HennessyMilner Logic and Bisimulation

Notes for the Course "Service Integration"

Giuseppe De Giacomo

Consider two transition system $T = (A, S, s_0, \delta, F)$ and $T' = (A, S', t_0, \delta, F')$ whose states we denote by s, s' and t, t' respectively.

Let L be the language formed by all the Hennessy-Milner Logic formulas. We define:

$$\sim_L = \{(s,t) \mid \forall \Phi \in L.T, s \models \Phi \text{ iff } T', t \models \Phi\}$$

and

$$\sim = \{(s,t) \mid \exists \text{ bisimulation } R \text{ s.t. } R(s,t)\}$$

Next we show that notably these two equivalence relations coincide!

Theorem: $s \sim t$ implies $s \sim_L t$, i.e., If there exists a bisimulation between s, t then s, t satisfy (make true) the same formulas of HenessyMilner Logic.

Proof: By induction on the structure of the formulas. It sufficies to consider only formula formed as follows:

$$\Phi \leftarrow Final \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \langle a \rangle \Phi$$

Indeed it is easy to see that $\Phi_1 \vee \Phi_2 \equiv \neg(\neg \Phi_1 \wedge \neg \Phi_2)$ and $[a]\Phi \equiv \neg\langle a \rangle \neg \Phi$.

- Atomic formulas (Final) [base case] $s \sim t$ implies $s \in F$ iff $t \in F'$ i.e., $T, s \models Final$ iff $T', t \models Final$.
- Booleans [inductive cases]

By induction hypothesis, we assume that for every $s \sim t$ we have $T, s \models \Phi_i$ iff $T', t \models \Phi_i$, for i = 1, 2. Then by $T, s \models \Phi_1$ and $T, s \models \Phi_2$ iff $T', t \models \Phi_1$ and $T', t \models \Phi_2$ hence, by definition we have $T, s \models \Phi_1 \land \Phi_2$ iff $T', t \models \Phi_1 \land \Phi_2$.

Similarly for $\neg \Phi$ (left as an easy exercise to the student).

• Modal operators [another -the most interesting- inductive case]

By induction hypothesis, we assume that for every $ss \sim tt$ we have $T, ss \models \Phi$ iff $T', tt \models \Phi$. Now consider that $T, s \models \langle a \rangle \Phi$ iff there exists a transition $s \rightarrow_a s'$ in T such that $T, s' \models \Phi$.

On the other hand since $s \sim t$ there exists a transition $t \to_a t'$ in T' such that $s' \sim t'$.

But then by induction hypotesis $T, s' \models \Phi$ iff $T', t' \models \Phi$, and hence by definition $T', t \models \langle a \rangle \Phi$.

Theorem: $s \sim_L t$ implies $s \sim t$, i.e., If s, t satisfy (make true) the same formulas of HenessyMilner Logic, then there exists a bisimulation between s, t.

Proof: By coinduction. We show that \sim_L is a bisimulation, i.e., satisfy the following rules:

$$\begin{split} s \sim_L t \text{ implies} \\ s \in F \text{ iff } t \in F' \\ \text{if } s \rightarrow_a s' \text{ then } \exists t \rightarrow_a t' \text{ s.t. } s' \sim_L t' \\ \text{if } t \rightarrow_a t' \text{ then } \exists s \rightarrow_a s' \text{ s.t. } s' \sim_L t' \end{split}$$

• Closure wrt the bisimulation rule

- [local condition]

First, since $s \sim_L t$ we have $T, s \models Final$ iff $T', s \models Final$, but then we have $s \in F$ iff $t \in F'$.

- [nonlocal condition]

We prove the rest by contradiction. Suppose that for some s,t, we have that $s \sim_L t$, and $s \to_a s'$ but for all $t \to_a t'$ we have $s \not\sim_L t$. Then let $\{t'_1, \ldots, t'_n\} = \{t' \mid t \to_a t'\}^1$. Notice since $T, s \models \langle a \rangle True$ we have also $T', t \models \langle a \rangle True$, so $n \geq 0$ above.

On the other hand, since $s' \not\sim_L t_i$, for each t'_i there is a formula $\Phi_{t'_i}$ such that $T', t'_i \models \Phi_{t'_i}$ but $T, s \not\models \Phi_{t'_i}$. Now consider the formula

$$[a](\bigvee_{i=1,\dots,n}\Phi_{t_i'})$$

Clearly $T', t \models [a](\bigvee_{i=1,\dots,n} \Phi_{t_i'})$ but, since $s \sim_L t$, then also $T, s \models [a](\bigvee_{i=1,\dots,n} \Phi_{t_i'})$, which means that for all transitions $s \to_a s''$ we must have $T, s'' \models (\bigvee_{i=1,\dots,n} \Phi_{t_i'})$, which is indeed false for s'' = s'. Contradiction.

Hence \sim_L itself is a bisimulation, so $s \sim_L t$, implies that s,t are bisimilar and hence $s \sim_L t$.

¹Here we assume that the transition systems are finite branching.