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Abstract

This paper presents an experimental comparison between the weighted least squares (WLS) estimation and the extended Kalman
filtering (EKF) methods for robot dynamic identification. Comparative results and discussion are presented for a SCARA robot,
depending on a priori knowledge and data filtering. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the class of estimation algorithms, the weighted
least squares estimation (WLS) method (see Section 2)
takes a particular place for robot manipulators identi-
fication. Based on the use of the inverse model linear in
relation to the parameters, it allows to estimate the base
inertial parameters providing measurement or estima-
tion of the joint torques and the joint positions (Gautier,
1986; Gautier & Khalil, 1988; Gautier, 1990; Canudas
de Wit, Siciliano, & Bastin, 1996; Kozlowski, 1998;
Khalil & Dombre, 1999). Some alternative solutions for
robust estimation in the class of least squares estimators
have been proposed. Swevers, Ganseman, Tiikel,
Schutter, and Van Brussel (1997) formulated an
approach based on the maximum-likelihood parameter
estimation. But in the practical case, they are considered
additive noise which lead to a WLS estimation. Califiore
and Indri (1999) considered linear matrix inequalities
(LMI) to take into account uncertainties in the
observation matrix due to error modeling or measure-
ment noise. An alternative method, more common in the
automatic control community, is the use of Kalman
filtering algorithm (see Section 4). Based on the direct
dynamic model (the state space model) which is non-
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linear in relation to the state and the parameters, an
extended state containing the physical parameters is
considered. Both the state (position and velocity) and
the parameters are estimated through only one model,
considering the uncertainties in the model and the
measurements. Guglielmi, Jonker, and Piasco (1987)
applied the EKF approach to a SCARA robot, but
without any comparison to LS. Gautier, Janin, and
Presse (1993) have presented a comparison between the
LS energetic and the EKF approaches, but it is based on
the experimental identification of a single joint robot.
This paper presents an experimental comparison on a
two degrees of freedom robot, using WLS dynamic and
EKF approaches. It is organized as follows: Section 2
introduces the dynamic model and the WLS estimation,
Section 3 presents the extended Kalman Afiltering,
Section 4 contains the description of the SCARA robot
and Section 5 exhibits the comparisons of experimental
results and discussion concerning the use of both
algorithms.

2. Weighted least squares estimation
2.1. Identification model

The inverse dynamic model of a rigid robot composed
of n moving links calculates the motor torque vector t

0967-0661/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0967-0661(01)00105-8



1362 M. Gautier, Ph. Poignet | Control Engineering Practice 9 (2001) 1361-1372

(the control input) as a function of the generalized
coordinates (the state vector and its derivative). It can be
obtained from the Lagrangian or Newton Euler
equation as recalled here (Canudas et al., 1996; Khalil
& Dombre, 1999; Kozlowski, 1998):

where 1 is the (nx1) motor torque vector, (q,q,q) the
(nx1) vectors of generalized joint positions, velocities
and accelerations, respectively, M(q) the (n X n) inertia
matrix, N(q, q) the (nx 1) vector of centrifugal, Coriolis,
gravitational and friction torques.

Eq. (1) can be rewritten as a linear relation to a set of
standard dynamic parameters 35 (Mayeda, Yoshida, &
Osuka, 1990; Gautier & Khalil, 1990)

T= DS(q9 q’ (‘i)XSa (2)

where yg is the (13nx1) vector of standard dynamic
parameters:

1 = [XX; XY, XZ, YY; YZ; ZZ; MX; MY; MZ; M; Ia; Fy; Fs;]".

It is composed, for each link j, of (XX;, XY}, XZ;,
YY;, YZ;, ZZ)), the six components of the inertia tensor;
(MX;,MY;,MZ;), the three components of the first
moment; M;, the mass; I, the total inertia moment for
rotor actuator and gears; and Fy;, Fs;, the Coulomb and
viscous friction parameters.

It has been shown that the set of standard dynamic
parameters can be simplified to obtain the base inertial
parameters. The base inertial parameters are defined
as the minimum parameters which can be used to
calculate the dynamic model. They represent the set
of p parameters which can be identified using the
dynamic model. These parameters can be obtained
from the standard inertial parameters by eliminating
those which have no effect on the dynamic model and
by regrouping some others in linear relations. Symbolic
and numerical solutions have been proposed for
any open or closed chain manipulator (Mayeda et al.,
1990; Gautier, 1990; Gautier & Khalil, 1990; Gautier,
1991; Khalil & Dombre, 1999) to obtain a minimal
dynamic model

t=D(.4.§x= > D.x: 3)

i=1,p

The coefficients of the matrices Dg and D can be
automatically calculated using a customized symbolic
method (Khalil & Creusot, 1997; Khalil & Dombre,
1999).

2.2. Identification method

Usually, x is estimated as the least squares (LS)
solution of an overdetermined (rxp) linear system
obtained from sampling and filtering the dynamic model

(3) along a trajectory (q(?), q(?), {(2)):
y(1)=W(Q. 4,9y + p; “4)

where y is the (rx1) measurement vector, W the (rxp)
observation matrix, and p the (rx1) vector of errors.

It is considered to be a zero mean additive indepen-
dent noise, with standard deviation ¢, such that

Cpp = E(pr) = Uf,lra (5)

where E is the expectation operator, I, the (xr) identity
matrix.

In fact, y is obtained from the concatenation of n
measurements vectors y/ of the n motor torques with
different errors standard deviations.

Matrices y and W are sorted in order to regroup the
rows of the joint j equation:

v = Dy,
where D;; is the row j of D,
y! (1) w!
y=1|:]. v=| + |, W=] 1],
Yy (r/n) wr
Di,:(l) pl
W=\ = | p=]:
D/,:("/n) pn

An improvement in the ordinary LS solution is to
calculate the WLS solution of the global system (4)
(Gautier, 1997). The r/ rows corresponding to joint j
equation are weighted by the coefficient of the error
covariance diagonal matrix factorized as follows:

Cop = (GTG)™!, G = diag(s), (6)

where G is a (rxr) diagonal matrix with the elements of s
on its diagonal,

Sn] Sj: i l
9 O’:})l O’:[! 9

s=[s

where s/ is a (1x7/) row matrix.
An unbiased a posteriori estimation ¢, is used from
the regression on each joint j subsystem:

12
Jj2 le ”min
p - ]‘/ —p/ ’
where Hp/anin, p/, are the minimal norm error and the

number of minimum parameters for each joint j
subsystem, respectively. They are calculated with the
Matlab ‘economy size’ QR decomposition of the joint
j observation matrix, without calculating the LS
solution.

The WLS solution j,, minimizes the two norms of the
vector of weighted errors p:

fw = Argmin[p" G Gp], (7)
b4
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where ¥, and the corresponding standard deviations
¢;,. are calculated as the LS solution of the system (4)
weighted by G:

Yo = Wy + Py (3)

Yo = Gy, WW = GW, Py = Gp

The unicity of §,, depends on the observation matrix W,
which can be numerically rank deficient depending on
two origins:

® Structural rank deficiency which stands for any
samples of (q,q,q4) in Wy. This is the structural
parameter’s identifiability problem which is solved
using base parameters.

® Data rank deficiency due to a bad choice of noisy
samples of (q,q,q) in Wy,. This is the problem of
optimal measurement strategies which is solved using
closed loop identification to track exciting trajectories.

In order to decrease the sensitivity of the LS solution
of system (8) to errors in y,, and W, the condition
number of the observation matrix Wy, must be close to
one with large singular values before computing ¥,,.

Cond(Wy)=1 means that all the standard deviation
c;,, are the same, that is to say, all the parameters are
estimated with the same absolute accuracy. The draw-
back of this criterion for excitation is that the small
parameters are poorly estimated because of a bad
relative standard deviation (Eq. (10)).

If a priori knowledge % of y is available, a better
criterion is the condition number of the matrix Wy
weighted by % (Presse & Gautier, 1993):

® = W, diag(}), €

where diag(j) is a diagonal matrix with the coefficients
of % on its diagonal.

Cond(®)=1 means that all the standard deviation
divided by the a priori values, 65 /7, are the same. That
is to say all the parameters are estimated with a good
relative accuracy (Eq. (10)).

Exciting trajectories can be obtained by non-linear
optimization of the coefficients of the trajectory
generator as a polynomial interpolator (Gautier, 1992)
or as a Fourier series (Swevers et al., 1997). In the
following, it is supposed that this stage has been
reached, that is to say Wy is an (rxp) full rank and
well conditioned matrix.

Standard deviations 63 are estimated considering
the matrix Wy, to be a deterministic one. From Eq. (6),
p, comes to be a zero mean additive independent
noise such that

prpw = E(P@Pw) =1I.

The covariance matrix of the estimation error and
standard deviations can be calculated by

Cii = E[(0— 1)t — A1) '] = (WEW,) !,

where aé = Cy, 3., 18 the ith diagonal coefficient of
The relative standard deviation %e;3 _ is given by
o5
%65, = 100 -2, (10)
Lwi

3. Extended Kalman filtering
3.1. Identification model

The state-space model is obtained from the inverse
dynamic model Eq. (1) as follows:

k:P]:[M*h.N@mwzﬂna an
q q

where x = [q7 qT]" defines the state.

Computing the extended Kalman filter (Gautier et al.,
1993; Guglielmi et al., 1987; Ljung, 1987) consists first
in extending the state to include the model parameters
to be identified and secondly in applying the Kalman
filter equations (see Section 3.2).

Let us define the new extended state z including the
parameters vector y as

. T T
z=[q" ¢ "]
Assuming that the parameters are stationary, the new
augmented state space model is written as

q M [t — N(q.9)]
2= 4| = q (12)
X 017><1

where 0,1 is a (px1) matrix of zeros.
3.2. Identification method

The first order discretization of Eq. (12) leads to

Vi ‘| ’ (13)

Zj1 = £z, w) +
Opxl

f(zy, 1) = zx + 2(z, ;) dt, where dt is the sample rate,
vy is assumed to be a white noise sequence.

T
Vi Vi
Opxll |}1y><1 ]

is its covariance matrix.
The observation equations are given by

C:[Onxn I, Onxp]a

Q=E

Vi = Qi = Czic + Wy,

where w; is the measurement noise which is assumed to
be a zero mean and independent sequence,

R = E[wew{]

1S its covariance matrix.
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In order to achieve the estimation step and the
calculation of the covariance matrices, the non-linear
discrete equation (13) is linearized to the first order
using a Taylor expansion around the estimate z; ,

Vi
b
Opxl

where F, is the (2n 4 p)x(2n + p) Jacobian matrix of f
with respect to z.
The coefficients of F. are defined as
ofi(z)
sz '
The optimal Kalman filtering is applied to the
linearized system. It is composed of two steps

21 =H(z ) + Fo(z )2k — zipi) +

Py =

1. Prediction step:

Zip 1k = 1z 1),

Priije = Fo(zii)Pr i F-(zi )" + Q.

2. Estimation step:
Kii1 =Py C [CP 1 CT + R]Y,

Zii1 fir1 = Ziert i+ Ky 1 (Vs 1 — CZierr i),

Pii1/irt =Pryijre — K1 CPryy ks

where K is the Kalman gain at time #xy 1, Zy1/k41
the expected value of z;,; given the k + 1 measure-
ments

Ziet 1 /k+1 :E(Zk+1/yi, i=1,...,k+1),
Pj.1/x is the covariance matrix of the prediction error

Pioik = El(@c1 — T ) @it — Zisi ) /i,
i=1,..., k],

P 1/k41 1s the covariance matrix of the estimation
error

Pist it = El(is1 — Ziot ke ) @it — Zis i) /i
i= 1, k11

In order to prevent some numerical problems, it is
necessary to compute the algorithm by using a square
root factorization as a UDUT decomposition which will
ensure the covariance matrix remains a positive definite
matrix (Bierman, 1977).

4. Description of the SCARA robot

The experimental comparison is carried out on a two-
joints planar direct drive prototype robot manufactured
in the laboratory (IRCCyN) (Figs. 1-3), without gravity
effect. The description of the geometry of the robot uses

z0 71

XOX

—

Fig. 1. SCARA robot.

o’, o! 0

Fig. 2. Frames and joint variables.

Fig. 3. Pictures of the SCARA.



M. Gautier, Ph. Poignet | Control Engineering Practice 9 (2001) 1361-1372 1365

the modified Denavit and Hartenberg notation (Khalil
& Dombre, 1999).

The robot is directly driven by two DC permanent
magnet motors supplied by PWM choppers.

The dynamic model depends on eight minimal
dynamic parameters, including four friction para-
meters:

1= |ZZR, Fv, Fsy, ZZ, LMX, LMY, Fuv, Fszf,

ZZR, = ZZ, + M,L?,

where L is the length of the first link, M, the mass of
link 2, ZZ, and ZZ, the drive side moment of inertia of
links 1 and 2, respectively, LMX, and LMY, the first
moments of link 2 multiplied by the length L of link 1,
Fuvy, Fsy, Fvy, Fsy are the viscous and coulomb friction
parameters of links 1 and 2, respectively.

The inverse dynamic model used to compute WLS is
written as Eq. (3):

-

where Cy = cos(¢qz) and Sy = sin(q»).
The direct dynamic model necessary to compute the
extended Kalman filtering algorithm is written as
. T T
Eq.(I) withq=[q1 ¢] andt=[11 ©]:

A
Vbl

My M
M—[ 11 12

G ¢ sign(d@) (G, + ) (

0 0 0 (41 + dr)

>

My, Z2Z,

M =ZZR\ + ZZ) + 2LMX,Cy) — 2LMY>,S>,

M, =27+ LMX>,Cy — LMY>S>.

The joint position q and the current reference Vr
(the control input) are collected at a 100 Hz sample
rate while the robot is tracking a fifth order poly-
nomial trajectory. This trajectory has been calculated
in order to obtain a good condition number
Cond(Wy,) = 290 and Cond(®) = 100. This means that
it is an exciting trajectory taking the whole trajectory
all over at the time of the test. Both methods are
performed in a closed loop identification scheme (simply
joint PD control), using the same data q and t, where

(24, + §)Cr
—4:(24; + §2)S2
(6:C2 + ¢1S)

each torque 7; is calculated as
v =GV,

where G7; is the drive chain gain which is considered as a
constant in the frequency range of the robot dynamics.
Fig. 4 presents the torque of motors 1 and 2.

5. Experimental results
5.1. WLS estimation

Calculation of the WLS solution of Eq. (4) (or the LS
solution of Eq. (8)) from noisy discrete measurements or
estimations of (q,q,q4,t) may lead to bias because
W(q,q,4) and y(r) may be non-independent random
matrices. Therefore, it is very important to decrease any
perturbation in W and y before computing the WLS
solution. The joint velocities and accelerations are

—(24, + )2 0 0
—4:(24; + ¢)C2 %s

(41C2 — 4151) ¢, sign(gy)

estimated with bandpass filtering of q using a non-
causal zero-phase digital filter with flat amplitude
characteristic (lowpass butterworth filter in both the
forward and reverse direction as given by the filtfilt
procedure from Matlab, and central difference algo-

11 — Fu gy — Fy sign(§)) + LMX28245(g5 + 24,) + LM Y2Ca45(g5 + 24y)
ty — Fiagy — Fy sign(¢y) — LMX2S:43 — LMY>Ca4i

>

rithm for derivatives) (Gautier, 1997). It is very
important to avoid distortion in W due to the filtering
of q and its derivatives. As a second step, the vector y
and each column of W are lowpass filtered and
decimated. Due to the linearity of Eq. (4), the WLS is
not sensitive to the distortion introduced by this
filtering.

The elapsed time for the computation is about 3s on a
Pentium II 233MHz PC. Table 1 compares WLS
estimation obtained:

1. Without any lowpass filtering: see the biais on ZZR|,
FSl, LMXz, Fl)z, FSz.

2. With only forward lowpass filtering: see the biais on
ZZR; and Fuv;,.

3. With full filtering: All the parameters have significant
values close to a priori values ¥, with small relative
standard deviations, except for LMY, and Fv;. They
are too small to have a significant contribution in y,,.
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They can be cancelled from the dynamic model to get tests moving one link at a time. They are given in
only six essential parameters. Tables 1 and 2, to be compared with the identified
parameters. They have been used to optimize the

Remarks. trajectory, Eq. (9).
® The LS solution of Eq. (8) is calculated with a global
® A priori values ¥ have been calculated from QR factorization of Wy, (left matrix divide in
measurements on the disassembled links or special Matlab). This is a known robust and fast method

provided there is a vector form calculation and
no disk swap. The recursive least squares (RLS) is

8 T T T T T not needed for batch processing and it takes
much more time because of the loop form calcula-
°r 1 tion in Matlab. However, the RLS results are given
A in Figs. 13-28 for comparison with EKF conver-
gence. In order to avoid large and non-significant
2 transients during the first samples j<p, RLS is
3 initialized with the square solution using the first p
3 ° samples in Eq. (8).
2F
5.2. EKF estimation
AF
o Three experimental cases are introduced depending
on the accuracy of the a priori knowledge on parameter
-8 " " " "

. = " - pos o values. The identification is performed using only the
Time (s) torque and the joint position measurement. Joint

velocities are estimated through the Kalman filter.

osl | 1. Without knowledge: §, = 0s,1 and Pyjg = 10°1;,, does
not work because of numerical problems.

06 2. Rough a priori knowledge: The sign and the size of

04 each parameter are assumed to be known from

02 manufacturer’s data

T Fo=[1 107 107" 107" 107" 107 103 107",

-0.2F

oab P/ = diag((10 10 10 10 10 1 1 1 1 1 1 1].

06f The elapsed time for the computation is about 170s

os} | on a Pentium II 233 MHz PC. The variance matrix
for the state (position and velocity) noise and the

Torque 2

0 5 10 15 20 25 30 measurement noise are given by

Time (s)
Fig. 4. Motor torque. R = diag([ 1073 1072 D, Q= 107214.
Table 1
WLS estimation
WLS (1) WLS (2) WLS (3)

% b4 %005, b4 %005, b4 %005,
ZZR, 3.42 0.51 4.8 3.26 1.2 3.47 0.8
Fv, 0.07 —0.66 24 -0.2 60 0.3 25
Fs, 0.58 0.81 9.4 0.55 9.6 0.4 9
Z7Z, 0.064 0.056 0.73 0.064 0.8 0.063 0.45
LMX, 0.131 0.042 4 0.13 1.7 0.125 1.2
LMY, 0 0.002 65 0.004 60 0.003 49
Fv, 0.015 0.021 6 —0.006 22 0.014 6

Fs, 0.156 0.13 2.5 0.17 2.3 0.13 1.7
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Table 2
EKF estimation
EKF (2) EKF (3) WLS

X x %0'5( b4 (%0'2 X 0/00'5(
ZZR, 342 3.21 0.17 3.31 0.2 3.47 0.8
Fv, 0.07 —0.95 —1.67 0.6 3.6 0.3 25
Fsy 0.58 1.28 0.53 0.58 1.4 0.4 9
Z7Z, 0.064 0.06 0.14 0.061 0.11 0.063 0.45
LMX, 0.131 0.123 0.49 0.14 0.39 0.125 1.2
LMY, 0 0.064 0.69 0.03 1.05 0.003 49
Fvy 0.015 0.0159 1.57 0.012 1.12 0.014 6
Fs; 0.156 0.127 0.64 0.13 0.34 0.13 1.7

0 5 10 15 20 25 30

Fig. 5. Joint 1 position.

15 T T T T T

Measured velocity

Estimated velocity

15 N N N N N
0 5 10 15 20 25 30
Time (s)

Fig. 6. Joint 1 velocity.

Figs. 5-8 give the positions and velocities estimated
with EKF and calculated by band pass filtering
(named measured). See Section 6 to explain the
differences.

0 5 10 15 20 25 30

Fig. 7. Joint 2 position.

8 T T T T T

Measured velocity

Estimated velocity
.

) N N N N
0 5 10 15 20 25 30
Time (s)

Fig. 8. Joint 2 velocity.

3. Good a priori knowledge: The EKF algorithm is
initialized with WLS results. The parameters (ZZR|,
Fs\, ZZ,, LMX,, Fv,, Fs;) which are well identified,
are locked with a small initial variance (10~3) while
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Fv; and LMY, are free (initial variance 1)

%0 =1[347 1073 04 0.063 0.125 1073 0.014 0.13]",

Py = diag([10 10 10 10 107 1 1073 1073

The elapsed time for the computation is about 170s.

The variance matrix for the state (position and
velocity) noise and the measurement noise are given as
R = diag([10* 1072]), Q =10"*I,.

Figs. 9-12 represent the measured and estimated
signals for joint position and velocity.

The reader will find in the Appendix the estimated
parameters with respect to the time in case of EKF(2)
(Figs. 13-20) with rough a priori knowledge and
EKF(3) (Figs. 21-28) with good a priori knowledge. It
can be seen that the recursive WLS estimation conver-
gence is faster with a better steady state.

0 5 10 15 20 25 30

Fig. 9. Joint 1 position.

15 T T T T T

Measured velocity

05

apl
o

-0.5

y:

Estimated velocity

15 N N N N N
0 5 10 15 20 25 30

Time (s)

Fig. 10. Joint 1 velocity.

103 1 1073

6. Discussion

Some major points have to be highlighted

6.1. Concerning EKF algorithm

1. The measured position is used roughly without
particular treatment as for the WLS case.

2. The results are very sensitive with respect to initial
values, and good a priori knowledge is highly
recommended. It can be obtained as the WLS
estimation.

12 1 1 1 1 1
0 5 10 15 20 25 30

Fig. 11. Joint 2 position.

8 T T T T T

Estimated velocity

qp2
o

Measured velocity

0 5 10 15 20 25 30
Time (s)

Fig. 12. Joint 2 velocity.
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4 T T T T
WLS
35 b
p——
—
& -
N
05F -
0 N N N N
10 15 20 25 30
Time (s)
Fig. 13. ZZR,.
15 T T T T
1 WLS A
0.5 4
0
s
z 05

-15

-25

25

10 15 20 25 30

Time (s)

Fi

=

g. 14. FU].

15 20 25 30
Time (s)

Fig. 15. Fs;.

0.12

1369

0.1
0.08
N
No.osf
0.04}

0.02f

10 15 20
Time (s)

Fig. 16. ZZ>.

25

30

0.1
o~
x
S 0.08F
-
0.061
0.04F

0.02f

0.08

10 15 20
Time (s)

Fig. 17. LMX..

25

30

0.06

0.04F

0.02

LMY 2
o

-0.02[

-0.041

-0.06

-0.08

|
f

o

10 15 20
Time (s)

Fig. 18. LMY,.

25

30
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5 10 15
Time (s)
Fig. 19. Fu,.

20

25

30

0.16

0.14]

0.12]

0.1

0.08}

0.06}

0.04]

0.02}

10 15
Time (s)
Fig. 20. Fs;.

20

25

30

15f

0.5

EKF

10 15
Time (s)

Fig. 21. ZZR,.

20

25

30

15 T

Fvl

WLS

10 15 20
Time (s)

Fig. 22. Fu,.

25

30

25 T

15F

WLS

1 . . . . .
0 5 10 15 20 25 30
Time (s)
Fig. 23. Fs,.
0.12 T T T T T
01F 1
o.08F WLS 4
N o.oed /‘—_—
0.04F EKF 1
0.02f 4
o . . . . .
0 5 10 15 20 25 30
Time (s)
Fig. 24. ZZ,.
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0.16 . x v T T
EKF
1 Z’{ /—/_J
017 ‘% / =~ ]
o1} E
wLS
N
x
< o.08f E
|
0.06f E
0.04f E
0.02} E
o A A A A A
0 5 10 15 20 25 30
Time (s)
Fig. 25. LMX,.

0.08

LMY 2

WLS
-0.04f
-0.06f
0.08 N N N N N
0 5 10 15 20 25 30
Time (s)
Fig. 26. LMY,.

3. Velocities and parameters are estimated through the
same model which is a very significant result of the
comparative study, but not an advantage. The EKF
is an on line state observer which is useful for control,
but it does not take advantage of the off line
identification such as the cancellation of the phase
distortion.

4. The calculations of the direct dynamic model and its
Jacobian matrix w.r.t. the extended state is tedious
and lead to a time consuming algorithm using
symbolic calculation software.

5. The recursive algorithm does not suit the vector form
calculation. Then it takes a very long computing time
using software such as Matlab for large amount of
data, even when using the compiled version of the
Matlab script.

6.2. Concerning WLS algorithm

1. The deterministic forward and reverse pass band
filtering does not introduce neither phase distortion

0.06
0.04f
EKF
0.02F
N
£ o
WLS
-0.02f
-0.04f
0.06 . . . . .
0 5 10 15 20 25 30
Time (s)
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nor errors on the estimated derivatives due to the
dynamic modeling errors as for EKF (see Figs. 6
and 10). However, the user has to take care to
use filters without any distortion in the frequency
range of the closed loop dynamics of the robot
(see Table 1).

2. With the WLS method, the uncertainties on the

measurements and the model are taken into account
in only one global residual. The estimation of
standard deviation is based on simple statistical
hypotheses considering additive noise on the mea-
surements (Gautier, 1997). If the standard deviation
is too large, it may come from the modeling errors or
not sufficient exciting trajectories compared with the
measurements perturbations (e.g. Fv; and LMY,
have very small contribution in y,,).

3. Due to the linear model expression, the automatic

calculation of the identification model is easier and
faster.

4. A priori knowledge is not needed.
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7. Conclusion

This paper investigates theoretical and experimental
comparison of EKF and WLS estimation applied on a 2
d.o.f. SCARA robot. The major results are: EKF
algorithm estimates both the velocities and the para-
meters while WLS estimation needs the joint velocity
and acceleration to be calculated separately by pass
band filtering. However, it does not appear to be an
advantage for EKF. Estimations of the parameters are
very close for both methods, but EKF algorithm is very
sensitive to the initial conditions and the convergence
speed is slower. Moreover, recursive calculations are
time consuming, and symbolic calculation of the
Jacobian matrix is very tedious for the EKF method.

The conclusion is that the WLS method with the
inverse dynamic model appears to be better than EKF
for off line identification.

Future work will concern the analysis of the on line
behavior with a priori knowledge given by WLS and
parameter tracking with EKF algorithm.

Appendix A

Figs. 13-20 present the estimated parameters with
rough a priori knowledge of EKF(2) and Figs. 21-28
present the estimated parameters with good a priori
knowledge of EKF(3).
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