i.e., L,V is negative definite. Thus, in 
particular, if a system is strictly passive with a storage 
function which is positive definite, its equilibrium point 

n 
Remark 2.14: Consider a system of the form (2.la), i.e., 

with no specific output defined, and suppose there exists a C' 
nonnegative function V :  X + R ,  with V(0) = 0, satisfying 
(2.3a), i.e., such that L,V(X) I 0. Several authors (see, 
e.g., [7], [15], [16], [18]) have studied the problem of 
stabilizing such a system using a state feedback of the form 

x = 0 is asymptotically stable. 

U = - [ L,V( x)]' 

In view of (2.3) and of Proposition 2.12, we observe that this 
control law can be interpreted as a unit gain negative output 
feedback 

U =  -y 

imposed on the passive system defined choosing for (2.la) 
the output map 

We will return to this point in the next section. n 
Remark 2.15: As pointed out verbally by J .  Ball, G. 

Picci, and in a review by an anonymous referee, the condi- 
tion that a system C be positive real is equivalent to the 
condition that an associated system E' has a finite L,  gain. 
More precisely, defining a new input w and a new output z 
via 

u = y w + z  
y = y w - z  

the inequality introduced in Definition 2.8 takes the form 

l t z T (  s) z ( s )  ds 5 y2 wT( s) w( s) ds. s,' a 

111. STABILIZATION BY OUTPUT FEEDBACK. 

In this section, we revisit a certain number of known 
results about the possibility of asymptotically stabilizing a 
nonlinear passive system by means of memoryless output 
feedback. The asymptotic stability of interconnected passive 
systems has been studied in depth in the literature by several 
authors, either from an operator theoretic point of view (as in 
[6], [20]-[23], [25], [28]) or in terms of the corresponding 
state-space descriptions (as in [ 101 - [ 131, [26], [27]). In 
particular, Hill and Moylan [lo]-[13] have developed a 
synthesis of the techniques from the theory of passive sys- 
tems and the Lyapunov stability theory which yields a num- 
ber of important stability results under suitable observability 
hypotheses. 

In the first part of this section, we will show how the 
observability condition used by Hill-Moylan can, in fact, be 
slightly weakened and brought to a form, that we call de- 
tectability, which is particularly suited to the analysis that 
will be presented in Sections IV and V. In particular, we will 

derive a direct criterion for detectability for a passive system, 
stated in terms of Lie brackets of the vector fields which 
characterizes the input-state description (2. la), and is remi- 
niscent of the well-known rank conditions for accessibility. 
This will enable us to show, in the second part of the section, 
that certain stabilization laws independently proposed in the 
literature on geometric nonlinear control, and some general- 
izations thereof, can all be derived from a basic stabilizability 
property of passive systems. 

We first recall two basic definitions about observability and 
detectability. 

De$nition 3.1: A system C is locally zero-state de- 
tectable if there exists a neighborhood U of 0 such that, for 
all X E  U 

h (+( t ,  x , ~ ) )  = o forall t 2 0 lim + ( t ,  x , ~ )  = 0 .  

If U = X ,  the system is zero-state detectable. A system C 
is locally Zero-state observable if there exists a neighbor- 
hood U of 0 such that, for all x E U 

h ( @ ( t , x , O ) )  = o  f o r a l l t z o  * x = O .  

t-oo 

If U = X ,  the system zero-state observable. a 
These two definitions are natural extensions of well estab- 

lished concepts from linear system theory. Note however that 
in some of the literature on passive systems, the term de- 
tectability is used to mean what here is defined as observ- 
ability (see, e.g., [lo]). 

The following statement, whose proof is a natural adapta- 
tion of the proof of LaSalle's invariance principle, describes 
a basic stabilizability property of passive systems. For more 
general informations about stability of interconnected passive 
systems, we refer to the papers [lo]-[I31 by Hill and Moy- 
Ian. For convenience, we recall that a nonnegative function 
V X + R is said to be proper if for each a > 0, the set 
V-  '([o, a])  = { x E X:O I ~ ( x )  I a} is compact. 

Theorem 3.2: Suppose C is passive with a storage func- 
tion V which is positive definite. Suppose C is locally 
zero-state detectable. Let 4 :  Y + U be any smooth function 
such that 4(0) = 0 and yT4( y)  > 0 for each nonzero y.  The 
control law 

U =  - + ( U )  ( 3 4  

asymptotically stabilizes the equilibrium x = 0. If is 
zero-state detectable and V is proper, the control law (3.1) 
globally asymptotically stabilizes the equilibrium x = 0. 

Proof: Along any trajectory of the closed-loop system 
(2.1)-(3. l),  the dissipation inequality yields 

V ( x ( t ) )  - V ( x ( 0 ) )  I - J"yT(s)4(y(s ) )ds5O.  
0 

Thus, V ( x ( t ) )  is nonincreasing along the trajectories of the 
closed-loop system. Since V is positive definite, for any 
sufficiently small a > 0, the set V-'([O, a]) is compact, and 
therefore the equilibrium x = 0 of the closed-loop is Lya- 
punov stable. Choose a sufficiently small initial condition x " ,  
let x " ( t )  denote the corresponding trajectory and let y o  
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denote its w-limit set (which is nonempty, compact, and 
invariant). Since 1imt+= V(  x( t ) )  = a,, 2 0, by continuity of 
V ,  V( x )  = a, at each point x of y O . Let X be a point of yo 
and 7( t )  the corresponding trajectory. Since I( t )  E yo,  then 
V ( X ( t ) )  = a, for all t L 0 and 

0 = V ( X ( t ) )  - V ( 7 )  I - yT(s)c#)(y(s))ds 5 0 i,' 
implies y ( t )  = 0 for all t L 0. By detectability (observe 
that, since u( t )  = - c#)(y(t)) = 0, closed-loop trajectories 
coincide with open-loop trajectories) limt+m X ( t )  = 0 and 
therefore a,, = 0. Thus, 1imt+- V(x"(t)) = 0, i.e., limt+m 
x"( t )  = 0. This proves local asymptotic stability of the 
equilibrium x = 0. If V is proper, then x = 0 is globally 

The previous theorem shows that any passive system hav- 
ing a positive definite storage function V ,  if zero-state 
detectable, is (globally) asymptotically stabilized by pure 
gain output feedback. We will now describe how these 
assumptions can be tested and will use the conditions thus 
derived in order to state different criteria for stabilizability. 
For simplicity, we discuss only the conditions for global 
asymptotic stabilization. We first recall a result of Hill- 
Moylan ([lo], Lemma 1 )  showing how the positive definite- 
ness of V is implied by the property of zero-state observabil- 
ity. 

Proposition 3.3 [lo]: Suppose C is passive with storage 
function V .  Suppose C is zero-state observable. Then V is 
positive definite. 

Proof: Ry Proposition 2.3, the available storage is fi- 
nite. Moreover, Vu(0) = 0 (because V(0) = 0). By definition 

asymptotically stable. a 

V U ( " )  

U €  ?/ 
t t o  

If V,(x) = 0, then necessarily y( t )  = 0 and this, by zero 
state observability, yields x = 0. Thus Vu vanishes only at 

a 
The next result, which is slightly more subtle, describes 

conditions which imply zero-state detectability. The result 
itself is, to the best of our knowledge, a new result, although 
its proof is substantially based on a clever argument pro- 
posed by Lee-Arapostatis ( [18,  proof of Theorem 11). In 
order to describe this result we need some preliminary mate- 
rial. With the vector fields f, g,  , * * * ,  g, which characterize 
(2. la) we associate the distribution 

9 = span {ad?g,:O 5 k I n - 1 , 1  5 i I m ) .  

Moreover, we recall that (cf. proof of Theorem 3.2) for a 
passive system having a C' storage function I/ which is 
positive definite and proper, for any initial condition x o  E X ,  
the trajectory a(* ,  X", 0) is bounded, and the associated 
limit set is nonempty and compact. Set 

x = 0 and so does V ,  because V(  x )  2 V,( x). 

Q = U ( w - l i m i t s e t o f + ( . , x " , ~ ) )  
X D E X  

We can show that the objects thus introduced are useful in 
testing the zero-state detectability and/or observability of a 
passive system. 

Proposition 3.4: Suppose C is passive with a proper C', 
r 2 1 ,  storage function V .  Let S denote the set 

S = { x € x : L y L , V ( x )  = 0, 

for all  ED, a110 I m < r} . 

If S f l  Q = { 0) and V is positive definite, then C is zero-state 
detectable. If S = ( 0 )  and C is lossless, then C is zero-state 
observable. 

Proof: Let x( t )  be a unforced trajectory yielding y( t )  
= 0 for all t 2 0 and let yo  denote its a-limit set. Let X be 
a point of y o  and 7( t )  the corresponding trajectory. From 
the proof of Theorem 3.2 it is known that V ( x )  is constant 
on yo.  Therefore V(X(t)) is constant and 

i.e., LfV is maximal on X ( t ) .  Moreover, since L,V(x(t)) 
= 0 (see 2.3b)), we see that L,V(x) vanishes on yo, and in 
particular L ,  V(  X( t ) )  = 0. From these conditions, continu- 
ing as in [18, Proof of Theorem 11 one deduces that 

L[;L,V(X) = 0 ,  f o r a l l ~ E 9 , a l l O I m < r .  (3.2) 

In fact, for T = [ f, g] ,  

L , V ( Z ( t ) )  = L,L,V(X(t))  - L , L f V ( 7 ( t ) )  

because a L f V / a x  vanishes on X ( t ) ,  where L,V is maxi- 
mal. An easy recursion and the fact that y o  is invariant under 
f yield (3.2). Since 7 E Q ,  the condition S fl f2 = (0) im- 
plies 7 = 0. Therefore V ( 7 )  = 0 and this implies (as in 
Theorem 3.2) limf+m x ( t )  = 0, thus completing the proof 
of zero-state detectability. If C is lossless, similar arguments 
prove that (3.2) holds at any X E X ,  provided h ( X ( t ) )  = 0. 

n 
Using either one of the conditions described in Proposi- 

tions 3.3 and 3.4 in order to check the assumptions required 
by the basic stabilization strategy expressed by Theorem 3.2, 
it is possible to recover a number of stabilization results 
independently proposed in the literature by various authors. 
This shows that a number of apparently independent stabiliza- 
tion schemes reduce, in fact, to the one of a passive system 
subject to pure gain output feedback. The first result, due to 
Hill-Moylan ([lo, Theorem 2]), is a straightforward combi- 
nation of Theorem 3.2 with Proposition 3.3. 

Corollary 3.5: Suppose C is passive with proper storage 
function V .  Suppose C is zero-state observable. For each 
k > 0 control law U = -ky globally asymptotically stabi- 
lizes the equilibrium x = 0. 

The second result can be deduced from a combination of 
Theorem 3.2 with the condition for zero-state detectability 
expressed by Proposition 3.4. 

Corollary 3.6: Suppose C is passive with a C', r L 1 ,  

Thus S = { 0} implies zero-state observability. 
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and proper storage function V. If S n f2 = {0} and V is 
positive definite, for each k > 0 the control law U = - k y  
globally asymptotically stabilizes the equilibrium x = 0. 

The third result can be deduced from a combination of 
Theorem 3.2 with both Propositions 3.4 (the condition for 
zero-state observability) and Proposition 3.3 

Corollary 3.7: Suppose C is lossless with a C', r 2 1, 
and proper storage function V.  If S = {0}, for each k > 0 
the control law U = - k y  globally asymptotically stabilizes 
the equilibrium x = 0. 

Remark 3.8: The results expressed by Corollaries 3.6 and 
3.7 can be interpreted as generalizations of rather well known 
results [7], [ 151, [ 161, [ 181 on global feedback stabilization of 
systems: 

i = f ( x )  + g ( x ) u  (3.3) 
obtained using methods from nonlinear geometric control 
theory. In [7] (which generalizes the results of Jurdjevic and 
Quinn [15]>, Gauthier and Bornard assume that there exists a 
function V ( x )  with no critical point other than x = 0 and 
such that 

L r V ( x )  = 0 (3.4) 

U = - ( L , V ( x ) ) T  (3.5) 

and prove that, if Q has dimension n at each x # 0, the 
control law 

globally asymptotically stabilizes the system. As discussed in 
Remark 2.14, the control law (3.5) is a direct output feed- 
back on a system of the form (3.3) having an output y = 
( L ,  V( x ) ) ~ ,  which is lossless by (3.4) and Proposition 2.12. 
Clearly, the hypotheses of [7] imply S = { 0) , and therefore 
[7, Theorem 13 is a particular case of Corollary 3.7. In [18], 
Lee and Arapostathis derive a more general result, which 
also includes a result of [16], proving that the feedback law 
(3.5) globally asymptotically stabilizes the system under the 
weaker hypothesis that Lr V( x )  I 0 and S = { 0). There- 
fore, again viewing the state feedback law (3.5) as a direct 
output feedback on a passive system, one can interpret Corol- 

a lary 3.6 as a slight extension of [ 18, Theorem 11. 

IV. FEEDBACK EQUIVALENCE TO A PASSIVE SYSTEM 

In this section, we discuss conditions under which a given 
system is feedback equivalent to a passive system with posi- 
tive definite storage function V.  Since, as we shall see in a 
moment, a role of major importance is played by property- 
for the system-of being minimum phase, we briefly recall 
how minimum phase nonlinear systems are characterized. 
We assume that the reader is familiar with the concepts of 
relative degree (see [l] or [14] for details) and normal 
form. In particular, we recall that a system of the form (2.1) 
is said to have relative degree { 1, * * * , l}  at x = 0 if the 
matrix L,h(O) is nonsingular. If this is the case and if the 
distribution spanned by the vector fields g l (  x ) ,  * * , g,( x )  is 
involutive, it is possible to find n - m real-valued functions 
z l (  x ) ,  * * 9 , 2,- ,J x ) ,  locally defined near x = 0 and vanish- 
ing at x = 0, which, together with the m components of the 
output map y = h ( x ) ,  qualify as a new set of local coordi- 

nates. In the new coordinates ( z ,  U ) ,  the system is repre- 
sented by equations having the following structure (normal 

2 = q ( 2 ,  Y )  (4. la) 

L = b ( z ,  Y )  + a ( z ,  Y)U (4.lb) 

where the matrix a ( z ,  y )  is nonsingular for all ( z ,  y )  near 

The zero dynamics of a system (see [l], [2], [14]) de- 
scribe those internal dynamics which are consistent with the 
external constraint y = 0. If a system has relative degree 
{ 1,. * ,  1) at x = 0, its zero dynamics locally exist in a 
neighborhood U of x = 0, evolve on the smooth ( n  - m)- 
dimensional submanifold 

form) 

(090). 

z* = ( x d : h ( x )  = o} 
(the zero dynamics manifold) and are described by a dif- 
ferential equation of the form 

i =  f * ( X )  XEZ* 

in which f *( x )  (the zero dynamics vectorfield) denotes the 
restriction to Z* of the vector field 

with 

U*(  x )  = - [ L,h( x ) ]  - I Lfh( x) . 
In the normal form (4.1) the zero dynamics are character- 

ized by the equation 

2 = q ( 2 , o ) .  

In view of this, we shall sometimes denote-with a minor 
abuse of notation-q(z, 0) by f * ( z )  and express q ( z ,  y )  in 
the form 

4 ( Z ?  U )  = f * ( z )  + P ( Z ,  Y ) Y  

where p ( z ,  y )  is a smooth fdnction. 
In [4], necessary and sufficient conditions for the existence 

of a globally defined normal form of the type (4.1) have 
been investigated. In addition to the nonsingularity of the 
matrix L ,  h( x ) ,  these conditions require further properties 
on set of m vector fields il( x ) ,  * * * ,  E,( x )  defined by 

[gl(x> i m ( x ) ]  = g ( x ) [ ~ g h ( x ) l - l .  (4.3) 

More precisely, there exists a globally defined diffeomor- 
phism which transforms the system (2.1) into a system 
having the normal form (4.1) if and only if  

HI: the matrix L ,  h( x )  is nonsingular for each x E X ,  
H2: the vector fields g l (  x ) ,  e ,  E,( x )  are complete, 
H3: the vector fields gl( x ) ,  * e ,  i,( x )  commute. 
If this is the case, then globally defined zero dynamics 

exist for the system. Note that the condition H3 is equivalent 
to the condition that the distribution spanned by g l (  x ) ,  * - ,  
g,( x )  is involutive. 

A system whose zero dynamics are asymptotically stable 
has been called a minimum phase system (see [1]-[3]). In 
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the following definition, we specialize this concept in a more 
detailed manner. 

Definition 4.1: Suppose L ,  h(0) is nonsingular. Then C is 
said to be: 

i) minimum phase if z = 0 is an asymptotically stable 
equilibrium of f*( z ) ,  

ii) weakly minimum phase if there exists a C', r 2 2, 
function W * ( z ) ,  locally defined near z = 0 with W*(O) = 0, 
which is positive definite and such that L f * V ( z )  I 0 for all 
z near z = 0. 

Suppose H1, H2, and H3 hold. Then C is said to be: 
iii) globally minimum phase if z = 0 is a globally 

asymptotically stable equilibrium of f*( z ) ,  
iv) globally weakly minimum phase if there exists a C', 

r 2 2 ,  function W * ( z ) ,  defined for all z with W*(O) = 0, 
which is positive definite and proper such that L,, V( z )  I 0 

Remark 4.2: Note that in a weakly minimum phase sys- 
tem the equilibrium z = 0 of the zero dynamics vector field 
is stable in the sense of Lyapunov (but possibly not asymptot- 
ically stable). However, if the equilibrium z = 0 of the zero 
dynamics vector field is stable in the sense of Lyapunov, the 
system needs not be weakly minimum phase in the sense of 
Definition 4.1, ii). This reflects the fact that stability in the 
sense of Lyapunov does not imply, in general, the existence 
of a t-independent positive definite function W*( z )  whose 
derivative (along the trajectories of the system) is negative 

a 
We proceed now to illustrate how the concepts of relative 

degree and zero dynamics arise naturally in the study of 
passive systems, playing in fact an important role. We begin 
by analyzing the relative degree of a passive system. In what 
follows, for convenience, we will say that a point x o  is a 
regular point for a system C of the form (2.1) if rank 
{ L , h ( x ) }  is constant in a neighborhood of x o .  We also 
assume throughout the section that rank { g(O)}  = rank 
{dh(O)} = m .  

Theorem 4.3: Suppose C is passive with a C2 storage 
function V which is positive definite. Suppose x = 0 is a 
regular point for C. Then L,h(O) is nonsingular and C has 
relativedegree{l;.*,I} at x = O .  

Proof: If L,h(O) is singular, there exists a smooth 
R"-vector-valued function U, defined in a neighborhood U 
of x = 0, such that 

L , h ( x ) U ( x )  = 0 

for all z. a 

semidefinite (see, e.g., [7, p. 2281). 

Y ( X )  = g ( x ) u ( x >  # 0 

for each X E  U.  Note also that, because of (2.3b) 

L 2 y V ( x )  = L , [ L , V ( x ) u ( x ) ]  = L , [ u T ( x ) h ( x ) ]  

= [ L , u T ( x ) ] h ( x )  + u T ( x ) L , h ( x )  

= U'( x )  h( x) 

(where uT(x) = LyuT(x) ) .  
Let @T(x) denote the flow of the vector field y, set 

f ( t )  = V(@:(O)) and consider the expansion 

1 

2 
f( t )  = f ( 0 )  + f ' " (0 )  t + f ' y  s) - t 2  

where 0 I s I t .  Since f k ) ( t )  = Lk,V(@:(O)), for k = 0, 
1, 2, we have 

V(@p:(O)) = V(0)  + L,V(O)t + L Z , V ( q q O ) ) f  1 

1 
2 

= vT ( @J (0)  1 h (@J ( 0 ) )  - t 

because V(0) = 0, L,V(O) = uT(0)h(O) = 0, and L;V(x)  
= U'( x)h(  x ) ) .  By definition dh( x)y( x) = 0, i.e., the vec- 
tor field y is tangent to the level sets of h (which are locally 
smooth submanifolds, by assumption). Therefore h( @J(O)) 
= h(O), i.e., 

v(q(0)) = 0 

for all t .  This in turn implies CPT(0) = 0, because x = 0 is 
an isolated zero of V ,  which is a contradiction, because 
Y(O> f 0. a 

In the case m = 1, the previous result yields the following 
interesting consequence. 

Corollary 4.4: Suppose C is passive with a C 2  storage 
function V which is positive definite. Suppose rn = 1. Then, 
in any neighborhood of the point x = 0 there is a point 
where L ,  h is nonzero. 

Proof: If x = 0 is a regular point, then Theorem 4.3 
applies and L,h(O) is nonzero. If x = 0 is not a regular 
point, then L ,  h is necessarily zero at x = 0 but not identi- 

n 
The following proposition provides an independent suffi- 

cient condition, stated in terms of the storage function, for a 
passive system to have relative degree { 1 ,  - , l} at x = 0. 

Proposition 4.5: Suppose c is passive with a c2 storage 
function V which is positive definite. Suppose V is nonde- 
generate at x = 0. Then L,h(O) is nonsingular and C has 
relative degree { 1, 

Proof: By contradiction, suppose there exists a vector 
U such that L,h(O)u = 0 and set y = g(0)u. It follows that 

0 = uTL,h(0)u = L t V ( 0 )  

cally zero in a neighborhood of x = 0. 

- , l} at x = 0. 

where H is the Hessian matrix of V evaluated at x = 0. The 
latter is positive definite by hypothesis, and therefore U is 

The next result characterizes the asymptotic properties of 
the zero dynamics of a passive system. 

Theorem 4.6: Suppose C is passive with a C2 storage 
function V which is positive definite. Suppose that either 
x = 0 is a point of regularity for C or that V is nondegener- 
ate. Then the zero dynamics of C locally exist at x = 0 and 
C is weakly minimum phase. 

Proof: By theorem 4.3, C has relative degree 
{ 1, * e ,  l} at x = 0 and its zero dynamics indeed locally 

necessarily the zero vector. a 
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exist at x = 0. The function W*: Z* -, R defined by 

w* = V 1 z* 

is positive definite. Moreover, its derivative along trajecto- 
ries of the zero dynamics vector field is negative semidefinite 
in a neighborhood of the origin. In fact (cf. (2.3)) 

0 2 L,V( x )  = L,*V( x )  - L,V( x)u*(  x )  = L,*V( x )  

- hT(X)U*(X) = L f , V ( x )  

because h ( x )  = 0 along any trajectory of the zero dyn- 

Theorems 4.3 and 4.6 show, in essence, that any passive 
system with a positive definite storage function, under mild 
regularity assumptions, necessarily has relative degree 
{ 1 ,  + - e ,  1) at x = 0 and is weakly minimum phase. The 
next step of our investigation is to show that exactly these 
two conditions characterize the equivalence, via state feed- 
back, to a passive system. We consider here regular static 
(i.e., memoryless) state feedback, i.e., feedback of the form 

where a ( x )  and P(x)  are smooth functions defined either 
locally near x = 0 or globally, and P(x)  is invertible for all 
x .  The necessity of these conditions follows immediately 
from the fact that both relative degree and zero dynamics are 
invariant under feedback [4], [14]. The sufficiency is less 
straightforward (but still easy) and is illustrated in the proof 
of the following statement. 

Theorem 4.7: Suppose x = 0 is a regular point for C. 
Then C is locally feedback equivalent to a passive system 
with a C2 storage function V ,  which is positive definite, if 
and only if C has relative degree { 1, * * - , 1) at x = 0 and is 
weakly minimum phase. 

Proof: Choosing as new state variables y = h ( x )  and 
any complementary set 7 = $ ( x ) ,  the system is represented 
by equations of the form 

amics . a 

U = a ( x )  + p ( x ) u  

ri = C(% Y )  + d ( 7 ,  Y ) U  

j t  = b(rl, U) + a ( v ,  Y ) U  

where a(?, y) is nonsingular for all (7, y) near (0,O). Then, 
imposing the feedback law 

U = a(% y,-'[ Y )  + U ]  
changes into a system described by equations of the form 

ri = e ( %  U) + Y ( 7 ,  r)u 
y = U .  

After the additional change of variables 

z = rl - Y(77,O)Y 

the system becomes 

i = f * ( z )  + P ( z ,  y)y + c q j ( z ,  y ) y j ) u  (4.4a) 

(4.4b) 

where p ( z ,  y) and the q i ( z ,  y) 's  are suitable matrices of 

i =  1 i m  
j = U  

appropriate dimensions. Recall now that if C is weakly 
minimum phase, there exists a C 2  positive definite function 
W*(z ) ,  with W*(O) = 0, such that L,,W*(z) s 0 for each 
z # 0. Define the matrix 

and note that, by construction, M(0, y )  = 0 (because z = 0 
is a minimum of W *( 2)). Therefore the feedback law 

is well defined in a neighborhood of (0,O). 

has a form 
Consider now the closed-loop system (4.4)-(4.3, which 

together with the positive definite and C2 function 

1 
V ( 2 ,  U) = W*(Z)  + $Y. 

A straightforward calculation shows that 

LjV(  z ,  Y )  + LEV( z ,  Y )  w 

= V ( z ,  y) = Lf,W*(Z) 

+YT[ ( ~ p ( z , y ) W * ( z ) ) T  + M(z9 Y b ]  

+yTu = L,,W*( 2 )  + yTw. 

Therefore 

L J V ( Z J )  = L y * W * ( z )  so  ( L g V ( z , y ) ) T = y .  

This, in view of Proposition 2.12, completes the proof. A 
Remark 4.8: In a linear system 

X = A X  + BU 
y = c x  

with rank { B }  = m, x = 0 is always a regular point and a 
normal form-whenever it exists-is globally defined. Thus, 
from the previous result we immediately obtain that any 
linear system is feedback equivalent to a passive linear 
system with a storage function V ( x )  = xTQx, which is 
positive definite, if and only if CB is nonsingular and the 
system is weakly minimum phase. Since any controllable 
linear system is passive, with a storage function V ( X )  = 
xTQx which is positive definite, if and only if it is positive 
real (see, e.g., [27]), we can also deduce from Theorem 4.7 
the result, recently proven by Saberi, Kokotovic, and SUSS- 
mann [24], that any controllable linear system is feedback 
equivalent to a positive real system if and only if CB is 
nonsingular and the system is weakly minimum phase. A 

Remark 4.9: Note that the proof of the previous theorem 
greatly simplifies whenever a local normal form of the type 
(4.1) exists (which is the case whenever the distribution 
spanned by the vector fields g , ( x ) ,  . * , g , (x )  is involutive). 
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In fact, in the normal form (4.1) there is no direct influence 
of the input on the variable z .  As a consequence, (4.4a) 
reduces to 

i = f * ( z )  + P ( G  Y ) Y  

and the feedback law (4.5) reduces to 

U = - (Lpc , ,  y)w*( z))T + w. n 
A global version of Theorem 4.5 indeed exists if the 

system in question has a global form. Using the assumptions 
Hl-H3 we have, in fact, the following result where, for 
more generality, also the case of global feedback equivalence 
to a strictly passive system is considered. 

Theorem 4.10: Assume Hl-H3. Then C is globally feed- 
back equivalent to a passive (respectively, strictly passive) 
system with a C2 storage function V ,  which is positive 
definite, if and only if C is globally weakly minimum phase 
(respectively, globally minimum phase). 

So far, we have investigated the feedback equivalence of a 
given system to a passive system with positive definite stor- 
age function V .  In the next statement, we analyze the particu- 
lar configuration in which the system in question can be 
expressed in the form 

S = f o ( { )  + f & - > Y ) Y  (4.6a) 

x = f ( x )  + g ( x ) u  (4.6b) 

Y = h ( x )  ( 4 . 6 ~ )  

which we assume to be globally valid (of course, correspond- 
ing local results also hold). The analysis of configurations of 
this type was considered in a number of previous papers (see, 
e.g., [3], [17], [24]). In view of the particular structure of 
(4.6), we will call 

x = f ( x )  + g ( x ) u  

Y = h ( x )  

the driving system, while 

3: = f o ( 0  + f l k  Y ) Y  

will be called the driven system. 
We now examine conditions under which this type of 

system is feedback equivalent to a passive system; in the next 
section we will use these conditions, together with the results 
established in Section 111, to show how systems of this type 
can be globally asymptotically stabilized via smooth feed- 
back. 

First, note that if the point ({, x )  = (0,O) were a point of 
regularity for the full system (4.6), then its local feedback 
equivalence to a passive system would be of course deter- 
mined by the conditions described in Theorem 4.7, namely 
the properties of having relative degree { 1; * ,  1) at ( r ,  x )  
= (0,O) and of being weakly minimum phase. Note also 
that, in view of the special structure of (4.6) the point 
(C, x )  = (0,O) is a point of regularity for the full system if 
and only if the point x = 0 is a point of regularity for the 
driving system and that, in particular, the full system has 
relative degree { 1, * - e ,  1) at ( r ,  x )  = (0,O) if and only if the 

driving system has relative degree { 1; * e ,  l }  at x = 0. 
Finally, note that, in this case (that is, if L,  h(0) is nonsingu- 
lar) the zero dynamics of the full system have the form 

3: = fO(S) (4.7a) 

2 =f*(z) (4.7b) 

where f * ( z )  is exactly the zero dynamics vector field of the 
driving system. Thus, the full system is weakly minimum 
phase if and only if the driving system is, and there exists a 
positive definite function U({), locally defined near { = 0 
with U ( { )  = 0, such that Lf0U({)  I 0 for all {. Similar 
considerations can be repeated in a global setting, and we can 
therefore deduce, as an immediate application of our previ- 
ous discussion, the following result. 

CoroNary 4.11: Suppose the triplet {.f, g ,  h}  satisfies the 
assumptions H1 -H3 (or, what is the same, suppose a normal 
form of the type (4.1) globally exists for the driving system 
of (4.6)). Then 

i) the full system (4.6) is feedback equivalent to a passive 
system with a C2 storage function V ,  which is positive 
definite, if and only if the driving system is weakly minimum 
phase and there exists a C2 positive definite function U({), 
defined for all { = 0 with U({)  = 0, such that LfoU({)  I 0 
for all {; 

ii) the full system (4.6) is feedback equivalent to a strictly 
passive system with a C2 storage function V ,  which is 
positive definite, if and only if the driving system is globally 
minimum phase and 

3: = f 0 W  

is globally asymptotically stable. 
Remark 4.12: In the paper [17], the problem of stabiliz- 

ing the configuration (4.6) when the driving system is linear 
and controllable was considered, following earlier work on 
stabilization of minimum phase nonlinear systems in normal 
form [3]. To this end, the auxiliary problem of characterizing 
those linear systems which can be rendered positive real via 
state feedback was posed. As we pointed out in Remark 4.6, 
the solution to this problem can be deduced from the special- 
ization of our results on feedback equivalence to a passive 
system for nonlinear systems; namely, the system must have 
an invertible “high-frequency gain” matrix CB and must be 
weakly minimum phase. In view of this, a system 

3: =fo(S) + f i ( L  Y ) Y  
X = A X + B U  
y = c x  

in which the unforced driven system is globally asymptoti- 
cally stable and the driving system is feedback equivalent to a 
positive-real system, is indeed a globally weakly minimum 
phase system having relative degree { 1, * e ,  l}  (as can be 
seen from the global decomposition (4.7) of its zero dynam- 
ics). In view of Corollary 4.11 the whole system is itself 
feedback equivalent to a passive system having a positive 
definite storage function and stabilization results such as 

n 
In the next statement, we show how feedback equivalence 

those outlined in Section I11 apply (see Section V). 
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of (4.6) to a passive system can be determined without 
assuming the existence of a normal form for the driving 
system. map h ( x )  such that 

Proposition 4.14: A necessary and sufficient condition for 
the existence of a smooth feedback law a ( x )  and an output 

x = f ( x )  + g ( x ) a ( x )  + g ( +  
Theorem 4.13: Consider the system (4.6). Suppose 

t = f O ( l )  (4.8) Y = h ( x )  
is globally asymptotically stable and { f, g ,  h} is (strictly) 
passive with a C', r 2 1, storage function V ,  which is 
positive definite. The system is feedback equivalent to a 
(strictly) passive system with a C' storage function which is 
positive definite. 

Proof: Let U({)  be a C' Lyapunov function for (4.8) 
and consider 

w(r, x )  = U ( { )  + V ( x ) .  

is strictly passive, with a positive definite and proper storage 
function, is that (4.9) be globally asymptotically stabilizable 
by smooth state feedback. 

Proof: Suppose (4.9) is globally asymptotically stabi- 
lizable, via U = a ( x ) ,  and let V be a positive definite 
proper Lyapunov function for the corresponding closed-loop 
system. Setting hT( x )  = L ,  V( x )  yields a strictly passive 
system by Proposition 2.12. n 

The full system (4.6) has the form V. GLOBAL STABILIZATION OF WEAKLY MINIMUM 
PHASE SYSTEMS 

In this section, we apply some of the results illustrated so 
far to the problem of deriving globally asymptotically stabi- 
lizing feedback laws for certain classes of nonlinear systems. 
In particular, we give a fairly general theorem which, as we 
describe in the following, incorporates and extends a number 
of interesting results which recently appeared in the litera- 
ture. 

= F ( t )  + G ( t ) u  
Y = H ( t )  

with t = (r, X )  

F ( t )  = col(fo(i-) + f l ( L  h ( x ) ) h ( x ) , f ( x ) )  

G ( t )  = COl(0, g ( x ) )  

H ( t )  = h ( x ) .  Theorem 5.1: Consider a system C described by 
By (2.3b) 

LGW(t )  = L g V ( x )  = hT(X) = H T ( [ )  
s: =fo(i-) + f l k  Y ) Y  (5.la) 

x = f ( x )  + g ( x ) u  ( 5 .  lb) 

( 5 .  IC) 

Choosing 

a T ( t )  = -Lf , (I ,h(x))U(r)  

LF+GuWW = Lfo ( I )U(r )  + L f W  5 0 

yields, by (2.3a) 

with a strict inequality (for all nonzero 4 )  if the driving 
system is strictly passive. Therefore, by Proposition 2.12, we 
conclude that the full system is rendered passive by the 
feedback 

A 
We conclude this section with a solution to a feedback 

equivalence problem of a different type: given a control 
system 

U = CY([) + U. 

is globally asymptotically stable. Suppose { f ,  g ,  h} is pas- 
sive with a C', r > 1, storage function V ,  which is positive 
definite and proper, and suppose S = { 0) with S defined as 
in Section 111. Then C is globally asymptotically stabilizable 
by smooth state feedback. 

Proof: By Theorem 4.13, C is feedback equivalent to a 
system 2 which is passive with a positive definite and proper 
storage function. In view ,Of Theorem 3.2, the result will be 
proven if we show that E is zero-state detectable. To thb 
end, suppose ({((t), x ( t ) )  is any unforced trajectory of C 
yielding y ( t )  = 0 for all t 2 0. Since { ( t )  satisfies (5.2), 
which is globally asymptotically stable by assumption, {( t )  
+ 0 as t -+ 00. On the other hand, x( t )  satisfies an equation 
of the form 

k = f ( 4  + g ( x ) a ( r ( t ) ,  x )  

x = f ( x )  + g ( x ) u  (4.9) 
when does there exist a smooth state feedback law CY( x )  and 
an output map h ( x )  such that the resulting closed-loop 
input-output system is strictly passive, with a positive defi- 
nite, proper storage function? Clearly, a necessary condition 
is that (4.9) be globally asymptotically stabilizable. The 
following proposition shows that actually this condition is 
also sufficient. 

where a(x ,  {) is a feedback function which has the form 

aT(L 4 = - L f , t r . h ( x ) P ( r )  

with U a Lyapunov function for (5.2). Note that, since { = 0 
is a minimum for U, a({, x )  vanishes at { = 0. As in the 
proof of Proposition 3.4, let y o  denote the w-limit set of 
({(t), X ( ( t ) ) .  Since {((t) -+ 0 as t + 00, any point of y o  iS a 
pair of the form (0, x ) .  Let (0, X) be one of these points and 
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let (0, R(t)) denote the corresponding trajectory. Clearly, 
X( t )  satisfies 

i ( t )  = f ( X ( t ) ) ,  LgV( . ' ( t ) )  = 0 

and this together with the fact that V ( E ( t ) )  is constant, 
yields, as in the proof of Proposition 3.4, E(t) E S .  Thus, C 
is zero-state detectable. a 

As an immediate application of this result we obtain, the 
following. 

Corollary 5.2: Consider a system C described by 

s = f o ( r )  + f l (L  Y ) Y  

j t  =f(L Y )  + g(i-7 Y ) U .  

s = f O ( i - )  

Suppose g ( r ,  y )  is invertible for all r ,  y .  Suppose 

is globally asymptotically stable. Then C is globally asymp- 
totically stabilizable by smooth state feedback. 

Proof: The feedback law 

U =  [ g ( L Y ) ] - l [ - f ( L Y )  + U ]  

changes C into a system satisfying the assumptions of Theo- 
rem 5.1.  In fact, the driving system thus obtained has the 
form 

j= lJ  

and is indeed passive with positive definite storage function 
a 

The system considered in this statement is just a globally 
minimum phase system with relative degree { 1 ,  * , l }  rep- 
resented in its global normal form. Thus, Corollary 5.2 
coincides with [3, Theorem 2.11. One of our next applica- 
tions consists in showing that the minimum phase assumption 
of [3, Theorem 2.11 can in fact be weakened, in the sense 
that also weakly minimum phase systems may be globally 
asymptotically stabilized by smooth feedback. We will prove 
this result after having shown how Theorem 5.1 specializes 
in case the driving system has a globally defined normal 
form. 

From Theorem 4.7 we known that a system having a 
global normal form is feedback equivalent to a passive sys- 
tem if and only if it is globally weakly minimum phase. 
Thus, in the light of Theorem 5.1 if the driving system has a 
global normal form it is convenient, for the purpose of 
asymptotic feedback stabilization of the full system (5. l), to 
weaken the passivity assumption by only requiring the weak 
minimum phase property. Proceeding in this way, one may 
obtain an alternative version of Theorem 5.1, with a different 
set of assumptions about the driving system. Of course, in 
addition to the existence of a global normal form and the 
property of being minimum phase, one should consider also 
an assumption which replaces the condition S = { 0 ) .  

V(  y )  = yTy  and S = { 0 ) .  

To this end, recall that if a system 

i = f * ( z )  + P ( Z , Y ) Y  (5.3a) 

9 = b ( z ,  U )  + a ( z ,  U ) .  (5.3b) 
is globally weakly minimum phase, there exists a C', r 2 1 ,  

function W*(z ) ,  defined for all z with W*(O) = 0, which is 
positive definite and proper, and such that L,, W( z )  c: 0 for 
all z. Set 

g*(z> = P ( Z A  (5.4a) 

and define 

D* = span {adF,gT, 0 I k 5 n - m - 1 , l  I i I m }  
(5.4b) 

S* = { Z E Z * : L I ; * L , W * ( Z )  = 0 ,  forall T E D * ,  

all0 5 m < r }  . (5.42) 

In the following statement, which expresses the form to 
which Theorem 5.1 reduces in case the driving system has a 
globally defined normal form, we show that the condition 
S* = ( 0 )  is, in fact, the condition needed, in addition to the 
global asymptotic stability of (5.2) and the globally weakly 
minimum phase property of the driving system, to ensure 
global asymptotic stabilizability . 

Theorem 5.3: Consider a system C described by 

3: = f o ( 0  +flu-, Y ) Y  ( 5 . 5 )  
i = f * ( z )  +P(Z, U)U (5.6a) 

it = b ( z ,  Y )  + a ( z ,  Y ) U .  (5.6b) 

Suppose the unforced dynamics of the driven system (5.5) is 
globally asymptotically stable and suppose the driving system 
(5.6) has relative degree { 1;. e ,  l }  at each point and is 
globally weakly minimum phase. Suppose S* = ( 0 )  (where 
S* is defined as in (5.4)). Then C is globally asymptotically 
stabilizable by smooth state feedback. 

Proof: The proof is similar to that of Theorem 5, l .  We 
know from Section IV that the feedback law 

U = a - ' ( z ,  Y ) [ - b ( Z ,  Y )  - L f l ( ~ , u ) U ( r )  

- L p ( z , Y Y * ( z )  + U 1  

where U ( r )  is a Lyapunov function for the unforced dynam- 
ics of (5.5) and W*(z )  a Lyapunov functicln for the zero 
dynamics of (5.6), changes C into a system C 

s = f O ( . r )  + f l G - 9  Y ) Y  

i = f * ( z )  + P ( Z , Y ) Y  

f I (r ,Y,U(r)  - LP(Z,Y)W*(Z) + " y =  - L  

which is passive with a positive definite and-proper storage 
function. So, we only need to show that C is zero-state 
detectable. Let (c ( t ) ,  z ( t ) ,  y ( t ) )  be any unforced trajectory 
yielding y(  t )  = 0 and let yo denote its w-limit set. As in the 
proof of Theorem 5.1, it is immediate to see that any initial 
condition in y o  produces a trajectory which has the form 
(0, Z ( t ) ,  0), with z ( t )  satisfying 

2 ( t )  = f * ( z ( t ) )  

0 = Lp(z,o)W*( z (  t ) )  = L,,W*( z (  t ) )  . 
Thus, since W*(Z(t)))  is-constant, we can deduce that 
Z( t )  E S* and conclude that C is zero-state detectable. A 
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Taking the driven system to be trivial in Theorem 5.3, we 
obtain the following corollary, an extension of [3, Theorem 
2.13, which describes conditions under which a globally 
weakly minimum phase system can be globally asymptoti- 
cally stabilized by smooth feedback. 

Corollary 5.4: Suppose the system Z described by 

2 = f * ( z )  +P(Z, Y b  

Y = b ( z ,  Y )  + a ( z ,  Y ) U  

has relative degree { 1,. , 1) at each point and is globally 
weakly minimum phase. Suppose S* = ( 0 ) .  Then Z is 
globally asymptotically stabilizable by smooth state feedback. 

Corollary 5.4 deals with the case in which the driven 
system is trivial. Another situation of interest is the one in 
which the driving system is linear, a special case of which 
was analyzed by Byrnes-Isidori in the original proof [3] of 
Corollary 5.2. The analysis of [3] was generalized, in a 
rather ingenious way, by Kokotovic and Sussmann, who 
proved that feedback stabilization is possible if the linear 
driving system can be rendered positive real by feedback 
[17]. As we pointed out in Remark 4.8, the characterization 
we obtained for feedback equivalence of a nonlinear system 
to a passive system proves, in the case of linear systems, the 
equivalence (also demonstrated in [24]) of the following 
conditions: 

i) CB is nonsingular and the system is weakly minimum 
phase; 

ii) the system is feedback equivalent to a passive system, 
with positive definite storage function V( x )  = xTQx; 

iii) the system is feedback equivalent to a positive real 
system. 

Accordingly one deduces, as a corollary of Theorem 5.3, 
the following result originally proven in [17] and [24]. 

Corollary 5.5: Consider a system C described by 

i = f o ( O  + f l ( L Y ) Y  
X = A X  + BU 
y = cx. 

Suppose the unforced dynamics of the driven system is 
globally asymptotically stable. Suppose ( A ,  E )  is control- 
lable and suppose the driving system { A ,  B ,  C }  satisfies 
either one of the three equivalent conditions i), ii), or iii). 
Then C is globally asymptotically stabilizable by smooth 
state feedback. 

Proof: According to Theorem 5.3 we need only to 
check the condition S* = {0}, but this is a straightforward 
consequence of the controllability assumption and of the 

Remark 5.6: Since the original submission of this paper, 
whose results were announced also in [5], we became aware 
of the work by Ortega on stabilizability of cascade connected 
nonlinear systems [ 191. Specifically, Ortega considers the 
interconnection (5.1) with a strictly passive driving system 
and proves that if (5.2) is globally asymptotically stable, 
feedback stabilization of (5.1) is possible. Strict passivity 
implies (hypotheses H2 and H3 of [19]) the existence of a C2 
function V( x )  such that h( x )  = L,  V(  x )  and L,V( x )  is 

definition of S*. a 

__ 
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negative definite. Thus, in particular, L f V ( x )  = 0 only at 
x = 0 and the set S defined in Section 111 necessarily satis- 
fies 

s =  ( 0 ) .  

Theorem 5.1. a 
Therefore the stabilization result of [19] can be deduced from 

VI. CONCLUSIONS 

In this paper, we have investigated the conditions under 
which a nonlinear system can be rendered passive via smooth 
state feedback. As in the case of linear systems, it turns out 
that this is possible if and only if the system in question has 
relative degree 1 and is weakly minimum phase. Passive 
systems which are “detectable” can be globally asymptoti- 
cally stabilized by pure gain output feedback. Moreover, the 
detectability conditions needed to this purpose can be given a 
form which involves repeated Lie brackets of vector fields 
characterizing the input-state differential equation, reminis- 
cent of the well-known rank criteria used for accessibility and 
controllability. As a consequence, “controllable” weakly 
minimum phase nonlinear systems having relative degree 1 
can be globally asymptotically stabilized by smooth state 
feedback. This result incorporates and extends a number of 
stabilization schemes recently proposed in the literature for 
global asymptotic stabilization of certain classes of nonlinear 
systems. 
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