Transition Systems and Bisimulation

Giuseppe De Giacomo

Service Integration
 A.A. 2008/09

Transition Systems

Concentrating on behaviors: SUM two integers

- Consider a program for computing the sum of two integers.
- Such a program has essentially two states
- the state SO of the memory before the computation: including the two number to sum
- the state S1 of the memory after the computation: including the result of the computation
- Only one action, i.e. "sum", can be performed

Concentrating on behaviors: CheckValidity

- Consider a program for computing the validity of a FOL formula:
- Also such a program has essentially two states
- the state S_{1} of the memory before the computation: including the formula to be checked
- the state S_{2} of the memory after the computation: including "yes", "no", "time-out"
- Only one action, i.e. "checkValidity", can be performed

Concentrating on behaviors

- The programs SUM and CheckValidity are very different from a computational point of view.
- SUM is trivial
- CheckValidity is a theorem prover hence very complex
- However they are equally trivial from a behavioral point of view:
- two states S_{1} and S_{2}
- a single action α causing the transition

Concentrating on behaviors: RockPaperScissor

- Consider the program RockPaperScissor that allows to play two players the the well-known game.
- The behavior of this program is not trivial:

Concentrating on behaviors: RockPaperScissor (automatic)

- Consider a variant of the program RockPaperScissor that allows one players to play against the computer.
- The behavior of this program is now nondeterministic:

Concentrating on behaviors: WebPage
 http://www.informatik.uni-trier.de/~ley/db/

dblp.uni-trier.de

COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITÄT TRIER

maintained by Mishael tey-Weloome-EAO
Mirrors: ACM sugMon - VLDB Endow. - SusitE Central Earofe

Search

- Arthos-Tite - Adranoed - New: Faceted search (L38 Restarch Center, U. Hamnoren)

Bibliographies

- Confurceses SIGMOD YIDR PODS ER EDET LCDE POPI. ..
- Iouranls CACM TODS TOIS TOPDAS DKE YODR I Inf. systams IPLE TCS -
- Series LNCSILNAL IFIP
- Boder: Collectiona- DB Teutbolks
- By Subject Dutharee Syatems Lople Poof IR -

Full Text: ACM SIGMOD Anthology

Links

Concentrating on behaviors: Vending Machine

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

Transition Systems

- A transition system TS is a tuple $T=<A, S, S^{0}, \delta, F>$ where:
- A is the set of actions
- S is the set of states
- $S^{0} \subseteq S$ is the set of initial states
- $\delta \subseteq S \times A \times S$ is the transition relation
- $F \subseteq S$ is the set of final states
- Variants:
- No initial states
- Single initial state
- Deterministic actions
- States labeled by propositions other than Final/ᄀFinal

Process Algebras are
 Formalisms for Describing TS

- Trans (a la CCS)
- Ven $=20 c$. Ven $_{b}+10 c$. Ven $_{s}$
- Ven $_{b}=$ big.collect $_{\mathrm{b}}$.Ven
- Ven ${ }_{l}=$ small.collect $_{\mathrm{s}}$.Ven
- Final
- $\sqrt{ }$ Ven

- TS may have infinite states - e.g., this happens when generated by process algebras involving iterated concurrency
- However we have good formal tools to deal only with finite states TS

Example (Clock)

TS may describe (legal) nonterminating processes

Example (Slot Machine)

Nondereminisic transitions express
choice that is not under the control of clients

Example
 (Vending Machine - Variant 1)

Example
(Vending Machine - Variant 2)

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

- A binary relation R is a reachability-like relation iff:
- $(s, s) \in R$
- if $\exists a, s^{\prime} . s \rightarrow_{a} s^{\prime} \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in R$ then $\left(s, s^{\prime \prime}\right) \in R$
- A state s_{0} of transition system S reaches a state s_{f} iff for all a reachability-like relations R we have $\left(s_{0}, s_{f}\right) \in R$.
- Notably that
- reaches is a reachability-like relation itself
- reaches is the smallest reachability-like relation

Note it is a inductive definition!

Computing Reachability on Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS
Output: the reachable-from relation (the smallest reachability-like relation)

```
Body
    \(R=\emptyset\)
    \(R^{\prime}=\{(s, s) \mid s \in S\}\)
    while \(\left(R \neq R^{\prime}\right)\) \{
        \(R:=R^{\prime}\)
        \(R^{\prime}:=R^{\prime} \cup\left\{\left(s, s^{\prime \prime}\right) \mid \exists s^{\prime}, a . s \rightarrow_{a} s^{\prime} \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in R\right\}\)
    \}
    return \(\mathrm{R}^{\prime}\)
YdoB
```


Bisimulation

- A binary relation R is a bisimulation iff:
(s, t) $\in R$ implies that
- s is final iff t is final
- for all actions a
- if $\mathrm{s} \rightarrow_{\mathrm{a}} \mathrm{s}^{\prime}$ then $\exists \mathrm{t}^{\prime} . \mathrm{t} \rightarrow_{\mathrm{a}} \mathrm{t}^{\prime}$ and $\left(\mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right) \in R$
- if $\mathrm{t} \rightarrow \mathrm{a}_{\mathrm{a}} \mathrm{t}^{\prime}$ then $\exists \mathrm{s}^{\prime} . \mathrm{s} \rightarrow_{\mathrm{a}} \mathrm{s}^{\prime}$ and $\left(\mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right) \in R$
- A state s_{0} of transition system S is bisimilar, or simply equivalent, to a state t_{0} of transition system T iff there exists a bisimulation between the initial states s_{0} and t_{0}.
- Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Computing Bisimilarity on Finite Transition Systems

Algorithm ComputingBisimulation

Input: transition system $\mathrm{TS}_{\mathrm{S}}=<\mathrm{A}, \mathrm{S}, \mathrm{S}^{0}, \delta_{\mathrm{S}}, \mathrm{F}_{\mathrm{S}}>$ and transition system $\mathrm{TS}_{\mathrm{T}}=\left\langle\mathrm{A}, \mathrm{T}, \mathrm{T}^{0}, \delta_{\mathrm{T}}, \mathrm{F}_{\mathrm{T}}\right\rangle$
Output: the bisimilarity relation (the largest bisimulation)

```
Body
    \(R=S \times T\)
    \(R^{\prime}=S \times T-\left\{(s, t) \mid \neg\left(s \in F_{S} \equiv t \in F_{T}\right)\right\}\)
    while \(\left(R \neq R^{\prime}\right)\) \{
        \(R:=R^{\prime}\)
        \(R^{\prime}:=R^{\prime}-\left(\left\{(s, t) \mid \exists s^{\prime}, a . s \rightarrow_{a} s^{\prime} \wedge \neg \exists t^{\prime} . t \rightarrow_{a} t^{\prime} \wedge\left(s^{\prime}, t^{\prime}\right) \in R^{\prime}\right\}\right.\)
                        \(\left.\left\{(s, t) \mid \exists t^{\prime}, a . t \rightarrow_{a} t^{\prime} \wedge \neg \exists s^{\prime} . s \rightarrow_{a} s^{\prime} \wedge\left(s^{\prime}, t^{\prime}\right) \in R^{\prime}\right\}\right)\)
    \}
    return \(\mathrm{R}^{\prime}\)
Ydob
```

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Example of Bisimulation

Automata vs.Transition Systems

- Automata
- define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
- ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

