
The Swing Up 
Control Problem 
For The Acrobot 

nderactuated mechanical systems are those possessing fewer U actuators than degrees of freedom. Examples of such sys- 
tems abound, including flexible joint and flexible link robots, 
space robots, mobile robots, and robot models that include ac- 
tuator dynamics and rigid body dynamics together. Complex 
intemal dynamics, nonholonomic behavior, and lack of feedback 
linearizability are often exhibited by such systems, making the 
class a rich one from a control standpoint. In this article we study 
a particular underactuated system known as the Acrobot: a two- 
degree-of-freedom planar robot with a single actuator. We con- 
sider the so-called swing up control problem using the method 
of partial feedback linearization. We give conditions under which 
the response of either degree of freedom may be globally decou- 
pled from the response of the other and linearized. This result can 
be used as a starting point to design swing up control algorithms. 
Analysis of the resulting zero dynamics as well as analysis of the 
energy of the system provides an understanding of the swing up 
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algorithms. Simulation results are presented showing the swing 
up motion resulting from partial feedback linearization designs. 

Introduction 
In this paper we study the swing up control problem for the 

Acrobot, a two-link, underactuated robot that we are using to 
study problems in nonlinear control and robotics (refer to Fig. 
(1)). The Acrobot dynamics are complex enough to yield a rich 
source of nonlinear control problems, yet simple enough to 
permit a complete mathematical analysis. 

The swing up control problem is to move the Acrobot from 
its stable downward position to its unstable inverted position and 
balance it about the vertical. Because of the large range of motion, 
the swing up problem is highly nonlinear and challenging. We 
derive two distinct algorithms for the swing up control. Both of 
our algorithms are based on the notion of partial feedback lineari- 
zation [ 111, but also share a common design philosophy with the 
recent method of integrator backstepping [12]. As we shall see, 
our first algorithm is useful in the case that there are no limits on 
the rotation of the second link, while our second algorithm can 
be used in cases where the second link is restricted to less than a 
full 360" rotation. 

The Acrobot model that we use is a two-link planar robot arm 
with an actuator at the elbow (joint 2) but no actuator at the 
shoulder (joint 1). The equations of motion of the system are [23] 
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Fig. 1. The Acrobot. 

where 
2 2 dii = milfi + mz(Z1 + 1:2 + 21ilC2cos(q2)) + 11 + 12 

d22 = m21$ + 12 

d12 = m2$2 + Zilc2cos(q2)) + 12 

d21 = m2(1,22 + Lilc2cos(q2)) + 12 

hi  = -m2111c2sin(q2)g2 - 2n1211 lC2sin(q2)q2qi 

h2 = m21ilc2sin(q2)gi 
$1 = (milci + mzll)gcos(ql) + m21c2gcos(qi + 92) 
$2 = m21c2gcos(q1 + q2). 
The difference between the system (1)-(2) and the standard 

model of a two-link planar robot [23] is, of course, the absence 
of an input torque to the first equation (1). 

There have been a number of previous studies of underactu- 
ated mechanical systems; only a few will be mentioned here. The 
term “Acrobot” was coined at Berkeley, where the first studies 
of its controllability properties were performed by Murray and 
Hauser [14]. More recently, Berkemeier and Fearing [3] have 
investigated the application of nonlinear control to achieve slid- 
ing and hopping gaits of an Acrobot that has its first link free, as 
opposed to this paper in which the first link is pinned. 

The first experimental results for the Acrobot were produced 
by Bortoff [5] in his Ph.D. thesis. The technique of pseudolineari- 
zation was used to design both observers and controllers to 
balance the Acrobot along its (unstable) equilibrium manifold of 
balancing configurations. The so-called Rolling Acrobot, which 
is similar to the mechanism of Berkemeier and Fearing, was also 
studied in this thesis (see also [4]). 

In [ 171 a similar mechanism was designed and built to inves- 
tigate so-called brachiation motions. Excellent experimental re- 
sults were achieved using control algorithms quite different from 
the type considered here. The control of other gymnast-type 
robots has been considered in [24,25] and [18,20]. The control 
of manipulators with passive joints has been considered in [ 11 

’ 2  

‘ 2  

and [2]. These mechanisms used brakes on the passive joints, 
which introduces a reduced amount of actuation to the passive 
joints that is unavailable for the Acrobot. 

The area of space robotics contains many opportunities for 
the study of underactuated systems. The papers by Papadopoulos 
and Dubowsky [8,15,16], for example, have shown the existence 
of so-called dynamic singularities in the task space control which 
greatly complicates the control problems. 

A number of other related studies can be mentioned, such as 
the control of the more classical inverted pendulum [9]. Most 
previous works have used open loop strategies, sinusoidal exci- 
tation, etc., for swing up control. Anotable exception is the paper 
[26], which discusses controlling the energy of the system; an 
approach related to the one of the algorithms in this paper. 

Partial Feedback Linearization 
It has been shown [14] that the Acrobot dynamics are not 

feedback linearizable with static state feedback and nonlinear 
coordinate transformation. This is typical of a large class of 
underactuated mechanical systems. However, as we will show, 
we may achieve a linear response from either degree of freedom 
by suitable nonlinear feedback. In this section, we derive and 
analyze two distinct nonlinear controllers to achieve two distinct 
systems, which we call CI and Z2, and which represent the 
linearization of the response of link 1 and link 2, respectively. 
We will use these two systems to generate two distinct ap- 
proaches for the swing up control problem. 

The easiest way to see how the partial feedback linearization 
is accomplished is as follows. In equation (1) suppose that we 
solve for either q2 or q 1  and use the resulting expression in the 
second equation (2). In this way the second equation will be a 
feedback linearizable equation involving only q 1  in the first case 
or only q2 in the second case. Upon choosing T to linearize the 
resulting equation (2), we achieve either the system Ci 

41 = V l ,  (4) 

or the system C2 

92 = v2, (6) 

where the terms v1 and v2 are additional (outer loop) control 
inputs to be designed. (This will be clarified below.) We use the 
term non-collocated linearization to describe the system C1 since 
the unactuated joint response is linearized, and we use the term 
collocated linearization to describe the system Z2 in which the 
actuated joint response is linearized. (See [20] for further details.) 

Thus, under conditions that we will state below, the systems 
Ci a&Z2are both feedback equivalents of the Acrobot dynamics. 
Either of these systems, 21 C2, may be used to generate a swing 
up control strategy, as we will show, after first giving the details 
of the derivations of Zi and C2. 
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Derivation of the System 21: The Non-Collocated Case 

diii i  + d12q2 + hi + $1 = 0 

22 = 91 - 4f 
Consider the first equation (1) 

q1=42 

(7) 
q 2  = 4 2 ,  

and assume that the term 
the closed loop system may be written as 

d12 = m2(1:2 + llZ~2cos(q2)) + I2 

is nonzero for all values of 42. This condition is termed strong 
inertial coupling in [ 181 and generalizes to the multi-degree-of- 

strong inertial coupling condition imposes some restrictions on 
the inertia parameters of the robot, namely that 

from (7) as 

Zl = 22 

freedom case where di2 is a matrix function of 42. Note that the Z2 = -kpZl - kdZ2 

12 > m21c2(Zl - lc2). Under this assumption we can solve for 9 2  i l  = q 2  

1 
4 2  = - z ( d l l q l +  hl + $1)  

and substitute the resulting expression (8) into (2) to obtain 

ill41 + E1 + $1 = t, (9) 

where the terms 21,7i1, $1 are given by 

The term & can easily be shown to be strictly positive as a 
consequence of the positive definiteness of the robot inertia 
matrix and strong inertial coupling. A feedback linearizing con- 
troller can therefore be defined for equation (9) according to 

where vi is an additional outer loop control term that will be used 
to complete the generation of the swing up control law. The 
complete system CI,tothispoint,isgivenby 

1 dii 
7i2 = --@I d12 + $1) --VI. d12 

It is interesting to note that the same result can be obtained by 
choosing an output equation 

Y = 41 - qf = z1 (19) 

for the original system (1)-(2), differentiating the output y until 
the input appears, and then choosing the control input to linearize 
the resulting equation. The system therefore has relative degree 
2 with respect to the output y. The manner in which we have 
arrived at the system 21 has the advantage that the computation 
and analysis of the resulting zero dynamics is simple. 

It is, at first glance, surprising that we can achieve a linear 
response from the first degree of freedom even though it is not 
directly actuated but is instead driven only by the coupling forces 
arising from motion of the second link. The motion of link 2 
necessary to achieve this may be complex and precisely defines 
the zero dynamics of the system. For this reason the analysis of 
the zero dynamics [ l l ]  is crucial to the understanding of the 
behavior of the complete system. The zero dynamics, with re- 
spect to the output y = zi are computed by specifying that the qi 
identically track the reference trajectory qf . We will analyze the 
zero dynamics for the case of a constant reference command in 
the next section. 

dl242 + hl + $1 = -dllvl (11) Analysis of the Zero Dynamics: The Autonomous Case 

If the reference input qf is a constant, then the system is 
autonomous and we may write (15)-(18) as 

41 = V I .  (12) 

If qf(t) is a given reference trajectory for 41 we may choose 
the input term vi as 

i = A 2  (20) 

i = w(z, q), (21) 
V I  = if + kd(qf - 41) + kp(qf - SI), (13) 

with suitable definitions of the matrix A and the function 
w(z, q) (see [18]). We see from the above that the surface z = 0 
in state space defines an invariant manifold for the system. Since 
A is Hurwitz for positive values of kp and kd this invariant 

where kp and kd are positive gains. With state variables 

d 
z1 = q1 - qr 
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manifold is globally attractive. The dynamics on this manifold 
are given by 

mi 

1 

and are referred to as the “zero dynamics” with respect to the the 
output y defined above [ 111. Since we are interested in the swing 
up control problem, we consider the case qf = ./2. Substituting 
qf = V2, qf = 0 = if into the equation (18) and using the original 
description of the system (l), we arrive at the following expres- 
sion for the zero dynamics of the system: 
( m A  + m2l,lczcos(qz) + ~ ~ ) q ~  - m2l,lC2sin(q2)q: - mzlC2gsin(q2) = o 

(23) 
The system (23), considered as a dynamical system on the 

cylinder, has two equilibrium points, p1 = (0, O f ,  which is a 
saddle, andp2 = ( x ,  O ) T ,  whichis acenter. Atypical phase portrait 
of this system (23) is shown in Fig. 2. 

It follows (locally) that, for initial conditions, z(0) = zo, 
q(0) = ?lo, the state z(t) converges exponentially to zero, while 
the state q(t) converges to a trajectory of the system (23). The 
proof of this fact relies on the Center Manifold Theorem [6] and 
can be found in [ll]. 

It is interesting to note that the expression for the zero dynam- 
ics, Equation (23), is independent of the gains kp and kd used in 
the outer loop control (13). These gains, however, together with 
the intial conditions, completely determine the particular trajec- 
tory of the zero dynamics to which the response of the complete 
system converges. We will see then that the tuning of these gains 
is crucial to the achievement of a successful swingup. 

Since almost all trajectories of the system (23) are periodic, 
the typical steady state behavior is for the first link to converge 
exponentially to qi = V2 and for the second link to oscillate, either 
about the center point equilibrium ( x ,  0) of (23), or “outside” the 
homoclinic orbit of the saddle point equilibrium. The strategy for 
the swing up control is then to determine an appropriate set of 
gains kp, kd for the outer loop control (1 3) that swings the second 
link close to its saddle point equilibrium and then to switch from 
the above partial feedback linearization controller to a linear, 
quadratic regulator designed to balance the Acrobot about this 
equilibrium, whenever the trajectory enters the basin of attraction 

m2 11 12 Li lC2 I1 I2 g 
I 

1 1 2 0.5 , 1 0.083 0.33 9.8 

20 

10 

0 

-1 0 

-20 

’HASE PORTRAIT OF THE ZERO DYNAMICS 

-5 0 5 

Fig. 2. Phase portrait of the zero dynamics. 
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defined by the LQR controller. This will be illustrated in the next 
section by simulation results. 

Simulation Results 
We have simulated the Acrobot in Simnon [7], using the 

parameters in Table 1. The links are modeled as uniform thin rods 
and so the moments of inertia are given by the formula 
I = ‘/12m12. It can easily be checked that the Strong Inertial 
Coupling condition holds for this set of parameters. 

Fig. 3 shows the response of the partial feedback linearization 
controller with gains kp = 16, kd = 8. The angle 92 is plotted 
modulo 2n, which is the reason for any apparent jumps in the 
joint angle during the transient response. 

Fig. 4 shows the response of the partial feedback linearization 
controller for the gains kp = 20 and kd = 8. In this case link 2 
rotates 360” in the steady state. 

The “tuning problem” is then to choose a set of gains to move 
the Acrobot as close as possible to the saddle point equilibrium 
and then switch to a “balancing” controller to capture and balance 
the Acrobot about this equilibrium. We illustrate this below using 
a linear, quadratic regulator to balance the Acrobot about the 
vertical. 

The Balancing Controller 
Linearizing the Acrobot dynamics about the vertical equilib- 

rium q1 = V2, 92 = 0, using the parameters in Table 1 results in 
the controllable linear system 

x = A x +  Bu, (24) 

where the state vector x = (41 - V2,92, 41, q2), the control input 
u = z, and the matrices A and B are given by 

Table 1 
Parameters of the Simulated Aerobot 

,Response with kp=l6 kd=8 

6 
4 

8 
0 1 2  3 4 5 6 7 8 9 10 

Fig. 3. Partial feedback linearization response with gains kp = 16, 
kd = 8. 
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Response Using kp=2O kd=8 

6 

4 1  

q l  
2 

8 '  r 

0 1 2  3 4 5 6 7 8 9 10 

Fig. 4. Partial feedback linearization response with gains kp = 20, 
kd = 8. 

SWlngup and Balance using Sigma1 

q l  

I 
1 0 1 2 3 4 5 6 7 8 1  

Fig. 5. Swing up motion of the Acrobot using &. 

0 
12.49 -12.54 0 0 

L-14.49 29.36 0 01 

Using Matlab, an LQR controller was designed with weight- 
ing matrices 

and R = 1 ,  yielding the state feedback controller u = -Kx, where 

K = [-242.52, -96.33, -104.59, -49.051. (28) 

The linear control law is switched on whenever the Acrobot 
reaches the near vertical configuration. Fig. 5 shows a plot of a 
successful swing up and balance using the partial feedback 
linearization followed by the linear, quadratic regulator. 

Derivation of the System &: Collocated Linearization 
In this section we derive an alternative swing up control 

algorithm which can be used in the case that the second link is 
constrained to rotate less than a full revolution, as for example, 
with the experimental Acrobot considered in [5 ] .  The alternative 
algorithm derived here is based on linearizing the system with 
respect to q2 instead of 41. Consider the Equation (2), 

This time we solve for q1 from Equation (1) and substitute the 
resulting expression into (29) to obtain 

a 2 9 2  + z 2  + $2 = 2 ,  (30) 

where the terms 22, z2, $2 are given by 

Note that this requires that the term dii  be nonzero over the 
configuration manifold of the robot. This, however, involves no 
restrictions on the inertia parameters since dl1 is always bounded 
away from zero as a consequence of the uniform positive defini- 
teness of the robot inertia matrix. A feedback linearizing control- 
ler can be defined for equation (30) according to 

Substituting the control (31) into (30) yields the system C2 

42 = v2 (33) 

The input term v2 can now be chosen so that 42 tracks any 
given reference trajectory qj .  The important problem now is to 

choose the reference signal q$ to execute the swing up maneuver. 
In [ 191 an energy pumping strategy was used to solving the swing 
up control problem. The result in [ 191 contains an analysis of the 
resulting zero dynamics for C2 similar to that contained here for 
21. We will not repeat the analysis of the zero dynamics in this 
paper. Instead we will discuss the original energy pumping 
interpretation of our algorithm that was the original motivation 
for its derivation. 
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Energy Based Swing Up Algorithm 
If the second link angle 42 is constrained to lie in an interval 

42 E [-p, p] then we choose an a less than and swing the 
second link as follows: Let the reference qf for link 2 be given 
as 

with kp and kd positive gains. The idea behind this choice of 

and choose the outer loop control term v2 as 

~ _ _ -  _T- -3 -_- - 
0 2 4 6 8 10 l a  

link 1 may be increased with each swing. 
To see how this might be expected to work, consider the 

motion of a single link with a force F acting at the end of the link. 
Assume that the force F is directed perpendicular to the link for 
simplicity. Then the torque acting at the joint is equal to IF and 
the equation of motion is 

Zqi + mglcsin(ql)  = IF. (36) 

The total energy of the system is given by 

T0t.l E ~ r g y  Dudnp Swlnpvp ~~ 

1 
20 -I 
15 I 

I 

I 

I 
1 

.10 .I: 

F- 
0 2 4 6 8 10 12 

and the derivative of V along trajectories of the system is given 
Fig. 7. Total energy during the swing up motion. 

by 

V =  1Fql. (38) Although the above simplified analysis only approximately de- 
scribes the true Acrobot, we will see below that the total energy 
is indeed increased with each swing as we might expect from the 
above considerations. 
Our choice of reference position for 42 also has the effect of 

straightening out the Acrobot at the top of each swing, which 
facilitates the capturing of the Acrobot at the vertical position. 
Other choices of reference qf are, of course, possible such as 
qg = a sgn (41) or qf = a sat (41). The essential feature is that the 
reference function be a so-called “first and third quadrant” func- 
tion of 41. See [20] for additional details and an analysis of the 
resulting zero dynamics. 

Fig. 6 shows a swing up motion using the reference for 42 
given by (34). Again the LQR controller is switched on at the top 

Therefore, the change in total energy over a time interval [T- 1 ,  
TI is 

T 

V(T) - V ( T -  1 )  = l jF(t)ql( t )dt .  
T- 1 (39) 

Suppose that the force F(t, is any so-called l s t  and 3rd quadrant 
function of q i ,  i.e., suppose that, 

(40) F = IF1 sgn (4‘1 ( t ) ) .  

Then we see from (39) that 

T 

V(T) - V ( T -  1) = l j  IF1 . lqil dt  20, 

of the swing. Fig. 7 shows a plot of the total energy during the 
swing up motion. 

Conclusions 
In this paper we have discussed two distinctly different swing 

T- 1 (41 )  

Le., the change in energy during the time interval [T-1, TI is 
nonnegative. Our strategy for swinging link 2 rapidly in the 
direction of motion of q i  is designed to produce anet force during 
the time [T-1, r ]  of each swing with the “correct sign” as above. 

up control strategies for the Acrobot, both based on the concept 
of partial feedback linearization. It is quite interesting that the 
complex swing up motions are realized in the closed-loop as the 
“natural responses” of autonomous nonlinear differential equa- 
tions. It is also interesting that, in both cases, unstable behavior 
of the zero dynamics is exploited to realize the swing up motion. 
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The general principles discussed in this paper are applicable 
to a broader class of control problems. For fully actuated (and 
therefore feedback linearizable) systems, the nonlinear control 
problem is considered essentially solved once the system is 
linearized. We have seen in the case of the Acrobot that the second 
stage (or outer loop) design remains a non-trivial and nonlinear 
task. Interesting control problems remaining for this class of 
systems include the robust and adaptive control. We note that the 
partial feedback linearization approach leads to a system in 
which the inertia parameters appear nonlinearly. Thus standard 
adaptive techniques that have been developed for fully actuated 
rigid robots cannot be applied in a direct adaptive control scheme. 

The simulation indicate that the response of the system is very 
sensitive to the values of the outer loop gains and to the switching 
times. Thus, the “tuning issues” in these types of problems are 
important, and, moreover, naturally lend themselves to methods 
of repetitive learning control. The reader is referred to [22]  for 
an application of machine learning methods to this problem. 

Another interesting problem is the further investigation of 
robust control to the balancing control. The basin of attraction of 
the LQR controller used here is very small, making the capture 
and balance phase of the swing up motion difficult. The applica- 
tion of more robust designs in order to increase the basin of 
attraction of the balancing controller is thus important and would 
ameliorate the difficulties of tuning the gains in the swing up 
phase. For example, the work of Bortoff [5] has shown that 
techniques such as pseudolinearization can greatly enlarge the 
basin of attraction of balancing controllers for these systems. 
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