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Abstract

In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with
a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From
a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be
introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as
a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity
methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance,
namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local
diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement
control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy
approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control
strategy is used to switch between the swingup and the balance control. Experimental results are presented. © 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The Reaction Wheel Pendulum is shown schematically
in Fig. 1. It is a physical pendulum with a symmetric disk
attached to the end which is free to spin about an axis
parallel to the axis of rotation of the pendulum. The disk
is actuated by a DC-motor and the coupling torque
generated by the angular acceleration of the disk can be
used to actively control the system. The control problems
for the Reaction Wheel Pendulum are reminiscent of
those for the Acrobot (Murray & Hauser, 1990) and
Pendubot (Spong & Block, 1996), but are distinct enough
to warrant a separate investigation. Because of the sym-
metric mass distribution of the disk, precise analytical
statements are more readily obtainable for the Reaction
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Wheel Pendulum than for the Acrobot (Spong, 1995) or
Pendubot (Spong & Block, 1996). From a pedagogical
standpoint, the Reaction Wheel Pendulum is one of the
simplest nonlinear systems that can be used to illustrate
advanced control designs based on recently developed
geometric methods. We consider the problem of swinging
the pendulum up and balancing it about the inverted
position. This is accomplished with a supervisory hy-
brid/switching control strategy which uses a passivity
based nonlinear controller for swingup and a local con-
troller for balance. The nonlinear swingup controllers are
designed so that trajectories are guaranteed to eventually
enter the basin of attraction of the balance controller,
which is in turn designed to asymptotically stabilize the
inverted equilibrium state. The supervisor determines
when to switch between the swingup and balance con-
trollers based on an estimate of the basin of attraction of
the balance controller.

For the design of the balance controller we consider
two approaches; a linear pole placement design based on
the linearized approximation of the nonlinear dynamics
about the inverted equilibrium, and a full state nonlinear
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Fig. 1. Coordinate conventions for the reaction wheel pendulum.

feedback linearizing controller. The fact that the dynam-
ics of the reaction wheel pendulum are feedback lineariz-
able, the proof of which is a new contribution of the
present paper, is interesting in its own right. Other under-
actuated nonlinear systems of this type, such as the
Acrobot, Pendubot, and cart-pole system do not satisfy
the conditions for feedback linearization.

The design of the swingup controller is based on the
notion of collocated partial feedback linearization of
underactuated systems from (Spong, 1994). Passivity
from acceleration of the disk to velocity of the pendulum
of the resulting zero dynamics is used to design
a Lyapunov function that is positive definite in the pen-
dulum energy and the disk kinetic energy. The control
then drives the pendulum energy and disk velocity to
zero. The proof of convergence relies on LaSalle’s Invari-
ance Principle. We compare the performance of the swin-
gup and balance controller on an experimental device
constructed in our laboratory at the University of
Illinois.

2. Dynamics

An easy way to derive the dynamic equations of the
Reaction Wheel Pendulum is to notice that the system
may be modeled as a two-degree-of-freedom robot,
where the pendulum forms the first link and the rotating
disk forms the second link. We assume that the center of
mass of the disk is coincident with its axis of rotation and
we measure the angle of the pendulum clockwise from
the vertical. Under these assumptions the equations of
motion can be taken from any standard text, for example

(Spong & Vidyasagar, 1989), as
di14y +di2G> + ¢(q1) =0, (1)
dy141 + dr2gs =1, 2)

where ¢, is the pendulum angle, ¢, is the disk angle, 7 is
the motor torque input and

diy =mylZ +myli + 1) + 1y, (3)
d12 = d21 = dzz =1I,, (4)
$(q1) = — mgsin(qy) ®)

with the various parameters as shown in Fig. 1 and
ﬁ’l = mlfcl + mzfl.

2.1. Reduced order model

Since the disk angular position, ¢,, is a cyclic variable,
i.e., does not appear in the system Lagrangian, we shall
ignore it in the sequel and define a reduced order model
with states x; = ¢qq, X, = ¢, and x5 = §,. Our goal will
thus be to control only the pendulum position, pendulum
velocity and disk velocity and leave the disk position
unspecified. In terms of the state vector x = (x,X5,x3)"
we can write the system as

X1 = Xy, (6)
. dy, di>

X5 —de[D<¢>(xl) Tt D" (7
. dyy diq

X3 —deth)(xl)ereth, ®)

where det D = dy,;d,, — dy,d,; > 0. This can be written
as

X =f(x) + g(x) ©)

in terms of the vector fields

- xz - - 0 -
_ das _ di,
f) =] = 22 gl g =| =12 ). (10
d21 dll
detD¢(xl) L detD A

We will assume that the pendulum angle is computed
modulo 27 so that the system state trajectory evolves on
the manifold S* x 2, where S! is the unit circle. There-
fore, the state will be bounded whenever the velocities
x, and x5 are bounded. We will use this reduced order
model (9) in the remainder of the paper.
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3. Balancing control
3.1. Feedback linearization (FL)

To show feedback linearizability we will follow the
approach of Isidori (1995) and seek an output function
with respect to which the system relative degree equals
the dimension of the state space, in this case, three. With
the system defined as in (9), we define an output equation

y=hx)=di1x; +dyyx3. (11)

The function h(x) is the first component of the generalized
momentum. The derivative of the output function y
satisfies

¥ =Lsh+ Lyht, (12)

where L h and L,h denote the Lie derivatives of h with
respect to f'and g, respectively. In local coordinates, L h
and L,h are given as

thZ[O’ di1, d12:| _detD('b(xl)

= — ¢(x;) = mgsin(x;) (13)

and

0

d
Lghz[O, dis, dlz} —d;D =0. (14)

dll
L detD |

Continuing in this fashion it is straightforward to com-
pute the higher derivates of y as

y=Ljh+L,L;t = Ljh, L,Lh=0,
y¥ = L}h + L,L}ht, L,L2h #0, (15)
where

L7h = ing cos(x;)x,

d
L3h = — mgsin(x;)x3 + (mg)? d;D cos(x; ) sin(x; ),
L,Lth= — dirhg cos(x;).

9 det D

Thus, the system has a well-defined relative degree of
three with respect to the output y = d;{x, + d;,x3 since
L,L7h is nonzero in the region — /2 < ¢, < m/2.

We can therefore define new state variables &, ...,&;5
as

&1 = h(x) =dy1x, +dyirx3,
&= th(x) = mgsin(x,),
&3 = L7h(x) = img cos(x;)x,. (16)

It is easy to show that this state space transformation
defines a local diffeomorphism T:S*' x R?* - S* x R In
terms of these new state variables, the system becomes

&1 =&, (17)
& =¢s, (13)
&y = L}h + LgL}ht. (19)

We can now define the feedback transformation

1

T= m[“ - L; h(x)], (20)

so that the system becomes the linear chain of integrators

¢1 =&, (21)
& =&, (22)
& =u (23)
The new control variable u can then be taken as

u= —ky& —ky&, —kiés, (24)

to place the closed-loop poles (in the ¢é-coordinates)
arbitrarily. The state transformation and hence the
feedback linearization control strategy is valid as long as
Ix{] < /2.

We have shown that the reaction wheel pendulum is
feedback linearizable in the region |x;| < /2. Thus, as
long as the pendulum angle, ¢, is above the horizontal,
the feedback linearizing control strategy can balance it.
In practice, of course, limitations on the available input
torque will reduce the region in which the pendulum can
be stabilized using this control.

We leave it to the reader to verify that the region
|x{] < m/2 is the largest possible region in which the
system can be feedback linearizable and that the full
fourth order system, including the disk angular position,
is also locally feedback linearizable in the above fashion
using the output equation

y=di1q1 +di29>.

3.2. Approximate linearization (AL)

For later comparison in experiment we also present
here the linear approximation about the origin of the
nonlinear system (9). Since the Lagrangian equations of
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motion are linear apart from the gravity term, linearizing
about x; = 0 gives the controllable linear system

X = Ax + Br, (25)
where
r 0 1 0] F 0 ]
mgd,, —dy,
A= B = 2
det D 0 0) det D (26)
— mgd 0 dyy
L detD J L detD |

and a linear state feedback control, T = Kx, can be used
to balance the pendulum in a neighborhood of the in-
verted equilibrium. In the later section on experimental
results we will compare the performance of a linear
control (AL) and the exact feedback linearization control
(FL) for balance control using parameter values mea-
sured for our laboratory apparatus.

4. Swingup control

Since the control schemes discussed in the previous
section are only valid locally around the inverted equilib-
rium, they cannot be used to swing the pendulum up
from the vertically downward position, x; = 7. In this
section we derive a swingup control based on the notion
of Collocated Partial Feedback Linearization (PFLBC)
from Spong (1994) and passivity of the resulting zero
dynamics. Interestingly enough, this swingup controller
cannot be used to balance the pendulum, as we shall see,
but it can swing the pendulum up to a neighborhood of
the equilibrium starting from (almost) arbitrary initial
conditions. This is the reason that our complete control
strategy must switch between the swingup and the bal-
ance control.

The partial feedback linearization strategy proceeds,
as in the previous section, by choosing an output func-
tion and its derivatives as new state variables. In this case
we take the output equation as

.)_/ = X3, (27)
the velocity of the disk, and compute from (8)

d21 dll T
detD "~

(28)

The system thus has relative degree one with respect to
the output y, resulting in two-dimensional zero dynamics
which we compute below. Defining the control input

d21 det D

= = ) +

—u, 29
ary an) @)

we have, after some algebra,

X1 = X5, (30)
. 1 dy,

- _ 31
k= = )~ G1)
X3 = u. (32)

We note that, with u = 0, the system
X1 = Xa, (33)

1

- E (x1), (34)

)‘sz

defines the dynamics of the undamped pendulum. We
shall define the additional control input u both to stabil-
ize the disk angular velocity, x3;, and to render the
homoclinic orbit of the pendulum attractive. To accom-
plish this we first set

Eg =3d1x3 + mg(1 — cos(x,)), (35)

the energy of the free pendulum corresponding to u = 0
and compute

Eo = —di2x,u, (36)

which is the passivity property of the pendulum with
input — dy,u and output x, that we computed pre-
viously. We then choose as a Lyapunov function V'

V(x1,X2,X3) = 3k EF + 3k, x3. (37)
It is easy to show that V is positive definite and that
V= —(dskeEoxs — kyx3)u. (38)
If we therefore choose the control input u according to
u=dik.Eqgx, — k,x3, (39)
we have that

V=—u*<0. (40)

LaSalle’s Invariance Principle (Khalil, 1996) can now be
used to show that all solutions of the reaction wheel
pendulum converge to the set .# := ¢, U%, where

(gl ={(x19x27x3)|E0(x19x2)=0and X3 2017
(62 = {(X1,X2,X3)|X1 =0 or w and X3 = 0}
Remark. (1) From Eq. (38) it is easy to show that

LaSalle’s Theorem gives exactly the same conclusion
using the saturated control

u= Sat(dlzkeonz — kvX3). (41)

Thus, the practical problem of input constraints is easily
handled with the energy/passivity approach here. This is
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an important feature of our technique. In contrast to the
approach here, which relies on switching between separ-
ate swingup and balance controllers, it is also possible to
show the existence of globally stabilizing controllers for
this system that do not rely on switching (Olfati-Saber,
2000; Praly & Ortega, 2000; Ortega & Spong, 2000). Such
controllers tend to aggressively stabilize the equilibrium
and require extremely high torque input to accomplish. It
is not clear whether these controllers can be made to
work on the actual physical system considered.

(2) The open-loop equilibrium point, (x{,Xx,,Xx3) =
(7,0,0), is also an equilibrium of the closed-loop system.
As is typical for energy/passivity-based controllers for
these systems (Shiriaev, Pogromsky, Ludvigsen, & Ege-
land, 2000), there is a one-dimensional manifold of initial
conditions (the stable manifold associated with this equi-
librium) that will not converge to the inverted equilib-
rium. Since this set of initial conditions has measure zero,
convergence to the local equilibrium will typically not be
seen in practice due to noise, parameter uncertainty,
computational round-off, and other effects.

5. Experimental results

In this section we present experimental results ob-
tained on a hardware setup in the College of Engineering
Control Systems Laboratory at the University of Illinois
at Urbana-Champaign. The model parameters used are
shown in Table 1.

The experimental apparatus is shown in Fig. 2. The
apparatus has a high-resolution encoder fitted to each
axis giving 4000 count/rev on ¢g; and 2000 count/rev on
q>- A D/A converter provides a current demand voltage
to an amplifier which drives the permanent magnet DC
motor. The controller was implemented in Simulink us-
ing the WinCon real-time extension with a sample inter-

Table 1

Estimated parameters for the laboratory apparatus. K, is a lumped
gain representing motor torque constant and amplifier transconduc-
tance

Parameter Value Units
I 0.125 m
Iy 0.063 m
my 0.020 kg
my 0.300 kg
I, 47%x10°° kg m?
1, 32x10°° kg m?
dyy 4.83x1073 kg m?
dy, 32x10°° kg m?
dsy 32x107° kg m?
ds, 32x10°° kg m?
detD 155x107° kg m?
in 387x1073 kg
K, 55%1073 Nm/V

Fig. 2. Photograph of the experimental apparatus balancing at the
unstable equilibrium point.

val of 5 ms. This sample rate is sufficiently fast that the
continuous time state-feedback gain matrices are used.
Angular rates were estimated using a first-order differ-
ence with no filtering.

Since the stable equilibrium configuration of the
open-loop system is also an equilibrium point for the
closed-loop system, it is required that the arm be dis-
placed in order to start the swingup motion. This dis-
placement could be accomplished by a third ‘push off
controller which is active at this point in state space. In
fact, we were able to use the balancing controller for this
purpose, since it is unstable at the downward equilibrium
point. Taking the angle x; modulo =, instead of modulo
27, maps both equilibrium points to x; = 0 where the
linear controller is active. When the error is sufficiently
large the swingup controller is activated.

Experimental results for the hybrid PFBLC + AL
controller are shown in Fig. 3. The control was able to
reach the inverted position in only 5 swings. The control
parameters used were k, = 1000 and k, =0.1. The
switching function shown in Fig. 3 indicates which con-
troller is active—the linear controller is active during
both initial pushoff and the final balance phase. The
closed-loop poles of the balancing controller were placed
at —4 + 2j and — 8rad/s.

We can see in the figure that there is a steady state
error in ¢, of nearly 200 rad/s. This is due to the distur-
bance torque exerted on the pendulum by the connecting
wires. This disturbance torque results in g; # 0 and at
steady-state T = ¢, = 0 the state feedback control law

kigy + kg, =0,

relates ¢, error to disk velocity ¢,. We can also observe
in Fig. 3 that neither the Lyapunov or energy functions
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Time

Fig. 3. Experimental trajectories for the hybrid controller
PFBLC + AL. k, = 5x10%, k, = 0.1.
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Fig. 4. Experimental trajectories for the hybrid controller
PFBLC + FL. k, = 5x 105, k, = 0.1.

exhibit the expected monotonic characteristic, and which
we postulate is due to model error.

Experimental results for the hybrid PFBLC + FL con-
troller are shown in Fig. 4 and are not significantly
different to the PFBLC + AL case. Qualitative investiga-
tions showed that both balancing controllers exhibited
similar robustness to external disturbances, which is ulti-
mately limited by the finite torque capability of the mo-
tor. The FL controller performs differently in the pushoff
phase, taking longer to enter the operating region of the
swingup controller, and doing so with a much higher disk
velocity.

6. Conclusion

This paper has discussed hybrid nonlinear control of
a Reaction Wheel Pendulum to achieve both swingup
and balancing. We investigate several different control
strategies based on feedback linearization, partial feed-
back linearization, and energy/passivity methods. We
have shown that the system is locally feedback lineariz-
able by a local diffeomorphism in state space and nonlin-
ear feedback. In practice the performance of feedback
linearization control is comparable to approximate lin-
earization and pole placement control—the performance
being limited by finite actuator torque capability. The
swingup control was based on collocated partial feed-
back linearization, and passivity of the resulting zero
dynamics (PFBLC).
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