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A Control Approach for Thrust-Propelled
Underactuated Vehicles and its

Application to VTOL Drones
Minh-Duc Hua, Tarek Hamel, Member, IEEE, Pascal Morin, and Claude Samson

Abstract—A control approach is proposed for a class of under-
actuated vehicles in order to stabilize reference trajectories either
in thrust direction, velocity, or position. The basic modeling as-
sumption is that the vehicle is propulsed via a thrust force along
a single body-fixed direction and that it has full torque actuation
for attitude control (i.e., a typical actuation structure for aircrafts,
Vertical Take-Off and Landing (VTOL) vehicles, submarines, etc.).
Additional assumptions on the external forces applied to the ve-
hicle are also introduced for the sake of control design and stability
analyses. They are best satisfied for vehicles which are subjected to
an external force field (e.g., gravity) and whose shape induces lift
forces with limited amplitude, unlike airplanes but as in the case of
many VTOL drones. The interactions of the vehicle with the sur-
rounding fluid are often difficult to model precisely whereas they
may significantly influence and perturb its motion. By using a stan-
dard Lyapunov-based approach, novel nonlinear feedback control
laws are proposed to compensate for modeling errors and perform
robustly against such perturbations. Simulation results illustrating
these properties on a realistic model of a VTOL drone subjected to
wind gusts are reported.

Index Terms—Anti-windup, bounded nonlinear integrator, non-
linear control, thrust-propelled vehicle, trajectory tracking, under-
actuated system, velocity stabilization.

I. INTRODUCTION

A IRPLANES, helicopters and other VTOL vehicles,
blimps, rockets, hydroplanes, ships and submarines are

generally underactuated. These vehicles are basically com-
posed of a main body immersed in a fluid medium (air or
water), and they are commonly controlled via i) a propulsive
thrust force directed along a body-fixed privileged axis, and
ii) a torque vector with one, two or three complementary
independent components in charge of modifying the body’s
orientation. These vehicles are underactuated in the sense
that, apart from the direction associated with the thrust force,
the other possible direction(s) of displacement is (are) not
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directly actuated. Interestingly, the above-mentioned structural
similitude has seldom been exploited to develop a general
control framework for these vehicles. Various reasons can
be proposed. For instance, there exist important differences
between an airplane and a ship. The first vehicle evolves in air
and 3-D-space, whereas the other is (partly) immersed in water
and essentially moves on a 2-D-plane; the ambient fluid is not
the same and it produces either aerodynamic or hydrodynamic
reaction forces with different properties and magnitude; gravity
is not compensated by buoyancy in the case of an airplane,
but lift-force effects are more systematic and preponderant;
added-mass effects mostly concern ships, submarines, and
blimps; etc. Another probable reason is historical: aerospace
and naval engineering communities involved in the control of
these vehicles have not addressed common issues (the design
of autopilots, for instance) in a coordinated manner, nor at the
same time, nor with the same constraints (physical, econom-
ical, etc.), nor even with the same approaches. In this paper we
consider the case of vehicles moving in 3-D-space with four
independent actuators (one force and three torques), knowing
that six actuators would be necessary for full actuation. This is
a common actuation structure for many underactuated vehicles
evolving in 3-D-space. Modeling assumptions concerning the
environmental forces (drag, lift, gravity, etc) are introduced
to simplify the control design and stability analyses. They
basically infer i) that lift forces issued from the environment
are limited in intensity and ii) the existence of an external force
field. They are, for instance, satisfied by most wingless VTOL
vehicles subjected to the action of gravity [9], [11], [19], [20].
Extension of the approach to vehicles whose motion relies on
intense lift forces, like e.g., airplanes [1], remains to be worked
out. As for the assumption about the existence of an external
force field, it essentially serves to exclude the difficult case
when the linearized system along the considered reference
trajectory is not controllable. This case corresponds, e.g., to
situations when buoyancy exactly annihilates the action of
gravity, as this may happen in the 3-D-case of submarines and
blimps or in the 2-D-case of a sea ship, and when the reference
trajectory consists of a fixed “pose” (i.e., position and orienta-
tion). Specific (and still prospective) nonlinear techniques are
then required to solve the stabilization problem (see e.g., [23]).

An important motivation of this work is related to robustness
issues, which can be critical for the systems under consider-
ation due to a combination of factors. First, the complexity
of aero/hydro-dynamic effects impedes to obtain a precise
dynamical model, valid in a large operating domain. Then,
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vehicles are often subjected to rapidly changing perturba-
tions (wind gusts, sea currents, etc.) whose magnitude can
be commensurable with the available actuation power. Fi-
nally, measurement/estimation errors of the vehicle’s pose
can be significant. Of course, these issues have long been
investigated in the context of linear control (see e.g., [1],
[8], [29], [34] and the references therein). More generally,
all kinds of linear control methods (Nyquist-like techniques
[7], [34], and optimization [10], [21], LQR optimal
control [18], [34], etc.) have been applied to these systems.
They concern Single-Input-Single-Output (SISO) Control
Augmented Systems (CAS) associated with the regulation of
a single variable (pitch, yaw, roll angle, altitude, etc.) as well
as Multi-Input-Multi-Output (MIMO) CAS. However, they
only guarantee a limited domain of stability and are often
based on restrictive assumptions (e.g., hovering regime without
wind gusts for VTOL vehicles). For these reasons, nonlinear
control design methods (feedback linearization, backstepping,
sliding mode, etc.) have been increasingly investigated in
recent studies [3], [12], [15], [20], [25], [28], [33]. Robustness
issues are particularly important for light and/or small vehicles,
like blimps or reduced-scale VTOL vehicles and AUVs (Au-
tonomous Underwater Vehicles) because they are very sensitive
to wind or current-induced perturbations. The last decades
have witnessed an increasing interest in the construction and
control of these vehicles. Let us mention the examples of the
HoverEye [5], [6], [27], [28], X4-flyer [11], [35], iStar [19],
or AVATAR [31] VTOL vehicles, the AURORA airship [2],
[24], the ROGUE underwater glider [18], or the Minesniper
AUV [30]. This interest is much related to the versatility of
these systems for surveillance and inspection missions, and to
the development of low-cost and low-weight embarked sensors
(Inertial Measurement Unit, camera, etc.). However, nonlinear
control studies focusing on robustness issues for these systems,
like [2], [24], [28] for instance, are not numerous. The present
paper is also a contribution to the design and analysis of robust
nonlinear control laws.

In this paper, several control modes typically associated with
different levels of motion autonomy are considered. Particular
attention is paid to the three following problems: i) stabiliza-
tion of (desired) reference thrust directions, ii) stabilization of
reference linear velocities, and iii) stabilization of reference po-
sition-trajectories. The first and second problems relate typi-
cally to manual joystick-augmented-control situations, whereas
the third one is associated with fully autonomous motion ap-
plications. At first glance, the proposed approach is reminis-
cent of methods described in [9], [28], [32] for the stabiliza-
tion of hovering VTOL vehicles, based on the idea of: i) using
the thrust force and the vehicle’s orientation as control variables
to stabilize the vehicle’s velocity and/or position, and ii) ap-
plying a classical backstepping procedure or a high-gain con-
troller to determine torque-inputs capable of stabilizing the de-
sired orientation. Here, instead of the vehicle’s orientation, we
use its angular velocity as intermediary control input. This alle-
viates several difficulties associated with control inputs which
belong to a compact manifold and enter the system’s equation
in a non-affine manner. It also allows to cast linear velocity
and position control problems as natural extensions of the basic

thrust direction control one. Another originality of this paper
concerns unmodeled dynamics. It is well-known from Control
Theory that integral correction constitutes an effective means
to compensate for modeling, measurement, and/or estimation
static errors (biases). However, it is also well-known that this
type of correction may generate instability and windup prob-
lems. Many control design techniques addressing these prob-
lems have been proposed during the last decades, like linear
Anti-Windup Bumpless Transfer (AWBT) schemes (see e.g.,
[17] and the references therein), or nonlinear nested saturations
approaches (see e.g., [36]). AWBT control schemes can effi-
ciently reduce windup effects, but their global stability is diffi-
cult to guarantee. Nested saturations approaches yield bounded
correction terms, thus reducing effectively the risk of saturation
of the actuators which could jeopardize the stability of the con-
trolled system. However, this does not prevent the integral terms
involved in the correction function to grow arbitrarily large,
leading to slow desaturation and sluggish dynamics. The non-
linear integrator bounding technique proposed here deals with
these problems and is another contribution of the paper. Finally,
the way energy dissipation produced by motion reaction forces
is exploited for the control design and the stability analyses con-
stitutes to our knowledge a novel interpretation which justifies
the use of simple models and supports observations made by
other authors [30].

The paper is organized as follows. The notation and the dy-
namic modeling of the class of systems considered are recalled
in Section II. Assumptions on the external forces applying to the
system (gravity, aero/hydro-dynamic forces, etc.) are introduced
and discussed in this section. By using a standard Lyapunov-
based approach, initial control laws are derived in Section III
under other assumptions which simplify and facilitate the expo-
sition of the main lines of the approach. In Section IV, the con-
trollers are modified in order to comply with more realistic as-
sumptions. Simulation results for a particular model of a VTOL
vehicle are described in Section V to illustrate the concepts. Fi-
nally, concluding remarks are given in Section VI.

II. NOTATION AND MODELING

Notation

In this paper, we focus on vehicles which can be modeled as
rigid bodies immersed in a fluid. The following notation is used.

• is the vehicle’s center of mass, its mass, and its
inertia matrix. Both and are assumed to be constant.

• is a fixed (inertial or Galilean) frame
with respect to (w.r.t.) which the vehicle’s absolute pose is
measured. This frame is chosen as the NED frame (North-
East-Down) with pointing to the North, pointing to
the East, and pointing to the center of the earth.

is a frame attached to the body. The vector
is parallel to the thrust force axis. This leaves two possible
and opposite directions for this vector. The direction here
chosen ( pointing downward nominally) is consistent with
the convention used for VTOL vehicles.

• The vector of coordinates of in the basis of the fixed
frame is denoted as with the T-symbol
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used for the operation of transposition. Therefore,
, a relation that we also write in a more

concise way as . The orientation of
the body-fixed frame w.r.t. the inertial frame is rep-
resented by the rotation matrix . The column vectors of

correspond to the vectors of coordinates of ex-
pressed in the basis of . The vector of coordinates asso-
ciated with the linear velocity of w.r.t. is denoted as

when expressed in the basis of , and
as when expressed in the basis of , i.e.,

. The angular ve-
locity vector of the body-fixed frame relative to the fixed
frame , expressed in , is denoted as .
The notation defined in the present item will also be used
with the subscript “ ” to denote reference trajectories, i.e.,
the trajectories to be stabilized. For example, denotes a
reference velocity vector associated with the vehicle’s ve-
locity vector . We assume that the reference trajectories
are defined on .

• The ambient fluid velocity w.r.t. is denoted as
. The “apparent velocity” of the

body is the difference between the velocity of and
the ambient fluid velocity, i.e., . One has also

, with and
.

• denotes the canonical basis of . ,
denotes the skew-symmetric matrix associated with

the cross product by , i.e., , , with
the cross product operation. The Euclidean norm in

is denoted as , and the inner product as .
• A function is u.b. (for ultimately

bounded) by a constant if there exists a time such that
. An output is

u.u.b. (for uniformly ultimately bounded) by a constant
along the solutions to a differential equation
if, , is u.b. by , where

denotes the solution at time with initial con-
dition at .

A. System Modeling

We consider mechanical systems with four control inputs: one
force input (also termed “thrust” input) along the body-fixed
direction to create longitudinal motion, and three indepen-
dent torque inputs to monitor the vehicle’s attitude. We assume
that the thrust applies at a point that lies on, or
close to, the axis , so that it does not create an impor-
tant torque at . The torque actuation is typically obtained via
secondary propellers (X4-Flyer), rudders or flaps (HoverEye),
control moment gyros (see [37]), etc. Complete torque actua-
tion allows one to modify the vehicle’s attitude in order to di-
rect the thrust at will. All external forces acting on the vehicle
(gravity and buoyancy forces, added-mass forces, and dissipa-
tive aerodynamic or hydrodynamic reaction forces) are summed
up in a vector , so that the total resultant force applied to the
vehicle is . In the absence of motion reaction
forces exerted by the ambient fluid on the vehicle, only gravity,
eventually counteracted by buoyancy forces of roughly constant

magnitude, is present in . This force can then be modeled as
a constant vector parallel to the axis associated with the
fixed frame . However, due to aerodynamic or hydrodynamic
reaction forces, this vector generally depends on the apparent
body velocity and acceleration (via added-mass effects), i.e.,
on as well as on the vehicle’s attitude . It may
also depend on the vehicle’s position when the characteristics of
the ambient fluid are not the same everywhere. For simplicity,
this latter dependence will not be considered here. Moreover,
whereas the dependence on accelerations is roughly linear, it is
known that the intensities of motion reaction forces vary like the
square of . Therefore, the intensity and direction of can
vary considerably as soon as the vehicle’s velocity is modified
significantly, or due to important modifications of the ambient
environment (waves, wind, etc.). Modeling the various compo-
nents of this function is, in general, time consuming and costly.
This modeling effort is necessary for simulation purposes, and
also for the optimization of the vehicles’ geometrical and me-
chanical characteristics. A model of can also be of use for
control design purposes, but the knowledge of a precise and
well-tuned model may not be as critically important as for sim-
ulation. Indeed, a well-designed feedback control is expected to
grant robustness -in the sense of performance insensitivity- with
respect to model inaccuracies. Furthermore, using on-line mea-
surements or estimations of based on a crude model in the
control can be preferable to using a sophisticated but nonethe-
less imperfect model of this force. In [14], an estimation of

based on the measurement of the vehicle’s velocities and
a high gain observer is proposed. Since there exists a variety
of solutions to this problem, we henceforth assume that and
its time-derivative are measured and/or estimated with “reason-
ably” good accuracy. Although the present paper focuses almost
exclusively on control aspects we are aware that, for many appli-
cations, measurement/estimation issues are complementary and
critically important.

Applying the fundamental theorem of Mechanics in the co-
ordinates yields

(1)

with the vector of coordinates of expressed in
the inertial frame. By expressing the dynamics in the body-
fixed frame , and by using Euler’s theorem of angular mo-
mentum, one obtains the following equations (see e.g., [8, Ch.
2], [34, Ch. 1])

(2)

with the vector of torque inputs and
the external torque induced by the external forces. Equation (2)
shows that the dynamical subsystem is fully-actuated. Ex-
ponential convergence of the angular velocity to any bounded
desired reference value is then theoretically possible, especially
when the external forces apply at points close to the center of
mass and is negligible. In this case, one may view as an
intermediary control input. In practice, this corresponds to the
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classical decoupled control architecture between inner and outer
loops. The inner control loop provides high gain stabilization of
the vehicle’s angular velocity based on direct measurement of
the angular velocity from the Inertial Measurement Unit. The
outer control loop uses pose measurement along with estima-
tion or measurement of the linear velocity as sensor inputs, and
the angular velocity set point and thrust intensity as control in-
puts. For many applications, the time-scale separation between
the two loops is sufficient to ensure that the interaction terms
can be ignored in the control design. Therefore, in the sequel
we consider and as the control inputs, and we focus on the
control of the subsystem .

Assumptions

To simplify both the control design and the associated
analyses we make some assumptions discussed hereafter.

Assumptions 1: depends only on the vehicle’s linear ve-
locity and the independent time variable . Moreover, it is
continuously differentiable with respect to these variables, and
the functions , , and

are bounded on , uniformly with respect to
in compact sets.

The non-dependence of on the vehicle’s attitude is phys-
ically justified when the aerodynamic (and/or hydrodynamic)
forces do not depend on the vehicle’s orientation, a property
which depends essentially on the vehicle’s shape. This assump-
tion is clearly violated in the case of airplanes which are sub-
jected to lift forces whose intensities are very sensitive to angles
of attack, but it better holds in the case of VTOL vehicles, as
examplified by the “HoverEye” of Bertin Technologies Group.
As for the non-dependence upon the angular velocity , As-
sumption 1 is better justified when i) the external forces apply
at points close to the vehicle’s center of mass, ii) motion reac-
tion forces resulting from the vehicle’s rotation can be neglected
when compared to those produced by translational motion. Fi-
nally, the non-dependence on the acceleration variables and

is justified when added-mass effects can be neglected. These
effects can be ignored when the density of the body is much
more important than that of the ambient fluid. The example of
a dense spherical body whose center coincides with its center
of mass can be used to concretize a physical situation for which
Assumption 1 holds with a good approximation.

The following two complementary assumptions are much less
restrictive than the previous one. However, they are very impor-
tant for the control design and analyses presented in Section IV.

Assumption 2: There exist two real numbers
such that

(3)

Assumption 3: There exist two real numbers
such that

(4)

Assumption 2 indicates that the intensity of cannot grow
faster than the square of the intensity of the vehicle’s velocity
vector. This is consistent with common models of aerodynamic
and hydrodynamic drag and lift forces (see e.g., [8, Ch. 2, 3],
[34, Ch.2]). The constant allows to take into account the force

of gravity, when it is active, and the action of perturbation forces
produced by wind or sea-current. Assumption 3 follows from
Assumption 2 and the “dissipativity,” or “passivity,” property of
drag and lift forces. In particular, it indicates that for “large” ve-
locities, the negative work of these forces increases like the cube
of the body’s apparent velocity, and thus becomes predominant
when all other forces remain bounded.

Finally, the following assumption is made to avoid non-es-
sential complications in the analyses.

Assumption 4: The reference velocity is bounded in norm
on by a constant , and its first and second order derivatives

and are well-defined and bounded on this set.

III. BASICS OF THE CONTROL DESIGN

Using Assumption 1 the subsystem of System (2) can be
rewritten as

(5)

with called the “apparent acceleration,”
and and used hereafter as the control inputs.

This section is devoted to the stabilization of either the ve-
hicle’s thrust direction, or its linear velocity, or its position. The
angular velocity about the thrust axis is not involved in the
realization of these control objectives, so that this degree of
freedom can be used for complementary objectives and defined
case-by-case, depending on the considered vehicle and applica-
tion. A priori, there are infinitely many possibilities at this level,
starting with the simplest choice . In [26, pp 105–108]
this variable is determined in order to take advantage of lift
forces associated with an asymmetric VTOL vehicle. In the se-
quel, to simplify the control design and the associated analyses
we assume that is well-defined and bounded on .

A. Thrust Direction Control

Let denote the normalized vector of coor-
dinates of the desired thrust direction expressed in the inertial
frame . In practice this desired direction may be specified by a
manual joystick. The objective is to stabilize the vehicle’s thrust
direction about the reference vector or, equivalently, to stabi-
lize about . Define

(6)

and let denote the angle between the two unit vec-
tors and , so that , the third component of . The
control objective is also equivalent to the asymptotic stabiliza-
tion of . The first control result of this paper is stated next.

Proposition 1: Let denote a strictly positive constant, and
apply the control law

(7)

to the system . Then the equilibrium point
of the controlled system is exponentially stable with domain of
attraction equal to .
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The proof of this proposition is given in Appendix I-B. In
what follows we show how this controller can be extended to
the linear velocity and position control problems.

Remark 1: The above control law (like those presented in
the forthcoming sections) makes use of the feedforward term

, which is not always available in practice. Simulations with
the VTOL model and numerical data of Section V have shown
that good performance (in the sense of “small” ultimate tracking
errors) is also obtained when in (7) is set equal to zero and
its actual value is not too large. This can be justified rigorously
using the Lyapunov function (33) of Appendix I-B.

Remark 2: To simplify the stability statement, the equilib-
rium set and domain of attraction have been expressed in term of
the variable . However, Proposition 1 can be stated without re-
ferring to by defining the equilibrium set as
and the associated domain of attraction as

.

B. Velocity Control

Let denote the reference velocity expressed in the iner-
tial frame , its time-derivative, and the
velocity error expressed in the body-fixed frame . Instead of
defining as a reference unit vector as in the previous subsec-
tion, we now define

(8)

One then obtains the following error model:

(9a)

(9b)

(9c)

with either , the integral of the ve-
locity error, or , the position tracking error when a
reference trajectory is specified.

The problem of asymptotic stabilization of the linear velocity
error to zero is clearly equivalent to the asymptotic stabi-
lization of to zero. Equation (9b) indicates that implies
that

(10)

As long as is different from zero, one can define a locally
unique thrust direction solution to the above equation. However,
this solution cannot be prolonged by continuity at . As a
matter of fact, one can verify that this singularity corresponds
to the case when the linearization of System (9b)–(9c) at any
equilibrium point is not controllable. As ex-
plained in the introduction, this critical case is not the subject
of the present paper. Beyond the technical difficulty associated
with this case (which could be addressed in future studies), the
main reason is that the vanishing of does not correspond to
a generic situation for a large class of underactuated mechan-
ical systems (those for which is nominally different
from zero). We thus essentially discard this issue here by as-
suming that

Assumption 5: There exists a constant such that
for all .

Although this assumption is restrictive, it simplifies the expo-
sition of a basic and generic control design. In Section IV, how-
ever, we will weaken this assumption and propose an ad-hoc
adaptation of the control design in order to ensure the well-
posedness of the controller’s expression and maintain a minimal
control of the vehicle when gets close to zero. When both
Assumption 5 and relation (10) hold, using (6) one deduces that

Let denote the angle between the two
unit vectors and , so that . The control
objective implies that either (i.e., ) or
(i.e., ) must be asymptotically stabilized. The choice
between these two equilibria is often made via simple physical
considerations such as minimizing the energy consumption in
relation to actuator’s efficiency and vehicle’s shape, or by taking
into account the unilaterality of the thrust direction as in the case
of most VTOL vehicles. Without loss of generality, we hence-
forth assume that the choice has been made to stabilize .
Based on the above notation the second control result of this
paper is stated in the next proposition.

Proposition 2: Let , , denote strictly positive con-
stants, and apply the control law

(11)

to System (9). Suppose that Assumptions 1, 4, and 5 are satis-
fied. Then, for the subsystem (9b)–(9c), the equilibrium point

of the controlled system is asymptotically stable
with domain of attraction equal to .

The proof of this proposition is given in Appendix I-C. It is
based on the use of the candidate Lyapunov function

(12)

whose time-derivative is negative semi-definite along any solu-
tion of the controlled system.

C. Velocity Control With Integral Term

For the stability and convergence analysis of the control (11),
it is implicitly assumed that is per-
fectly known. In practice however, due in particular to the diffi-
culty of obtaining precise measures or estimates of , the ap-
parent acceleration is not known exactly, nor is therefore.
It is well-known from the theory of linear control systems that
integral correction terms can compensate for additive perturba-
tions which, in the present case, may take the form of a constant
bias in the measurement (or estimation) of . The objective of
this subsection is to show that the control (11) can be modified
in order to still ensure the convergence of to zero when
such a bias is present. To this purpose let us introduce the fol-
lowing integral term:

(13)
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where is an arbitrary constant. Also, let denote a smooth
bounded strictly positive function defined on such that,
for some positive constants

(14)

(15)

An example of such a function is ,
with a positive constant. Let denote the measure (or es-
timate) of and define now as follows (in replacement of
relation (8))

(16)

Proposition 3: Apply the control law (11) to System (9) with
defined by (16). Suppose that

i) Assumptions 1, 4, and 5, with given by (16), are satis-
fied;

ii) the measurement (or estimation) error is
constant;

iii) .
Then, for System (9b)–(9c) complemented with the equation

, there exists a constant vector such that
the equilibrium point of the controlled
system is asymptotically stable, with domain of attraction equal
to .

The proof is similar to the proof of Proposition 2. It is given
in Appendix I-D.

Let us briefly comment on the role of the function and its
properties. The property (14) of is introduced in order to limit,
via (16), the influence of the integral in the control action.
However, Assumption iii) of Proposition 3 also points out that
the upper-bound associated with the choice of this function
should not be too small in order to compensate for a large esti-
mation error . On the other hand, in view of (16) a small value
for may reduce the risk of evolving close to zero. This
policy leads, for instance, to choose in the case when is
essentially equal to the gravity acceleration, and the estimation
error and are small compared to this acceleration. These
considerations illustrate that a compromise has to be found, de-
pending on the considered application.

D. Position Control

The third control objective is the combined stabilization of the
velocity error (or ) and the position error
to zero. A first solution to this problem is provided by the con-
trol proposed in the previous subsection since, by setting

in (13), one has . Now, alike the velocity sta-
bilization case, it can be useful (and even necessary) in practice
to complement the control action with a position error integral
correction term. A possibility consists in using a term propor-
tional to the output of a classical integrator of (i.e., )
in the control expression. However, this solution presents sev-
eral drawbacks. For example, the integral correction term may
grow very large and this may in turn cause large overshoots of
the position tracking error. To avoid this problem, and also cope
with actuator limitations, one must saturate the integral term.
This can be done in many ways, some better than others. For

instance, it is important to prevent the so-called desaturation (or
windup) problem from occurring in order to not overly increase
the system’s time response. The solution proposed in this paper
is based on a nonlinear dynamical extension yielding a type of
bounded nonlinear integrator. More precisely, we denote the
solution to the following differential equation driven by

(17)

where denotes a smooth bounded strictly positive function
satisfying (14)–(15) for some positive constants , and

is a continuous “saturation function” characterized by the
following properties, with a positive number associated with
this function,

P1. is right-differentiable along any smooth curve and
its derivative is bounded.
P2. , if , .
P3. such that , .
P4. such that ,

.
A possible choice (for which ) is the classical saturation
function defined as

(18)

One verifies from (17) that ultimate uniform upper-bounds of
, , and are , , and ,

respectively. Define

(19)

(20)

(21)

where denotes the measurement (or estimation) of , and
is a smooth bounded strictly positive function satisfying

(14)–(15) 1 for some constants .
Proposition 4: Let , , denote strictly positive con-

stants. Apply the following control law:

(22)

to System (9) with , and (which intervenes in the definition
of ) defined by (20), (21), and (19) respectively. Suppose that

i) Assumptions 1, 4, and 5, with given by (21), are satis-
fied,

ii) the measurement (or estimation) error is
constant,

iii) ,
iv) , where denote the unique solution to the

equation .
Then, for System (9) complemented with (17), the equilibrium
point of the controlled system is

1Note that h can be different from h .
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asymptotically stable, with domain of attraction equal to
.

The proof of this proposition is given in Appendix I-E.
The role of the function has been commented upon in the

previous subsection. For position stabilization, we further re-
mark that the property (14) of bounds the contribution of the
position error in defined by (21), and thus also in the control
inputs defined by (22). This limits the influence of large initial
position errors on the control inputs intensity and reduces the
risk of saturating the actuators. Note that the choice of is still
a matter of compromise. Let us comment on the role of the co-
efficient . Equation (17) points out that influences the rate
of desaturation of which can be observed, for instance, when

is initially larger than and . The larger , the faster
the desaturation and the smaller the influence of this integral
action on the system’s time response. On the other hand, since
upper-bounds of and are proportional to , a “small”
value of tends to limit the risk of saturating the actuators. A
large value of also increases the range interval of and, sub-
sequently, the risk of getting close to zero (a value for which
the control is no longer defined). The tuning of is thus again
a matter of compromise to be solved case-by-case depending on
the considered application.

E. Control With Unidirectional Thrust

In many applications the thrust direction cannot be inverted.
This means that only a positive (resp. negative) or null control
can be applied. For the control laws given in Propositions 2–4,
this sign constraint is satisfied in the neighborhood of the sta-
bilized equilibrium point (since and from As-
sumption 5). However, it is not satisfied in the entire domain of
attraction of this equilibrium. The following proposition points
out how the position control law (22) in Proposition 4 can be
modified to comply with the constraint , without conse-
quences on the stability issue.

Proposition 5: Let , , denote strictly positive con-
stants, and and as defined in Proposition 4. Let
denote a strictly increasing smooth function such that
and . Apply the control law

(23)

to System (9). Suppose that Assumptions i)–iv) of Proposition 4
are satisfied. Then the asymptotic stability result of Proposition
4 still holds.

The proof of this proposition is similar to the proof of Propo-
sition 2. It is given in Appendix I-F. The proposed modification
of the control law applies also to the control laws of Proposi-
tions 2 and 3 by simply replacing in the control expression
(23) by . A possible choice for the function is given, e.g., by

IV. CONTROL ROBUSTIFICATION

The results of the previous section rely upon the satisfac-
tion of Assumption 5 which unconditionally guarantees the ex-
istence and local uniqueness of the desired thrust direction in
the velocity and position control cases. For most underactuated
vehicles, this assumption is too strong. Let us illustrate this on
a simple example.

Example 1: (Spherical vehicle) Consider a spherical vehicle,
with its center of mass coinciding with the sphere’s center, sub-
mitted to the action of gravity, drag forces, and added-mass ef-
fects. The translational dynamics of the vehicle are given by (1)
with , and positive
constant numbers associated with drag forces and added-mass
effects respectively. This equation can be rewritten as (compare
with (1)) with , and

. The term of (8) is thus given
by

. When drag effects can be neglected (i.e., ),
Assumption 5 is not satisfied when the reference acceleration
vector is equal to . As a matter of fact, the above
relation points out that there always exists a velocity such that

.
Another example is provided by a ship drifting with the sea

current at zero relative velocity. Indeed, the sum of external
forces applied to the ship is equal to zero in this case. Even
though one may hope that the set of “bad” velocities does not be-
long to the nominal operational domain of the vehicle, these ex-
amples indicate that, in some cases, Assumption 5 does not hold.
Moreover, when the control is no longer defined. Now,
to ensure local stability it is sufficient that does not vanish
near the considered reference velocity . This suggests to re-
place Assumption 5 by the following weaker assumption.

Assumption 6: There exists a constant such that
for all .

Under this assumption, the control laws proposed in
Section III are locally well-defined and ensure local asymptotic
stability of the desired reference velocity/position trajectory.
This may be sufficient for many applications. However, for
practical purposes one would like to ensure that the control
calculation is always well-posed and that the tracking errors can
never diverge explosively, whatever the adverse environmental
conditions or poorly chosen reference trajectories for which
approaches the null vector at some time-instant. Accordingly,
the objective of this section is to modify the controllers of
Section III in order to have the three following properties
satisfied simultaneously:

P1) local asymptotic stability when Assumption 6 is satis-
fied;
P2) well-posedness of the expression of the control even
when Assumption 6 is not satisfied;
P3) global uniform ultimate boundedness of the system’s
velocities and even when Assumption 6 is violated.

The modifications are carried out for the velocity control objec-
tive of Proposition 2, but they are also valid for the other con-
trol laws proposed in Section III modulo straightforward trans-
positions which are shortly commented upon at the end of this
section.
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Property P2) is simply obtained by multiplying the un-
bounded terms and in the control ex-
pression (11) by an adequate function taking the value one
inside a neighborhood of the reference trajectory and zero
at . For instance, one can use the class function

defined by

if

otherwise
(24)

for some constant . This yields the modified control ex-
pressions

(25)

This modification does not forbid the satisfaction of Property
P1). The fulfilment of Property P3) is more involved. It relies
in the first place on the following observation, which is a direct
consequence of the dissipativity of drag forces (i.e., Assumption
3).

Proposition 6: Suppose that Assumption 3 is satisfied and
that is calculated according to a feedback law such that, for
some constants

(26)

Then, the linear velocity of the controlled vehicle is u.u.b..
Moreover, under Assumption 1, , and the linear accelera-
tion are also u.u.b..

The proof of this proposition consists in calculating the time-
derivative of and showing that it is negative when

exceeds a certain threshold (see [13] for details).
The objective is now to modify the expression (8) of

so that , as given by (25), can satisfy inequality (26) without
destroying the property of local asymptotic stability. To this pur-
pose let denote a continuous “saturation function” sat-
isfying Properties P1, P2, P3 of the function and also
the following property P4: There exists a continuous function

such that , and
. A possible choice is the saturation

function defined by (18).
Let denote any bounded function of class
whose derivative is also bounded. The role and choice of

this function will be commented upon further, along with some
examples. Define now as follows:

(27)

with

(28)

and a positive real number the choice of which is discussed
further. From (27), Assumption 4, the boundedness of , and
the boundedness of the function , it follows that there exists
a finite value such that, whatever

(29)

Therefore, in view of the expression of in (25), inequality (26)
is now satisfied. Prior to stating the main stabilization result of
this section we need to introduce some extra notation. Since
is bounded by assumption, it follows from Assumptions 2 and
3 (recall that ) and (28) that there exist constant
numbers such that,

(30)

Consider the following polynomial in :
, with . Since , there exists a

number such that .
The following theorem, proved in Appendix I-G, is the main

result of this section.
Theorem 1: Let , , denote strictly positive constants.

Apply the control law (25) to System (9), with and given
by (24) and (27) respectively. Suppose that , where
and are the constants involved in relation (24) and Assumption
6 respectively. Suppose that Assumptions 1, 2, 3, 4, and 6 are
satisfied. Then,

1) and are well-defined and bounded along any solution
of the controlled system;

2) is u.u.b. along any solution of the controlled system;
3) for the subsystem (9b)–(9c), the equilibrium point

of the controlled system is locally asymptotically
stable if , with the constant associated
with the function intervening in . Furthermore, if

and , the
attraction domain is equal to .

By comparison with the control laws of Section III, the control
(25) depends on extra design terms ( , and the functions
and ) which can be tuned so as to maximize the domain of
stability of the closed-loop system. Let us illustrate this tuning
possibility in the case of the spherical vehicle already consid-
ered in Example 1.

Example 2: (Spherical vehicle, continued) To simplify
we assume that the desired velocity is constant, i.e.,

. In this case, , with
the gravity acceleration vector field, and

the acceleration vector
associated with aerodynamic forces. Let us assume that the
function is defined by (18), and consider two possible
choices for (among others). First, let . Then

and . Since the norm
of is non-zero and constant, and is bounded by

, Assumption 6 is satisfied if . In this case,
. Moreover, if ,

the equilibrium is “globally” asymptotically
stable (i.e., the domain of attraction is ). However,
imposing this inequality on may not be compatible with
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Fig. 1. Inertial and body-fixed frames.

the satisfaction of the condition
which guarantees the largest possible domain of attraction.
Indeed, in this case one has , , and

, so that the condition
is now equivalent to . Therefore, the satisfaction of
Assumption 6 and global asymptotic stability are guaranteed
provided that . Now, to stabilize
larger reference velocities which do not satisfy this inequality
it is necessary to use values of larger than . How-
ever the positivity of can no longer be guaranteed
locally around any reference velocity. In this case, instead
of choosing , one might as well set , so
that . With this choice
the positivity of is not unconditional, but it is satis-
fied in the neighborhood of any reference velocity such that

. From Theorem 1 local asymptotic
stability is also obtained if .

Remark 3: The controllers of Propositions 3–5 can be mod-
ified in a similar way. Consider for example the position con-
trol law of Section III-D. One can define (compare with (21))

, with
and state stability results as in Theorem 1. The sole difference
concerns the condition of Theorem
1 which yields global asymptotic stability. It has to be replaced
by the stronger condition .

V. SIMULATION RESULTS

This section illustrates the performance and robustness of the
proposed controllers for a model of a VTOL vehicle similar to
the “HoverEye” developed by Bertin Technologies Group (see
[5], [6], [27], [28]). This vehicle, whose shape roughly corre-
sponds to the one depicted on Fig. 1, belongs to the class of “sit
on tail” VTOL UAVs. It is symmetric along a privileged axis
taken as the axis . In the first approximation, its inertia
matrix is diagonal and .

The system’s equations used in the simulations are given by
(2) with (see [28] for details)

(31)

where
• is the vector of coordinates of expressed in the

basis of the inertial frame , and is the sum of all aero-
dynamic reaction forces (lift, drag, and momentum drag);

• is the torque induced by these forces;
• is the distance between the plane of controlled fins and

the vehicle’s center of mass.

Expressions of and are specified in [13]. Wind tunnel
measurements and aerodynamic modeling for this class of
VTOL vehicles have been reported in [27]. By setting

(32)

the subsystem in (2) takes the form of System (5). How-
ever, Assumption 1 is violated because depends on the ve-
hicle’s orientation and angular velocity, and also because is
related to the angular acceleration so that depends also on
these variables. Discrepancies like this one between the ideal
model used for the control design and the physical system rep-
resent an opportunity to test by simulation the robustness of the
proposed controllers. The complete vehicle’s pose (i.e., and

) is measured together with all velocity components (i.e.,
and ). The simulation results presented next have been ob-
tained with the following estimated physical parameters of the
vehicle:

.
To test the robustness of the proposed controllers with re-

spect to static modeling errors we assume that the real gravity
acceleration is , the real vehicle’s mass is

, and the real vehicle’s inertia matrix is
.

Among the three control modes considered in the paper, po-
sition stabilization is the most advanced one and simulations are
only presented for this mode. For the first subsystem the con-
troller of Proposition 5, modified as proposed in Section IV, is
applied. The desired yaw angular velocity is set to zero
and a high gain controller is applied to the second subsystem
in order to stabilize the angular velocity at the desired value
whose first two components are generated by the first controller.
Note that the choice of a high gain controller is here justified by
the fact that is neither measured nor estimated. The ap-
plied control torque is calculated according to

, with a positive symmetric gain matrix here
chosen diagonal.

The following gains and functions are used
• , , , ,
• with and ,
• with ,
• , with and

,
• and as given by (18) with , .
• , as given by (24) with .

The gains , , , have been determined via
a pole placement procedure performed on the linearized system
of System (9)—System (17) at the equilibrium

in the particular case of a reference
trajectory consisting of a fixed point, with all external forces
being neglected. Details can be found in [13]. Two simulation
cases are reported.

Simulation 1: Stabilization at a Stationary Point: The con-
trol objective is to stabilize the vehicle’s center of mass , ini-
tially resting at the position . The initial ve-
hicle’s attitude is given by . This corresponds to the
equilibrium attitude associated with a fixed desired position in
the absence of wind. The desired position is .
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Fig. 2. Vehicle’s pose versus time, no integral correction, � = 12.

Initially there is no wind, but a horizontal wind step velocity
is introduced between the time-instants and

, followed by a larger one thereafter. This
simulation was devised to test the robustness of the proposed
controller when neither measurement nor estimation of aerody-
namic reaction forces is available. To this purpose we have used

in the control calculation, whereas the real value of
is given by (31)–(32) with and . It matters

also to illustrate the role and importance of the integrator de-
fined by (17). In this respect two control versions are used for
comparison purposes. The first one does not incorporate a posi-
tion integral action. This corresponds to setting the terms ,
and equal to zero. The second one contains the integral action
resulting from the calculation of and its first and second order
time-derivatives from (17). The evolution of the vehicle’s posi-
tion and attitude is shown on Figs. 2 and 3. With both control
versions, the position of the vehicle’s center of mass con-
verges to a fixed position. However, in the no-integral action
case (see Fig. 2) the position error does not converge to zero

Fig. 3. Vehicle’s pose versus time, integral correction, � = 12, and � = 8.

due to estimation errors on the vehicle’s physical parameters
and poorly modeled aerodynamic reaction forces. Fig. 3 shows
that the incorporation of the proposed integral action makes this
error converge to zero. Note that Assumption iv) of Proposi-
tion 5 ( , with ) must be
satisfied to guarantee the stability of the controlled system and
compensate for large wind-induced perturbations. When , the
upper-bound of , is smaller than 10 and the wind velocity
is “strong” –i.e., when modeling errors on external
forces are very large- we have observed, in simulation, the diver-
gence of the position error despite the integral action. This ex-
plains the use of a larger value of (i.e., ) in the reported
simulations. Recall however that, as discussed in Section III-C,
using a large value of has the side drawback of increasing the
risk of evolving close to zero. It also contributes to increasing
the magnitude of defined by (21), and thus also of the control
inputs defined by (22). This in turn increases the risk of satu-
rating the actuators, with known associated destabilizing effects.
To comply with actuators power limitations a small value of
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Fig. 4. Vehicle’s pose versus time, integral correction, � = 6, and � = 1,
on-line estimation of aerodynamic forces.

is preferable. This in turn militates in favor of the on-line mea-
surement or estimation of the apparent acceleration . In [14]
a high gain observer of this force, based on the measurement of
the vehicle’s translational velocity and orientation , and of
the thrust intensity , is proposed. Fig. 4 shows simulation re-
sults of the controller with integral correction when using such
an observer. Smaller values of and —the value associated
with the function – (i.e., , ) are also applied.
The improved tracking performance of this controller, which is
also used in the next simulation case, shows the interest of com-
plementing the integral correction action with the estimation of
the apparent acceleration.

Simulation 2: Trajectory Tracking With Strong Vari-
able Wind, Large Initial Position Error, and On-Line
Estimation of Aerodynamic Forces: The control ob-
jective is to track the following reference trajectory

. The initial ve-
hicle’s position and attitude are given by

and respectively. Integral correction in position is
used. To test the robustness of the controller with respect to
aerodynamic perturbations a “strong” variable wind is simu-
lated with velocity intensity variations represented on Fig. 6.
The error of estimation of the apparent acceleration is also
shown on this figure. Limitations of the actuators are also taken
into account by saturating the applied thrust force and torque
components according to the following inequality constraints

. The control
results of Fig. 5 illustrate the robustness of the controller with
respect to strong and rapidly varying wind-induced perturba-
tions and modeling errors. The tracking position errors decrease
almost linearly from large initial values and remain small there-
after (see Fig. 5(c)). At the beginning of the simulation, due
to the small value of (i.e., ) the thrust input remains
unsaturated (see Fig. 5(e)) despite large initial position errors.
The saturation occurring later on during short time intervals,
as a consequence of strong wind-gusts, marginally affects the
overall tracking performance.

VI. CONCLUSION

The present study attempts to set the foundations of a general
approach to the control of a large family of thrust-propelled un-
deractuated vehicles. Developing a control theory for vehicles
seemingly as different as a VTOL, an underwater vehicle, or a
space rocket may, at first glance, appears far-fetched and unre-
alistic. However, a closer look at the model equations of these
systems brings evidence that the idea is technically relevant. The
basic principle of the approach consists in monitoring the thrust
direction in order to allow for the compensation of the resultant
of external forces. Control laws conceived for incrementally
complex objectives (ranging from joystick-augmented-control
of the vehicle’s attitude to autonomous trajectory tracking)
have been derived, with the support of Lyapunov stability
and convergence analyses. To cope with imprecise modeling
and/or measurement of the forces acting on the vehicle, ef-
fective integral and anti-windup correction terms have been
introduced, whereas this type of correction is often overlooked
in nonlinear control studies. On the other hand, the concern of
genericity induced a certain number of simplifying assump-
tions. For instance, the existence of attitude control actuators
enough powerful to overcome environmental perturbating
torques was assumed, as well as the availability of accurate
measurements/estimations of the vehicle’s pose and velocity.
Clearly the validity of these assumptions has to be assessed
when considering an application on a physical system. For the
genericity of the approach, it is important to extend this study in
two directions. The first one concerns the assumption according
to which environmental forces only depend on the vehicle’s
velocity (and the independent time-variable). This assumption
needs to be relaxed because it is not realisitic for a number of
vehicles, like airplanes, for which drag and lift forces depend
strongly on the angle of attack. The second direction con-
cerns the assumption of non zero-crossing upon the so-called
“apparent acceleration” –the resultant of external forces and
desired accelerations. A route could consist in coupling the
present approach with more involved, non-classical, control
techniques aiming at the unconditional practical stability of
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Fig. 5. Ascending reference spiral and vehicle’s trajectory in the presence of strong variable wind and large initial position errors. Control with integral correction,
� = 6, � = 1, and on-line estimation of 
 .

the system [23]. Besides these conceptual developments, con-
ducting experiments on physical systems is indispensable to

consolidate the results of this study with respect to claims of
robustness and performance in particular.
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Fig. 6. Wind velocities versus time. Error of estimation of the apparent accel-
eration (~
 = 
 � 
̂ ).

APPENDIX

A. Technical Lemma

Lemma 1: Let with a non-zero time-
dependent vector and the rotation matrix solution to (9c). Let

denote the vector . Then

The proof of this technical lemma, based on elementary calcu-
lations, can be found in [13].

Lemma 2 (Barbalat, see, e.g., [22]): Let denote
a solution to the differential equation
with a uniformly continuous function. Assume that

and , with a con-
stant value. Then, .

The case corresponds to the classical version of Bar-
balat’s lemma (see e.g., [16]).

B. Proof of Proposition 1

Consider the following candidate Lyapunov function

(33)

Differentiating along the solutions of the system
and using Lemma 1 with one has

Using expressions (7) of one gets

(34)
This relation points out that converges exponentially to zero.
This in turn implies the exponential convergence of to zero.
As for the stability of the equilibrium , it is a direct con-
sequence of (33) and (34).

C. Proof of Proposition 2

It follows from the definition of that

(35)

Consider the candidate Lyapunov function defined by (12).
Differentiating along the solutions of System (9a)–(9c) and
using Lemma 1 one gets

with . Substituting expressions (11) of , ,
and using (35) one obtains

(36)

Since is negative semi-definite, the velocity error term is
bounded. The next step of the proof consists in showing that
is uniformly continuous along every system’s solution in order
to deduce, by application of Barbalat’s lemma (i.e., Lemma 2),
the convergence of and to zero 2. To this purpose it suffices
to show that is bounded. In view of (36), Assumption 5, and
the boundedness of , this condition is satisfied if , , , and

are bounded.
From Assumption 4, the boundedness of , and the relation

, it follows that is bounded. Therefore, using
Assumptions 1 and 4 one deduces that , and are also

2Note that LaSalle’s theorem does not apply since the closed-loop dynamics
is not autonomous.
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bounded, and that (given by (11)) is also well-defined and
bounded. This implies that given by

(37)

is bounded. Since , it
comes from Assumptions 1 and 4 and the fact that and are
bounded that and are also bounded. Let us now show that
along each system’s solution there exists such that

(38)

It follows from (11), (35), and Lemma 1 that

Since and are bounded, there exists such that
. Equation (38) is thus satisfied

with . This implies the bound-
edness of and also, from (35), of . Along
with Assumption 5 and the fact that are bounded,
this ensures that the control inputs and , and thus , are
well-defined and bounded. Since are bounded, it
follows from (9b) that is also bounded. Finally, since both
and are bounded, one deduces that is bounded. The bound-
edness of then follows from (35) and from the
boundedness of . This concludes the proof of uni-
form continuity of and of the convergence of and to zero.
Note from (35) that and also converge to zero.

There remains to show that and converge to zero. By a
direct calculation, one deduces from Lemma 1 and (11) that

(39)

with

It is straightforward to verify that is bounded (so that
is uniformly continuous) by using the boundedness of ,
and ). Since is not necessarily uniformly con-
tinuous (because of the terms and ), the classical version
of Barbalat’s lemma does not apply. This explains the use of
the slightly generalized version given in Lemma 2. Using the
boundedness of , Assumption 5, and the properties obtained
previously (i.e., convergence of to zero and boundedness
of ) one verifies that converges to zero. Direct applica-
tion of Lemma 2 to System (39) ensures the convergence of

to zero. Since converges to zero and
, the convergence of to zero follows. As for the stability

of the equilibrium , it is a direct consequence of
relations (12) and (36).

D. Proof of Proposition 3

From the definition of , given by (16), (9b) can be rewritten
as

(40)

Define the continuous function . From (15),
is strictly increasing. Young’s inequality (see [4]) then allows to
establish the following relation

with the inverse of . This leads us to consider the following
candidate Lyapunov function

(41)

It is straightforward to verify that this function is positive and
proper with respect to . One verifies also that is proper with
respect to by verifying that the Hessian matrix of with
respect to is definite positive, i.e., , using the
condition (15) of the function . Using (40), Lemma 1, and the
relation one gets

(42)

Substituting the control expression (11) into (42) one obtains
that satisfies the equality (36). Then, the proof of convergence
of to proceeds as for Proposition 2. Note in
particular that the condition (15) of the function is useful to
ensure the boundedness of , and that its combination with As-
sumption iii) of Proposition 3 implies the existence of a unique
vector such that . Furthermore, to prove
that converges to one can apply Barbalat’s lemma (i.e.,
Lemma 2) to (40) with and

. As for the stability of the equi-
librium point , it is a direct consequence
of relation (41), the decrease of along the system’s solutions,
and the fact that this point is the unique minimum of .

E. Proof of Proposition 4

From (9b) and (20) it follows that the time-derivative of
satisfies the equation
which can be rewritten as

(43)

with defined by (21). Consider the candidate Lyapunov func-
tion

(44)
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where is specified in the proof of Proposition 3 and is given
by (6). As in the proof of Proposition 3, one verifies that is
positive and proper with respect to and . Using (43), (22),
and the relation one gets

(45)

From (17) one verifies that and are bounded. From (44)
and (45) one deduces that and are bounded. Since and are
bounded, the relations and imply that

and are also bounded. Then it follows from Property P1 of
the function , Property (15) of the function , and System
(17) that remains bounded. Denote the unique solution
to . From there, with the same arguments as
in the proof of Proposition 3, one deduces the convergence of

to and the stability of this equilibrium for the
corresponding subsystem. Now, let , ,

, and .
Note that is bounded and vanishes ultimately since
converges to zero. Note also that . Then,
System (17) can be rewritten as

or in the more compact form

(46)

with ,
, and

(a “perturbation” which vanishes ultimately). One verifies that
is the globally asymptotically stable point of the system

by considering the candidate Lyapunov function

(47)

Indeed, differentiating along the solution of the system
and using Property P4 of the function and Assump-

tion iv) of Proposition 4 one obtains

(48)

Since is bounded, is also bounded from its definition. As a
consequence, there exists such that . This,
along with relation (48), implies the existence of some positive
constants such that

(49)

Therefore, is an exponentially stable equilibrium of the
unperturbed system . Since converges to
zero, this in turn implies that the solutions to System (46) con-
verge to zero. The convergence of to follows. Then,

the convergence of to zero (proved previously) im-
plies that converges to zero. Finally, since and

converge to zero, also converges to zero.
Let us finally establish the stability of the equilibrium point

. From (44) and (45)
is a stable equilibrium of the controlled system, and

from (47) and (49) is an asymptotically stable equilib-
rium point of the system . Since the function in
(46) is continuous and identically equal to zero when ,
one deduces that is also a stable equi-
librium of the controlled system. The stability of the equilibrium

follows directly.

F. Proof of Proposition 5

The positivity of the thrust input results from the definition
of given in (23) and the assumptions on in Proposition 5.
Consider now the candidate Lyapunov function given by (44).
Using (43), Lemma 1, and the control expression (23) one gets

. From this
equality the proof proceeds like the proof of Proposition 4.

G. Proof of Theorem 1

The proof relies on the following technical lemma.
Lemma 3: Let as defined by (28). If

, then

(50)

Proof: If , Property P2 of the saturation
function implies that , and
the result follows. If , it follows from (30) and
the choice of that . Then, by using Property
P4 of the saturation function , relation (30), the relations

and , one gets

From the definition of the function , the inequality
implies that .

Inequality (50) follows.
From (25) and (29) relation (26) holds true for some posi-

tive constants . Property 2 of Theorem 1 (together with
the completeness of the system’s solutions) then directly fol-
lows by application of Proposition 6. Since Assumption 1 holds,
Proposition 6 implies also that , , are bounded. Since

is bounded, one deduces from (28) that remains
bounded. Combined with Assumption 4, relation (27), and Prop-
erty P1 of the function , this result implies that is
also bounded. As a consequence, it follows from (25) that ,

, and are well-defined and bounded along every system’s
solution. This and the boundedness of yield Property 1 of
the theorem. Let us now establish Property 3. Omitting the ar-
guments for and , we have that



1852 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 8, AUGUST 2009

Therefore, the time-derivative of the function defined by (12)
along the system’s solutions is given by

Replacing by their expressions in (25) one obtains

(51)

It follows from (30) and Assumption 4 that
, when

. Using Assumption 2 one deduces
that for in a neighborhood
of , when . Furthermore, since
by assumption, one deduces from (24) that in a
neighborhood of . Equation (51) becomes

and the proof of local asymptotic stability proceeds like the
proof of Proposition 2. Let us now consider the case when

and . This latter condi-
tion implies that . Therefore, (51) becomes

where the inequality follows from Lemma 3. From here the
proof proceeds like the proof of Proposition 2.
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