
The Pendubot

Leonardo Lanari and Giuseppe Oriolo

The Pendubot is a planar robot moving in the vertical plane; it has two rotational joints and a single actuator at
the first joint (shoulder). Since it has more degrees of freedom (two) than control inputs (one), it is an instance
of underactuated system. The figure shows a schematic diagram of the Pendubot.
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1 Mathematical model

The generalized coordinates vector is q = (q1, q2), respectively the first joint angle with respect to the downward
vertical axis and the second joint angle with respect to the first link axis (relative joint coordinates). For the
i-th link, denote by mi, `i, di and Iizz respectively its mass, its length, the distance from the i − th joint axis
to its center of mass, and the link inertia moment around the z axis passing through the center of mass. Also,
denote by u1 the torque input at the shoulder joint. Following the Euler-Lagrange approach, the nonlinear
dynamic equations of the Pendubot are obtained in the classical form

M(q)q̈ + F q̇ + c(q, q̇) + e(q) = u (1)

where u = (u1, 0), while the inertia matrix M(q), the viscous friction matrix F , the vector c(q, q̇) of Coriolis
and centrifugal forces and the vector e(q) of gravitational forces and are given as

M(q) =

(
a1 + 2a2c2 a3 + a2c2
a3 + a2c2 a3

)
F =

(
f1 0
0 f2

)
e(q) =

(
a4s1 + a5s12

a5s12

)
c(q, q̇) =

(
a2s2 q̇2(q̇2 + 2q̇1)

a2s2 q̇
2
1

)
In these expressions, we have set si = sin qi, ci = cos qi, sij = sin(qi + qj), and

a1 = I1zz +m1d
2
1 + I2zz +m2(`21 + d22)

a2 = m2 `1d2

a3 = I2zz +m2d
2
2

a4 = g (m1d1 +m2`1)

a5 = gm2d2

where g is the gravity acceleration. All these coefficients, as well as f1 and f2, are positive.

See [1] for a general treatment of robot dynamics and a detailed derivation of the dynamic equations of a planar

robot with two rotational joints; the above equations are simply obtained by setting u2 = 0 (no actuator at the elbow

joint) in those.
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2 Control properties

We recall now some basic properties of the Pendubot from a control viewpoint.

2.1 Equilibrium configurations

The forced equilibrium configurations qe of the Pendubot are identified by setting q̇ = q̈ = 0 in the dynamic
model and solving e(qe) = ue, with ue = (u1e, 0) the constant equilibrium torque. We obtain

qe =

(
q1e
q2e

)
=

(
q1e

kπ − q1e

)
k = 0, 1

with u1e = a4 sin q1e. For an arbitrary value of q1e, there are thus two equilibrium configurations, as shown in
the next figure.
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Among the infinite equilibrium configurations, four are unforced (i.e., ue = 0). They are clearly the up-up
configuration quu = (π, 0), the up-down configuration qud = (π, π), the down-down configuration qdd = (0, 0)
and the down-up configuration qdu = (0, π).

Let us now study the stability properties of the generic equilibrium point (qe, q̇e = 0), with equilibrium
torque ue, using the direct method of Lyapunov. To this end, consider the following function

V (q, q̇) =
1

2
q̇TM(q)q̇ + U(q)− U(qe) + (qe − q)T e(qe)

where U(q) is the potential energy associated to the gravitational field (remember that e(q) = ∂U/∂q). Since
the first term is clearly positive definite with respect to q̇, a sufficient condition for V to be positive definite is
that the Hessian of the remaining part, which reduces to ∂e/∂q, is positive definite around qe. We have

H =
∂e(q)

∂q
=

(
a4c1 + a5c12 a5c12

a5c12 a5c12

)
so that necessary and sufficient conditions for positive definitess of H (Sylvester’s criterion) are

a4c1 + a5c12 > 0 and detH = a4a5c1c12 > 0

around qe. These are verified if and only if c1 > 0 and c12 > 0. Hence, V is positive definite at (qe, q̇e = 0)
in the region Q = {q : q1 ∈ (−π/2, π/2), q1 + q2 ∈ (−π/2, π/2)}; it is therefore a valid candidate Lyapunov
function for equilibrium configurations that are strictly contained in such region. These are points of the form
(q1e,−q1e), with q1e ∈ (−π/2, π/2) (first link pointing downwards, second link pointing down along the vertical);
in particular, the only unforced equilibrium included in this analysis is qdd.

The derivative of V along system trajectories is computed as

V̇ = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + eT (q)q̇ − eT (qe)q̇ = −q̇TF q̇ ≤ 0
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having used the robot dynamic model (1), with u = ue = e(qe), and its properties (namely, the skew-symmetry
of Ṁ(q) − 2S(q, q̇), where c(q, q̇) = S(q, q̇)q̇, and the positive definiteness of F ). To compute the maximally
invariant set I contained in P = {(q, q̇) : V̇ = 0} = {(q, q̇) : q̇ = 0}, write the dynamics in P

M(q)q̈ + e(q)− e(qe) = 0

I is then defined by e(q) = e(qe), which implies q = qe in Q. Wrapping up, La Salle’s theorem allows to
conclude that forced equilibria with first link pointing downwards and second link pointing down along the
vertical are asymptotically stable if F is positive definite, a condition also known as complete damping. For
each equilibrium, the domain of attraction can be also estimated using the same theorem: in particular, it is
easy to verify that zero-velocity points contained in Q belong to the domain of attraction of any equilibrium in
Q.

It is also possible to show that equilibrium points outsideQ (i.e., those with first link pointing downwards and
second link pointing up along the vertical, as well as those with first link pointing upwards) are unstable. This
may be proven either using instability criteria (e.g. Chetaev’s criterion) or the indirect method of Lyapunov,
based on the approximate linearization at the equilibrium point (see Section 2.2).

See [2, 3] for general results on Lyapunov stability, including La Salle’s theorem and Chetaev’s criterion; see also [4].

2.2 Approximate linearization at equilibria

An elementary approach to the development of controllers for the Pendubot is to derive its approximate lin-
earization at equilibrium points. This will also be useful for gaining some insight into the control properties
of the system. To obtain the linear approximate system at a given equilibrium (qe, q̇e = 0), with equilibrium
torque ue, one can perform first-order Taylor expansion either on the state-space form corresponding to the
dynamic equation (1), or directly on eq. (1) itself. This second approach leads to the following linear equations

M(qe)q̈ + F q̇ +
∂e(q)

∂q

∣∣∣
q=qe

(q − qe) = u− ue with
∂e(q)

∂q

∣∣∣
q=qe

=

(
a4c1 + a5c12 a5c12

a5c12 a5c12

)
q=qe

Defining the state and input vectors as

x̃ =

(
q̃

˙̃q

)
=

(
q − qe
q̇

)
ũ1 = u1 − u1e

and letting Me = M(qe), He = ∂e(q)
∂q

∣∣∣
q=qe

, the above second-order linear dynamics is rewritten as

Me
¨̃q + F ˙̃q +Heq̃ =

(
ũ1
0

)
(2)

The linear approximation at (qe, q̇e = 0) in state-space form is then

˙̃x = Ax̃+Bũ1 =

(
0 I

−M−1e He −M−1e F

)
x̃+

(
0

M−1e n

)
ũ1 (3)

with n = (1 0)T .
The above linear approximation (either in second-order or in state-space form) can be used to analyze the

stability of the original nonlinear system (1) by means of the indirect method of Lyapunov. In particular, we
can take advantage of special results for linear mechanical systems whose dynamics have the form (2). If the
system is completely damped, asymptotic stability is guaranteed if He is symmetric and positive definite. Note
that this is a slightly less stringent sufficient condition than the one obtained by the direct method of Lyapunov
in Sect. 2.1, which required H to be positive definite around qe. In practice, however, the conclusion is exactly
the same, because the only equilibrium configuration for which He is positive definite are those contained in Q.

More interesting is the instability analysis. This relies on a result known as Kelvin-Tait-Chetaev theorem,
which states that a sufficient condition for instability of the completely damped dynamics (2) is statical insta-
bility, i.e., the fact that He has at least one negative real eigenvalue. One may easily check that this is true
for all equilibrium configurations outside Q, with the exception of (q1e = ±π/2, q2e = −q1e), where a typical
critical case is met.
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If F = 0 in eq. 2 (conservative system), asymptotic stability is out of the question. A necessary and
sufficient condition for simple stability is that He is symmetric and definite positive. In our case, this means
that equilibrium configurations with the first link pointing downwards and the second link pointing down along
the vertical (e.g., qdd) are stable, while all the others are unstable.

The controllability matrix of the linear approximation is (we set F = 0 for simplicity, but the result is
general):

P =
(
B AB A2B A3B

)
= M−1e

(
0 n 0 −HeM

−1
e n

n 0 −HeM
−1
e n 0

)
which is singular when the vectors n and HeM

−1
e n are linearly dependent. One may easily verify that this

happens if and only if q2 = ±π/2. Only four equilibrium configurations satisfy this condition, i.e., (q1e =
±π/2, q2e = ±π/2) (see an example in the next figure). In any other equilibrium, the linear approximation
is controllable; therefore, the nonlinear system can be locally exponentially stabilized at the equilibrium by
the linear control law ũ1 = Kx̃, with an appropriate choice of K. Note that the overall control torque is
u1 = u1e +Kx̃.

linearly inaccessible

direction

Physically, the loss of linear controllability at equilibria such as the one shown in the figure is due to the im-
possibility of generating instantaneous accelerations of the second link in the horizontal direction. Equivalently,
a Kalman decomposition would immediately show that the second link approximate dynamics is uncontrollable.
It should be noted that even if the linear approximation is not controllable, the original nonlinear system may
still be controllable, and hence stabilizable; however, exponential stability cannot be achieved in any case.

Another structural property of interest is observability with respect to a chosen output. In particular, while
joint positions are usually provided by encoders, velocity measures are seldom available in actual manipulators.
In this case, the output is y = q̃ = Cx̃, with C = (I 0). It is immediate to verify that the observability matrix
is full rank, and therefore the system is completely observable from q̃.

See, e.g., [3] for the linear approximation procedure and related controllability results; see also [5] for a similar

analysis applied to a simple pendulum. Stability and instability results for linear mechanical systems, including Kelvin-

Tait-Chetaev theorem, can be found in [6]. For a more detailed analysis of the connection between linear controllability

and stabilizability, the reader may consult [7].

2.3 Partial feedback linearization

Another general approach to the control of nonlinear systems is a technique called feedback linearization: basi-
cally, under certain conditions, there exists a state-dependent change of coordinates and of inputs such that the
transformed closed-loop system is exactly linear. One typical application of this method leads to the celebrated
computed torque control for fully actuated robots. When the conditions for exact input-state linearization are
not met, as for underactuated robots, one may try to achieve a less stringent objective, i.e., input-output lin-
earization. Depending on the chosen output y, different control schemes are obtained. When y is part of the
state vector, feedback linearization is also called partial.

2.3.1 Feedback linearization w.r.t. the first joint

Computing q̈2 from the second equation of (1) and plugging it into the first one we obtain(
M11 −

M2
12

M22

)
q̈1 + c1(q, q̇) + e1(q)− M12

M22
(c2(q, q̇) + e2(q)) = u1 (4)
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where Mij is the generic element of the inertia matrix M(q).
Assign to the control input u1 the following structure

u1 =

(
M11 −

M2
12

M22

)
α1 + c1(q, q̇) + e1(q)− M12

M22
(c2(q, q̇) + e2(q)) (5)

where α1 is an auxiliary control input to be defined. Substituting u1 in eq. (4) gives(
M11 −

M2
12

M22

)
q̈1 =

(
M11 −

M2
12

M22

)
α1

Since the inertia matrix M is nonsingular, we have
(
M11 −M2

12/M22

)
= detM/M22 6= 0, and thus the closed-

loop system becomes

q̈1 = α1

q̈2 = − 1

M22
(c2(q, q̇) + e2(q) +M12α)

The dynamics of q1 under the linearizing control (5) reduces to a double integrator driven by the auxiliary
input α1. Since a linear dynamics has been achieved for the first joint through an appropriate choice of the first
joint torque, this is an example of the so-called collocated feedback linearization. There is, however, an internal
nonlinear dynamics which describes the evolution of q2.

In the above feedback linearization procedure, we have exploited the second-order structure of the dynamic
model (1). A more general technique is to differentiate the chosen output (in this case, q1) until the control
input appears in a nonsingular way; the linearizing control is then chosen so as to enforce a linear input-output
behavior.

2.3.2 Feedback linearization w.r.t. the second joint

Another possibility is to linearize the dynamics of q2. Proceeding similarly to the previous case, we find that
the following choice of the control input u1

u1 =

(
M12 −

M11M22

M12

)
α2 + c1(q, q̇) + e1(q)− M11

M12
(c2(q, q̇) + e2(q)) (6)

leads to the closed-loop system

q̈1 = − 1

M12
(c2(q, q̇) + e2(q) +M22α2)

q̈2 = α2

Since the dynamics of q2 is now linear, this is called non-collocated feedback linearization; the residual nonlinear
dynamics concerns in this case q1.

Note however that the linearizing control input (6) is defined if and only if M12 = a3 + a2c2 6= 0 for all
values of q2. This condition, called strong inertial coupling, is certainly satisfied if

a3 > a2 i.e. I2zz > m2d2(`1 − d2)

See [8] for a detailed treatment of feedback linearization of nonlinear systems and the related conditions. An intuitive

introduction to the subject can be found in [5]. A discussion of partial feedback linearization for general underactuated

systems is given in [9].

3 Control problems

We now present the fundamental control problems that can be addressed on the Pendubot; each of them
corresponds to a particular control experiment of the REAL Lab, which can be performed either on the virtual
or on the physical version of the system.
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3.1 Balancing control

The objective of the first control problem is to balance the Pendubot around an equilibrium state (qe, q̇e = 0).
To this end, one may use the linear approximation (3) at qe to design a stabilizing control law, which will
clearly have local validity for the original nonlinear system (i.e., the control law will be effective only for initial
conditions contained in a certain basin of attraction). Below, we consider the various viable options depending
on the sensory equipment. See Section 4 for a detailed description of the available sensors in the REAL Lab
Pendubot.

3.1.1 Stabilization via state feedback

If both joint positions and velocities are measured, it is possible to stabilize system (3) via state feedback at
any equilibrium point, with the exception of (q1e = ±π/2, q2e = ±π/2) where linear controllability is lost. This
is obtaining by letting ũ1 = Kx̃, where K is a 1×4 matrix such that A+BK is Hurwitz (i.e., all its eigenvalues
have negative real part). By partitioning K as (Kp Kd), with Kp,Kd : 1× 2, the resulting control torque is

u1 = u1e + ũ1 = u1e +Kx̃ = u1e +Kp(q − qe) +Kdq̇

which resembles a proportional-derivative (PD) controller with the addition of constant gravity compensation,
i.e., the gravitational torque needed to keep the Pendubot at qe; note, however, that this control law is essentially
different, because all the action takes place on the first joint. Kp and Kd must be such that the eigenvalues of

A+BK =

(
0 I

M−1e (nKp −He) M−1e (nKd − F )

)
have negative real part. In particular, it is possible to show that a pure PD at the first joint (i.e., u1 =
u1e + kp(q1 − q1e) + kdq̇1) is not sufficient to stabilize the Pendubot at the up-up configuration quu, even when
the system is completely damped.

One way to compute K is to use Ackermann’s formula, i.e.,

K = −γp∗(A)

where γ is the last row of the inverse controllability matrix P−1 and p∗(A) is the matrix polynomial obtained
by substituting A for λ in the desired characteristic polynomial p∗(λ). Possible choices of the closed-loop
eigenvalues are given by canonical placements, such as Butterworth or Bessel configurations.

Another possibility is to compute K in such a way that the quadratic cost functional

J =

∫ ∞
0

(
x̃TQx̃+ ũT1 Rũ1

)
dt

is minimized. The corresponding control law ũ1 = Kx̃, called Linear Quadratic Regulator (LQR), achieves a
trade-off between transient performance and energy consumption. This strategy may be particularly convenient
in the Pendubot case (as in all nonlinear systems for which a controller is designed on the basis of the linear
approximation), because by weighting appropriately the state error x̃ in J one may force the system trajectories
to stay close to the set-point qe, and thus inside the basin of attraction of the linear controller.

3.1.2 Stabilization via output feedback

As already mentioned, velocity variables are rarely accessible in actual manipulators. In this case, a feedback
stabilization scheme based on the available output must be used. In linear systems, output feedback stabilization
can be obtained by two basic approaches: (i) eigenvalue assignment based on the separation principle; (ii)
compensator design using transfer functions.

The first method relies on the use of an asymptotic observer to obtain an estimate of the state vector x̃.
For example, such a device can always be built if y = q̃, as the corresponding linearized system is completely
observable (see Section 2.2); in particular, a reduced-order observer may be designed which provides only the
estimate of ˙̃q (q̃ is directly available from measurements). Once the estimate is available, it can be used in place
of the actual state vector in ũ1 = Kx̃.

To apply the second method, one needs first an expression of the transfer function between the output and
the available input u1. For simplicity, we shall assume y = q̃1 (so as to fall in the easier SISO case) and F = 0
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(conservative system). Clearly, any stabilizing controller derived for this case will also represent a solution for
the case y = q̃. A simple calculation yields

P (s) =
Me,22s

2 +He,22

(Me,11s2 +He,11)(Me,22s2 +He,22)− (Me,12s2 +He,12)2

where Me,ij and He,ij are the generic elements of Me and He, respectively.
Note that in all equilibrium configurations with the second link pointing up (i.e., q1 + q2 = π) we have

He,22 = −a5; hence, the corresponding linearized system is non-minimum phase, since one of its two real zeros
is positive. The analysis of the conservative case in Section 2.2 indicates that the system is also unstable.
Hence, the synthesis of a stabilizing output controller using classical methods (e.g., frequency domain or root
locus techniques) may prove difficult at these configurations. One way to obtain a solution is to perform pole
assignment: in particular, a compensator of the form

G(s) =
b3s

3 + b2s
2 + b1s+ b0

s3 + a2s2 + a1s+ a0

allows an arbitrary placement of the poles of the closed-loop transfer function W (s) = G(s)P (s)/(1+G(s)P (s)).
In the above discussion, we have assumed that the linearized system was completely controllable and ob-

servable, i.e., that no zero-pole cancellation took place in P (s). At configurations where this is not the case,
one should first verify that the ‘hidden’ dynamics is asymptotically stable.

4 Physical description of the actual Pendubot
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[5] G. Oriolo, Stabilizzazione via retroazione dallo stato (slides, in Italian).

[6] P. C. Hughes, Spacecraft attitude dynamics, Wiley, 1986.

[7] E. D. Sontag, “Feedback stabilization of nonlinear systems,” in: Kaashoek, van Schuppen, Ran (Eds.)
Robust control of linear systems and nonlinear control, pp. 61–81, Birkhäuser, 1990.
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