
Shielded FOND: Planning With Safety Constraints in
Pure-Past Linear Temporal Logic

Luigi Bonassia, Giuseppe De Giacomob,c, Alfonso Emilio Gerevinia and Enrico Scalaa

aUniversity of Brescia, Italy
bUniversity of Oxford, UK
cSapienza University, Italy

Abstract. In this paper, we introduce Shielded FOND planning (S-
FOND), which is the problem of computing a strategy to reach a
final-state goal while preserving a safety specification called shield.
In particular, we characterize shields as Pure-Past Linear Temporal
Logic formulas that must hold in every prefix of a state trace induced
by a solution strategy, thus capturing the whole safety fragment of
Linear Temporal Logic formulas over finite traces. We propose three
solution encodings for handling S-FOND problems: the first, which
is our baseline, simply views a shield as a temporally extended goal;
the second, instead, blocks the execution of further actions when the
shield gets violated, and the third prevents the execution of actions
that could violate the shield by using the notion of regression. We
formally prove the correctness of each encoding and experimentally
prove their effectiveness over a set of benchmark shields.

1 Introduction

In this paper, we introduce Shielded Fully Observable Non-
Deterministic planning (S-FOND), which is the task of synthesiz-
ing a strategy that reaches a final-state goal while inducing a state
trace that conforms to a safety specification which, in analogy with
recent work on safe reinforcement learning [1], is called shield. In
particular, we focus on shields that capture the safety fragment [43]
of Linear Temporal Logic (LTL) formulas [48] over finite traces [26]
(LTLf). Safety formulas are those that, when violated by a trace pre-
fix, will remain violated by every extension of such a prefix. That is, a
safety formula specifies that “Something bad” never happens. Exam-
ples of shields include simple propositional conditions that must hold
in every state, such as “Always preserve a certain amount of battery”,
or more complex specifications such as “The cleaning robot cannot
leave the room until it has been completely cleaned”.

Dealing with propositional safety constraints has already been ad-
dressed in classical planning [51]. A larger subset of shields can be
captured in PDDL3 [34] and handled via compilation [12, 17] or by
native planners [30, 39, 11]. However, these approaches are limited
to PDDL3 and are only designed for deterministic domains.

Handling shields is closely related to planning for temporally ex-
tended goals, which has an abundant literature (e.g., [3, 7, 4, 21, 22,
25, 35, 47, 9, 8, 53, 19, 18]); the objective for temporally extended
goals is to satisfy a formula over the entire state trace. However, as
shown in this paper, natively dealing with shields is much more ef-
ficient than viewing shields as generic temporal goals. Related are
also the works on LTLf specifications discovery and monitoring [20],

reactive synthesis with safety conditions [28], and the study of con-
trol knowledge to speed up planning. Control knowledge is usually
expressed in the form of temporal logic constraints [5], a hierarchy
imposing partial or total ordering between actions ([46]) or by using
more general constraints over the action instances ([29, 45, 13]).

Recently, Pure-Past Linear Temporal Logic (PPLTL) [41, 27], an
alternative to LTLf , has been investigated for expressing temporally
extended goals [14, 15]. PPLTL is as expressive as LTLf and looks
at the trace backward by expressing properties using only past op-
erators. Interestingly, every safety specification can be captured by
imposing a PPLTL formula to hold in every prefix of a trace [43].
Moreover, handling PPLTL seems much easier than handling LTLf ,
since FOND planning for PPLTL goals is EXPTIME-complete [27] ,
while FOND planning for LTLf goals is 2EXPTIME-complete [24].
These properties make PPLTL a compelling formalism for expressing
shields. Therefore, we focus on shields expressed in PPLTL.

Our approach for handling shields builds upon the encoding by
[14, 15] for handling PPLTL goals. Specifically, this encoding allows
checking the validity of a PPLTL shield as a Markovian property by
exploiting the well-known [32, 42, 31, 6, 7, 52] fixpoint characteriza-
tion that, similarly to the fixpoint characterization of LTL [10, 3, 4],
splits a PPLTL formula into a propositional condition on the current
state and a PPLTL formula to be checked at the previous instant.

The contributions of this paper are as follows. We introduce and
formalize shielded FOND planning. Then, we propose three encod-
ings named ΠTEG, ΠVDT, and ΠRE to reduce S-FOND to FOND plan-
ning for reachability (i.e., final-state) goals. The first encoding ΠTEG,
which is our baseline, reformulates a shield as a temporally extended
goal and then uses the technique by [15] as-is to obtain a FOND
problem for reachability goals. Differently, ΠVDT and ΠRE modify
the encoding schema by [15] to better capture the validity of a shield
while planning. In particular, ΠVDT extends the preconditions of ac-
tions to block the execution when the shield becomes violated, while
ΠRE uses the notion of regression to block actions from violating the
shield. We show that each encoding is correct and empirically prove
the effectiveness of these approaches on a set of S-FOND bench-
marks. The results show that handling shields natively with ΠVDT

and ΠRE is much more effective than with the baseline ΠTEG.

2 Background on FOND Planning

A FOND domain model is a tuple D = ⟨F , X , A, Pre, Eff , s0⟩
whereF is a set of fluents (atomic propositions),X is a set of axioms,

A is a set of action labels, Pre and Eff are two functions that define
the preconditions and effects of each action a ∈ A, and s0 ⊆ F is an
initial state. As usual, a planning state s ⊆ F is a set of fluents where
f holds in s if f ∈ s and f is false in s otherwise. Axioms have the
form d ← ψ where d is a derived predicate and ψ a formula over
F ∪ Fder , where Fder = {d | d← ψ ∈ X} is the set of all derived
predicates. Intuitively, an axiom d ← ψ specifies that the truth of
d in a state s is derived from the truth of ψ in s. For example, let
F = {a, b, c}. The two axioms d1 ← a∧b and d2 ← d1∧¬c specify
that “d1 is true if a and b are true, while d2 is true if d1 is true and c is
false”. Deriving d2 requires determining d1 first, which instead can
be derived directly from the current state. In general, assuming the set
of axioms X to be stratified [37] guarantees that it is always possible
to efficiently and uniquely determine the truth of all d ∈ Fder in any
state s. The functions Pre and Eff map an action label a ∈ A to a
propositional formula over F ∪ Fder and a set {eff1, . . . , effn} of
effects, respectively. Each effect effi ∈ Eff (a) is a set of conditional
effects each of the form c ▷ e, where c is a propositional formula
over F ∪ Fder and e ⊆ F ∪ {¬f | f ∈ F} is a set of literals
from F (effects cannot modify derived predicates). An action a can
be applied in a state s only if s |= Pre(a). A conditional effect
c ▷ e is triggered in a state s if c is true in s. Applying a in s yields
a successor state s′ determined by an outcome nondeterministically
drawn from Eff (a). Let effi ∈ Eff (a) be the selected effect, the new
state s′ is such that ∀f ∈ F , f holds true in s′ if and only if either
(i) f was true in s and no conditional effect c ▷ e ∈ effi triggered in
s deletes it (¬f ∈ e) or (ii) there is a conditional effect c ▷ e ∈ effi

triggered in s that adds it (f ∈ e). We assume a delete-before-adding
semantics [50] and use the notation s[effi] to indicate the successor
state s′ induced by effi in s and tr(s, a) to denote the set of possibles
successor states {s′1, . . . , s′n} obtained by executing a in s. We say
that a state trace τ = s0, s1, . . . , sn is a potential trace of D iff
there exists a sequence of actions a0, a1, . . . , an−1 fromD such that
si+1 ∈ tr(si, ai) for every 0 ≤ i < n. If for every 0 ≤ i < n
we also have that si |= Pre(ai), then we say that τ is a trace of D.
Moreover, a state si is reachable if τ = s0, . . . , si is a trace of D.

We now review two classes of FOND problems known as FOND
planning for reachability goals and FOND planning for temporally
extended goals in PPLTL. A reachability goal is a property that has to
hold the final state reached by a sequence of actions.

Definition 1. A FOND problem for reachability goals is a tuple Γ =
⟨D, G⟩, whereD is a FOND domain andG a formula overF∪Fder .

Solutions to Γ are strategies (aka policies). A strategy is defined as
a partial function π : (2F)+ → A mapping a sequence of non-goal
states into an applicable action. We say that π is a strategy for Γ if,
starting from the initial state s0, π induces a set of (possibly infinite)
state traces (or executions) of the form τ = s0, s1, . . . , where ai =
π(s0, . . . , si), si+1 ∈ tr(si, ai), and si |= Pre(a) for i ≥ 0. If for
a certain sequence of states τ = s0, . . . , sn we get π(τ) undefined
(no action prescribed), then the generated trace τ is finite. A strategy
can be either a strong or a strong-cyclic solution [23]. A strategy
π is a strong solution to Γ if every generated execution is a finite
trace τ such that the last state sn of τ entails G, while π is strong-
cyclic if every generated execution that is a stochastic-fair trace [2]
is also a finite trace such that sn |= G. Intuitively, stochastic fairness
assumes that every outcome of an action can occur with a non-zero
probability. So, assuming stochastic fairness, a strategy π is a strong-
cyclic solution if every trace induced by π terminates satisfying the
goal with probability 1. When a strategy π is a solution (either strong
or strong-cyclic), we also say that π is winning.

Unlike reachability goals, temporally extended goals are evaluated
over the state trace induced by a strategy. In particular, we consider
PPLTL temporally extended goals. Given a set F of propositions,
PPLTL formulas are defined as:

φ ::= p | ¬φ | φ ∧ φ | Yφ | φSφ

where p ∈ F , Y is the yesterday operator and S is the since
operator. PPLTL formulas are interpreted on finite nonempty traces
τ = s0, . . . , sn ∈ (2F)+. We denote by length(τ) the length n+1
of τ , and by last(τ) the last element of the trace. We define the satis-
faction relation τ, i |= φ, stating that φ holds at instant i, as follows:

• τ, i |= p iff length(τ) ≥ 1 and p ∈ si (for p ∈ P);
• τ, i |= ¬φ iff τ, i ̸|= φ;
• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;
• τ, i |= Yφ iff i ≥ 1 and τ, i− 1 |= φ;
• τ, i |= φ1 Sφ2 iff there exists k, with 0 ≤ k ≤ i < length(τ)

such that τ, k |= φ2 and for all j, with k < j ≤ i, we have that
τ, j |= φ1.

For convenience, we report the semantics of the once (O) and the
historically (H) operators which can be derived by the since operator.

• τ, i |= Oφ iff there exists k with 0 ≤ k ≤ i such that τ, k |= φ;
• τ, i |= Hφ iff for all k with 0 ≤ k ≤ i we have τ, k |= φ;

Intuitively, Yφ specifies that φ has to hold at the previous step,
φ1 Sφ2 specifies that φ1 has been true since φ2 became true, Oφ
specifies that φ has to hold sometime in the past, and Hφ specifies
that φ always held in the past. As usual, disjunctions and implica-
tions can be expressed through negations and conjunctions. A PPLTL

formula φ is true in τ , denoted τ |= φ, if τ, length(τ)−1 |= φ. We
denote by sub(φ) the set of all subformulas of φ [26], and say that
|sub(φ)| defines the size of a PPLTL formula φ.

Definition 2. A FOND problem for PPLTL goals is a tuple Γ = ⟨D,
φ⟩, where D is a FOND domain and φ a PPLTL formula over F .

For PPLTL goals, a strategy π : (2F)+ → A is a strong (strong-
cyclic, resp.) solution for Γ if every trace τ (that is stochastic-fair,
resp.) induced by π is finite and satisfies φ. Note that a strategy can
be represented (with finite memory) as a finite-state transducer [24].

3 Encoding PPLTL Formulas in FOND Domains
This section briefly reviews the technique by [15] to encode a PPLTL

formula φ into a FOND domainD to obtain a new domainDφ where
we can evaluate φ by only considering the current state. The encod-
ing monitors the truth of a specific set of subformulas of φ by in-
troducing a set of fresh fluents denoted with Σφ. These, if properly
combined with the original fluents, can be used to determine the truth
of φ state-by-state. This strategy requires properly setting the initial
state and incrementally updating the truth of Σφ fluents as actions are
applied. Specifically, given a FOND domain D = ⟨F , X , A, Pre,
Eff , s0⟩ and a formula φ, we obtain a new domain Dφ = ⟨F ′, X ′,
A, Pre, Eff ′, s′0⟩ defined in the following paragraphs.

Additional Fluents. To determine the subformulas we need to
monitor, we exploit the well-known fixpoint characterization of
PPLTL [33, 31, 42] that allows splitting a PPLTL formula into present
and past components by recursively applying the following transfor-
mation function pnf(·):

• pnf(p) = p;

• pnf(Yϕ) = Yϕ;
• pnf(ϕ1 Sϕ2) = pnf(ϕ2) ∨ (pnf(ϕ1) ∧ Y(ϕ1 Sϕ2));
• pnf(ϕ1 ∧ ϕ2) = pnf(ϕ1) ∧ pnf(ϕ2);
• pnf(¬ϕ) = ¬pnf(ϕ).

The formula pnf(φ) can be computed in linear-time in the size of φ
(i.e., |sub(φ)|) and pnf(φ) ≡ φ. Most importantly, every temporal
subformula of φ appears in pnf(φ) within the scope of the Y oper-
ator. This means that we can determine the truth of φ by combining
the truth of the original fluents in the current state si with the truth of
some temporal subformulas of the form Yϕ. Therefore, we monitor
these subformulas by introducing a new set of fluents Σφ containing
one fluent “Yϕ” for every temporal subformula of the form Yϕ ap-
pearing in pnf(φ). Quotation (e.g., “Yϕ”) indicates the fluent mon-
itoring the subformula (e.g., Yϕ). Formally, the new set of fluents is
F ′ = F ∪ Σφ. For convenience, we use the notation (si, σi) with
si ⊆ F and σi ⊆ Σφ to denote the state (si ∪ σi) ⊆ F ′.

Example 1. As a running example, we show how to encode φ =
aS b into the domainD. We have that pnf(aS b) = b∨(a∧Y(aS b)).
Hence, Σφ = {“Y(aS b)”}.

Axioms. It is easy to see that if it holds that each fluent of the form
“Y(ϕ)” ∈ Σφ is true iff Yϕ is true, then we can determine the truth
of φ by simply evaluating the propositional formula obtained by re-
placing every Yϕ with “Y(ϕ)” in pnf(φ). This formula, in planning,
can be compactly represented using axioms. In particular, for every
ϕ ∈ sub(φ) we include one axiom valϕ ← ψ where ψ is defined
depending on the type of ϕ as follows:

• valp ← p;
• valYϕ ← “Yϕ”;
• valϕ1 Sϕ2 ← valϕ2 ∨ (valϕ1 ∧ “Y(ϕ1 Sϕ2)”);
• valϕ1∧ϕ2 ← valϕ1 ∧ valϕ2 ;
• val¬ϕ ← ¬valϕ.

As we can see, these axioms mimic the structure of pnf(·) except
that each Yϕ is substituted by “Yϕ”. Moreover, these axioms allow
us to conveniently evaluate any subformula ϕ of φ. Formally, X ′ :=
X ∪ Xφ where Xφ = {valϕ ← ψ | ϕ ∈ sub(φ)}.

Example 2. The set of subformulas of φ is sub(φ) = {a, b, aS b}.
Therefore, the new set of axioms is Xφ = {vala ← a, valb ← b,
val(a S b) ← valb ∨ (vala ∧“Y(aS b)”)}. Notice that val(a S b) is true
in a state s iff s satisfies b ∨ (a ∧ “Y(aS b)”), which is the formula
obtained by replacing Y(aS b) with “Y(aS b)” in pnf(aS b).

Initial state. It is crucial for the correctness of the approach that
every “Yϕ” captures the truth of Yϕ. By the definition of PPLTL, we
know that Yϕ is false at the start of the trace (i.e., when i = 0).
Therefore, s′0 = (s0, σ0) where σ0 = ∅.
Effects. New effects are added to keep all “Yϕ” fluents in sync
with the corresponding Yϕ. To do so, we rely on the PPLTL se-
mantics: if the formula ϕ holds at instant i, then Yϕ will hold at
instant i + 1. Therefore, since valϕ encodes the truth of ϕ, we set
“Y(ϕ)” to true at step i + 1 if valϕ holds at the current step i,
and we falsify “Y(ϕ)” at i + 1 otherwise. We can do so with the
pair of conditional effects valϕ ▷ {“Yϕ”} and ¬valϕ ▷ {¬“Yϕ”}.
Starting from the the initial state (s0, σ0), where we can determine
valϕ for every ϕ ∈ sub(φ), these new effects iteratively keep each
“Yϕ” in sync with the corresponding Yϕ. Formally, let effval =
{valϕ ▷ {“Yϕ”},¬valϕ ▷ {¬“Yϕ”} | “Yϕ” ∈ Σφ}. The new ef-
fect function is Eff ′(a) := {effi ∪ effval | effi ∈ Eff (a)} for every

a ∈ A. Notice that the new conditional effects are added to each out-
come of every action, as “Y(ϕ)” fluents are deterministically updated
independently from the truth of the original domain fluents.

Example 3. The set effval of additional effects is effval = {vala S b ▷
{“Y(aS b)”},¬vala S b ▷ {¬“Y(aS b)”}}.

Definition 3. Let D = ⟨F ,X , A,Pre,Eff , s0⟩ be a FOND domain
and let φ be a PPLTL formula. The encoded FOND domain is Dφ =
⟨F ′,X ′, A,Eff ′,Pre, s′0⟩.

Theorem 1 ([15]). Let D be a FOND domain, φ a PPLTL formula,
and Dφ the encoded domain as by Definition 3. For every poten-
tial trace τ ′ = (s0, σ0), . . . , (sn, σn) induced by Dφ, there exists a
unique corresponding potential trace τ = s0, . . . , sn of D, and vice
versa, such that, for every i ≤ n, (si, σi) |= valφ iff τ, i |= φ.

Theorem 1 implies that we can monitor the truth of φ by only
considering the truth of valφ in any state of the encoded domainDφ.
A direct consequence of Theorem 1 is that we can encode FOND
planning for PPLTL goals into FOND planning for reachability goals.

Corollary 2. Let Γ = ⟨D, φ⟩ be a FOND problem for PPLTL goals,
and let Γ′ = ⟨Dφ, valφ⟩ be the corresponding encoded FOND plan-
ning problem for reachability goals. Then, Γ has a (strong or strong-
cyclic) winning strategy iff Γ′ has a (strong or strong-cyclic, resp.)
winning strategy.

Lastly, note that this encoding handles the H and O operators by
using well-known equivalences, e.g., Hφ ≡ ¬(⊤ S¬φ). For clarity,
we will use valHφ as a shorthand for val¬(⊤ S¬φ).

4 Shielded FOND Planning
This section introduces a third type of FOND problem, i.e., Shielded
FOND (S-FOND) problem, and provides different techniques to
solve this class of problems. A S-FOND problem is formalized as
a FOND problem plus a PPLTL formula φ which is called shield.

Definition 4. A S-FOND problem is a tuple Γ = ⟨D, G, φ⟩, where
D is a FOND domain model, G is a reachability goal, and φ is a
PPLTL formula.

Intuitively, the shield requires that, at every step, the trace gener-
ated while executing a strategy satisfies φ. Therefore, S-FOND plan-
ning is the task of finding a strategy that achieves the goal, and such
that every prefix of every generated trace satisfies φ. Formally, a so-
lution to a S-FOND problem is defined as follows.

Definition 5 (Shield-compliant strategy). Let Γ = ⟨D, G, φ⟩ be a
S-FOND planning problem. A strategy π : (2F)+ → A is a shield-
compliant strong (strong-cyclic, resp.) solution for Γ iff

1. Every (stochastic-fair, resp.) trace τ induced by π is finite and
such that last(τ) |= G;

2. Every prefix τ ′ of a trace τ induced by π is such that τ ′ |= φ.

In addition, we say that a trace τ is shield-compliant if every pre-
fix τ ′ of τ satisfies φ. It is easy to see that the shield can impose
any LTLf safety constraints on the generated traces. Indeed, a safety
property can be expressed by imposing that a PPLTL formula holds
in every prefix of a trace [43]. Thus shields, as defined by us, can
capture any LTL safety property over finite traces.

We now present three different encoding techniques to handle any
S-FOND problem. The first approach works by reformulating a S-
FOND problem as a FOND problem for temporally extended goals,
while the other two techniques work by encoding a S-FOND problem
directly into a FOND problem for reachability goals.

4.1 Handling Shields as Temporally Extended Goals

Intuitively, we can view a shield φ as a temporally extended goal φ′

that enforces φ to hold in every prefix of a generated sequence of
states. Specifically, we can do so with the H temporal operator.

Theorem 3. Let Γ = ⟨D, G, φ⟩ be a S-FOND problem and let
Γ′ = ⟨D, G ∧ H(φ)⟩ be a FOND problem for temporally extended
goals. Then a strategy π is a shield-compliant strong (strong-cyclic)
solution for Γ iff π is a strong (strong-cyclic, resp.) solution for Γ′.

Proof. Given a trace τ = s0, s1, . . . sn, by definition of PPLTL we
have that τ |= G ∧ H(φ) iff last(τ) |= G ∧ ∀k with 0 ≤ k ≤
n·τ, k |= φ. The condition ∀k with 0 ≤ k ≤ n·τ, k |= φ is satisfied
iff every prefix τ ′ = s0, . . . , sk of τ is such that τ ′ |= φ. Given these
equivalences, it is easy to see that every strategy π satisfies the goal
of Γ′ iff π is a shield-compliant strategy for Γ.

A direct consequence of Theorem 3 is that we can use any stan-
dard technique for handling FOND planning for PPLTL goals to find
a shield-compliant strategy. The approach we propose, called ΠTEG,
first encodes a S-FOND problem Γ into a FOND problem for tem-
porally extended goals Γ′, and then further encodes Γ′ into FOND
planning for reachability goals.

Definition 6 (ΠTEG). We define ΠTEG as the encoding that trans-
forms a S-FOND problem Γ = ⟨D, G, φ⟩ into a FOND problem for
reachability goals Γ′′ as described in the following steps:

1. Encode Γ = ⟨D, G, φ⟩ into Γ′ = ⟨D, G ∧ H(φ)⟩.
2. Encode G ∧ H(φ) into D as by Definition 3 to obtain DG∧H(φ).
3. Γ′′ = ⟨DG∧H(φ), valG∧H(φ)⟩.

Theorem 4. Let Γ be a S-FOND problem and let Γ′′ be the prob-
lem obtained by encoding Γ with ΠTEG. Then Γ admits a shield-
compliant (strong or strong-cyclic) strategy iff Γ′′ admits a winning
(strong or strong-cyclic, resp.) strategy.

Proof. Directly from Theorem 3 and Corollary 2.

Encoding Γ = ⟨D, G, φ⟩ into Γ′′ = ⟨DG∧H(φ), valH(φ)∧G⟩ via
ΠTEG enables using any standard FOND planner for reachability
goals to find a shield-compliant strategy for Γ.

We conclude with some considerations on the complexity of solv-
ing Γ′′ in terms of reachable states of the domain DG∧H(φ). Observe
that a trace τ of original domain D is shield compliant iff the corre-
sponding trace τ ′ = (s0, σ0), . . . , (sn, σn) of DG∧H(φ) is such that,
for every i ≤ n, (si, σi) |= valφ. If this is the case, then τ ′ also satis-
fies valH(φ), a necessary condition to satisfy the goal of Γ′′. However,
the precondition function ofDG∧H(φ) is exactly the same as the orig-
inal domain D. Hence, a reachable state (si, σi) of DG∧H(φ) is not
guaranteed to satisfy valφ, and also every trace originating from such
a state will never satisfy valH(φ). Consequently, DG∧H(φ) features
many reachable dead-end states from which the shield will never be
re-established.

4.2 Violation-Detection Technique

In this section, we study an approach that greatly reduces the reach-
able states violating valφ. Specifically, we devise an encoding that
prevents the execution of further actions when valφ becomes falsi-
fied for the first time. Let Γ = ⟨D, G, φ⟩ be a S-FOND problem.
We start by encoding the shield φ into the domain D, thus obtain-
ingDφ as by Definition 3. Then, we modify the preconditions ofDφ

to block the execution of further actions when the shield becomes
violated. We do so by making valφ a precondition of every action.
Remark that valφ captures the truth of the shield φ in every state of
a generated trace. To obtain a correct approach we also need to make
valφ a goal of Γ′′. Otherwise, we could end the execution in a state
where the last action of the strategy has violated the shield. We called
this approach Violation-Detection Technique (VDT) as it blocks the
executions whenever it detects that the shield has been (irreversibly)
violated.

Definition 7 (ΠVDT). We define ΠVDT as the encoding approach
that takes in input an S-FOND problem Γ = ⟨D, G, φ⟩ with
D = ⟨F ,X , A,Pre,Eff , s0⟩ and outputs a FOND problem Γ′′ =
⟨D′′, G′′⟩ with D′′ = ⟨F ′,X ′, A,Eff ′,Pre ′′, s′0⟩ where:

• F ′, X ′, s′0, and Eff ′ are defined as in Definition 3.
• Pre ′′(a) = Pre(a) ∧ valφ
• G′′ = G ∧ valφ

Theorem 5. Let Γ be a S-FOND problem and let Γ′′ be the
FOND problem obtained by ΠVDT. Then Γ admits a shield-compliant
(strong or strong-cyclic) solution iff Γ′′ admits a winning (strong or
strong-cyclic, resp.) strategy.

Proof sketch. (⇒). Let π : (2F)+ → A be a shield-compliant strat-
egy for Γ. Observe that the initial state, effects, fluents, and axioms
of D′′ are defined as in Definition 3. Hence, by Theorem 1, every
potential trace τ ofD can be uniquely mapped to a potential trace τ ′′

of D′′. Therefore, we can build a partial function π′′ : (2F
′
)+ → A

as follows:

π′′(τ ′′) = a iff π(τ) = a
π′′(τ ′′) is undefined iff π(τ) is undefined.

We need to prove that π′′ is a strategy and is winning. By contra-
diction, π′′ is not a strategy because some action returned by π′′

cannot be executed. Suppose that, for some trace τ ′′, π(τ ′′) = a
and last(τ ′′) ̸|= Pre ′′(a). Then, either last(τ ′′) ̸|= Pre(a) or
last(τ ′′) ̸|= valφ. The first case implies last(τ) ̸|= Pre(a), while
the second case implies τ, last(τ) ̸|= φ. Both cases imply that π
is not a shield-compliant strategy (contradiction). Therefore, π′′ is a
strategy. Moreover, since π reaches the goalG while not violating φ,
then also π′′ reaches the goal G ∧ valφ. Thus, π′′ is winning.
(⇐) Let π′′ : (2F

′
)+ → A be a winning strategy for Γ′′. Similarly

to the previous case, we can build a partial function π : (2F)+ → A
as follows:

π(τ) = a iff π′′(τ ′′) = a
π(τ) is undefined iff π′′(τ ′′) is undefined.

It is easy to see that π is a strategy and is shield-compliant; for ev-
ery a ∈ A, we have that Pre ′′(a) subsumes Pre(a). Moreover, for
every finite trace τ ′′ = (s0, σ0), . . . , (sn, σn) induced by π′′ we
have (si, σi) |= valφ for every i ≤ n and sn |= G. Therefore,
the corresponding finite trace τ also reaches the goal and is shield-
compliant.

Example 4. Consider φ = aS b. This shield requires aS b to
hold in every prefix of a generated trace. That is, b has to hold
in the initial state, and every subsequent state must satisfy either
a or b. The encoded problem Γ′′ obtained by ΠVDT is Γ′′ =
⟨⟨F ′,X ′, A,Eff ′,Pre ′′, s′0⟩, G′′⟩ where F ′, X ′ and Eff ′ are de-
fined as in Examples 1-3, s′0 = (s0, σ0), Pre ′′(a) = Pre ′(a) ∧
vala S b for every a ∈ A, and G′′ = G ∧ vala S b.

By analyzing the encoding, it is easy to see that a reachable state
(s, σ) of D′′ may not satisfy valφ. However, in every trace τ =
(s0, σ0), . . . , (si, σi) of D′′, only the last state (si, σi) may violate
valφ. In terms of the number of reachable states, ΠVDT greatly im-
proves over ΠTEG. Let DTEG and DVDT the domains of the problems
encoded with ΠTEG and ΠVDT, respectively. By definition,DTEG con-
tains the same fluents ofDVDT (those to monitor φ) plus one to mon-
itor H(φ). Also, observe that if a state s of DVDT is reachable, then
there exists at least one reachable state s′ of DTEG such that s ⊆ s′.
This is because the fluents shared by DTEG and DVDT are updated
by the same set of conditional effects and the precondition function
of DVDT subsumes that of DTEG. On the contrary, it is easy to see
that if a state s′ of DTEG is reachable, then the subset s of s′ repre-
senting a state for DVDT may not be reachable, as the preconditions
of DVDT are more restrictive than those of DTEG. For example, let
τ ′ = s′0, s

′
1, s

′
2 be a trace of DTEG such that both s′1 and s′2 do not

satisfy valφ. Then, the state s1 of DVDT obtained by s′1 is reachable
an such that s1 ̸|= valφ, but the state s2 obtained by s′2 is not, as
no action of DVDT can be executed after s1. Therefore, DVDT admits
fewer reachable states than DTEG.

4.3 Regression Technique

ΠVDT greatly reduces the number of reachable states violating the
shield while adding negligible overhead to the encoded problem.
However, we can further improve the encoding by blocking the exe-
cution of actions that could violate the shield. Not only does this op-
timization further reduce the number of reachable states, but it also
becomes necessary in online planning scenarios where we cannot
correct the behavior of an agent when the shield has been violated.
Therefore, we propose a different encoding that uses the notion of
(effect) regression by [40] as adapted to PDDL by [49].

Definition 8 (Effect Regression). The regressionR(ϕ, eff) of a NNF
formula ϕ through a set of conditional effects eff is the formula ob-
tained from ϕ by replacing every fluent f in ϕ with Γf (eff) ∨ (f ∧
¬Γ¬f (eff)), where Γl(eff) for a literal l is defined as Γl(eff) =∨

c▷e∈ eff
with l∈e

c.

Example 5. Consider the literal a and the set of conditional effects
eff = {c▷{¬a}}. We have that Γa(eff) = ⊥, while Γ¬a = c. Hence,
R(a, eff) = a ∧ ¬c.

Notably, the regression of a propositional formula ϕ through the
outcome eff ∈ Eff (a) of an action a is a formulaR(ϕ, eff) such that
for every state s, s |= R(ϕ, eff) iff s[eff] |= ϕ [49].

This encoding uses the effect regression to extend the precondi-
tion of actions to prune invalid extensions of a trace prefix while the
search process goes on. In particular, given a state (s, σ) and an out-
come eff of an action a, we want to predict if valφ becomes false in
the successor state (s, σ)[eff] obtained by applying eff in (s, σ). Sim-
ilarly to ΠVDT, we takeDφ as a starting point. Then, starting from the
set of axioms Xφ of Dφ that determine the truth of valφ, we define
a new set of axioms X eff

φ . These axioms have the form valeffϕ ← ψ′,
and are intended to be such that (s, σ) |= valeffϕ iff (s, σ)[eff] |= valϕ
for every ϕ ∈ sub(φ). Intuitively, these new axioms are structured
as the original ones, but with the difference that every fluent men-
tioned in the axiom condition ψ′ is regressed through eff. Therefore,
to determine ψ′, we have that:

• Every fluent p of the original domainD gets replaced byR(p, eff).

• Every fluent of the form “Y(ϕ)” gets replaced by valϕ. In this
case, we rely on the semantics of PPLTL formulas to efficiently
perform regression. By definition, Y(ϕ) is true in the next state
iff ϕ is true in the current state. Hence, “Y(ϕ)” is true in the next
state iff valϕ holds in the current state.

Exploiting these observations, given a set of axioms Xφ = {valϕ ←
ψ | ϕ ∈ sub(φ)} and a set eff of conditional effects of some action
from Dφ, we define the new set of axioms X eff

φ = {valeffϕ ← ψ′ |
ϕ ∈ sub(φ)} where every valeffϕ ← ψ′ is defined depending on ϕ by
the following rules:

• valeffp ← R(p, eff)
• valeffYϕ ← valϕ
• valeffϕ1 Sϕ2

← (valeffϕ2
∨ (valeffϕ1

∧ valϕ1 Sϕ2))

• valeffϕ1∧ϕ2
← (valeffϕ1

∧ valeffϕ2
)

• valeff¬ϕ ← ¬valeffϕ

Following the definition of these new axioms, for any formula ϕ ∈
sub(φ), and for any outcome eff ∈ Eff ′(a) of some action a, where
Eff ′(a) is defined as in Definition 3, we have that (s, σ) |= valeffϕ iff
(s, σ)[eff] |= valϕ.

Example 6. Consider the shield φ = aS b and the set of condi-
tional effects eff = {c ▷ {¬a}, vala S b ▷ {“Y(aS b)”},¬vala S b ▷
{¬“Y(aS b)”}}. Recall from Example 2 that Xφ = {vala ←
a, valb ← b, val(a S b) ← valb ∨ (vala ∧ “Y(aS b)”}. We have that
R(a, eff) = a ∧ ¬c and R(b, eff) = b. Therefore, the new set
of axioms is X eff

φ = {valeffa ← a ∧ ¬c, valeffb ← b, valeff(a S b) ←
valeffb ∨ (valeffa ∧ val(a S b))}

Lemma 6. Let Eff ′ be the effect function of a FOND domain Dφ

obtained by encoding φ into a FOND domainD following Definition
3, let eff ∈ Eff ′(a) be a set of conditional effects of some action
a of Dφ and let (s, σ) be a state from Dφ. Then, using the set of
axioms X eff

φ , for every ϕ ∈ sub(φ), it holds that (s, σ) |= valeffϕ iff
(s, σ)[eff] |= valϕ.

Proof sketch. By induction on the structure of the formula φ and by
definition of regression.

Consider an action awith effects Eff ′(a) = {eff0, . . . , effn}. The
axiom valeffi

φ ∈ X effi
φ captures whether or not the outcome effi will

violate φ in the successor state. To prevent φ from being violated by
any nondeterministic outcome, we set valeffi

φ as a precondition of a
for every outcome effi ∈ Eff ′(a).

Definition 9 (ΠRE). We define ΠRE as the encoding approach
that takes in input a S-FOND problem Γ = ⟨D, G, φ⟩ with
D = ⟨F ,X , A,Pre,Eff , s0⟩ and outputs a FOND problem Γ′′ =
⟨D′′, G⟩ with D′′ = ⟨F ′,X ′′, A,Eff ′,Pre ′′, s′0⟩ where:

• X ′′ = X ′ ∪
⋃

a∈A

⋃
eff∈Eff ′(a)

X eff
φ

• Pre ′′(a) = Pre(a) ∧
∧

eff∈Eff ′(a)
valeffφ , for every a ∈ A.

• F ′, X ′, Eff ′ and s′0 are defined as in Definition 3.

Moreover, if s0 ̸|= valφ, then ΠRE detects that Γ admits no solution.

Theorem 7. Let Γ be a S-FOND problem and let Γ′′ be the FOND
problem obtained by ΠRE. Then Γ admits a shield-compliant (strong
or strong-cyclic) solution iff Γ′′ admits a winning (strong or strong-
cyclic, resp.) strategy.

Proof sketch. (⇒). Let π : (2F)+ → A be a shield-compliant strat-
egy for Γ. Similarly to the proof of Theorem 5, Theorem 1 implies
that every potential trace τ of D can be uniquely mapped to a po-
tential trace τ ′′ of D′′. Therefore, we can build a partial function
π′′ : (2F

′
)+ → A defined as π′′(τ ′′) = a iff π(τ) = a and

π′′(τ ′′) is undefined iff π(τ) is undefined. By contradiction, π′′ is
not a strategy because some action returned by π′′ cannot be exe-
cuted. Suppose that, for some trace τ ′′, π′′(τ ′′) = a and last(τ ′′) ̸|=
Pre ′′(a). If last(τ ′′) ̸|= Pre(a), then also π(τ) ̸|= Pre(a), and
therefore π is not a strategy (contradiction). Therefore, there exists
a derived predicate valeffφ in Pre ′′(a) such that last(τ ′′) ̸|= valeffφ .
This implies that π′′ can induce the trace τ ′′ · last(τ ′′)[eff] where
last(τ ′′)[eff] ̸|= valφ (Lemma 6). Therefore, the corresponding trace
τ · last(τ)[eff] with eff ∈ Eff (a) can be induced by π, and is such
that τ · last(τ)[eff] ̸|= φ (Theorem 1). Therefore, π′′ is a strategy.
Moreover, since every trace τ induced by π achieves G, then so does
every trace τ ′′ induced by π′′. Hence π′′ is winning.
(⇐). Let π′′ : (2F

′
)+ → A be a winning strategy for

Γ′′. By Theorem 1, we can build a partial function π :
(2F)+ → A defined as π(τ) = a iff π′′(τ ′′) = a and
π(τ) is undefined iff π′′(τ ′′) is undefined. It is easy to see that
π is a strategy; for every a ∈ A, we have that Pre ′′(a) subsumes
Pre(a). Moreover, (1) every trace induced by π is shield-compliant,
as all states induced by π′′ satisfy valφ by Lemma 6, and (2) since
every trace τ ′′ induced by π′′ achieves G, then so does every trace τ
induced by π. Hence π is also shield-compliant.

We conclude by relating ΠVDT and ΠRE. Let DVDT and DRE be
the domains resulting from problems compiled by ΠVDT and ΠRE,
respectively. By analyzing the encodings, DVDT and DRE share the
same fluents. Moreover, it is easy to see that Lemma 6 plus Definition
9 implies that no outcome of any action from DRE can induce a state
(si, σi) that violates valφ. On the contrary, DVDT admits reachable
states that violate valφ. Therefore, if a state (si, σi) is reachable for
DRE then so does for DVDT, but not vice versa.

5 Experiments

Our experiments aim to understand ΠTEG, ΠVDT, and ΠRE practically
over a set of S-FOND benchmark with different shield specifications.
For ΠTEG, we simply reformulate the S-FOND problems as FOND
problems for PPLTL goals (following Theorem 3) and then encode
such problems with the Plan4Past tool [15]. Instead, ΠVDT and ΠRE

have been implemented in Python and are available at [16].
Theoretically, the advantage of one encoding over the others seems

clear. In terms of the number of reachable states, ΠTEG is dominated
by ΠVDT, which in turn is dominated by ΠRE. However, the practical
effectiveness of these encodings is not clear. Therefore, we tested
ΠTEG, ΠVDT, and ΠRE over a set of S-FOND problems with dif-
ferent shields. As a planner, we considered myND [44], which is
a state-of-the-art FOND planner supporting conditional effects and
derived predicates, which are necessary for our evaluation. We con-
figured myND to search for strong-cyclic solutions with a LAO* [36]
search guided by the hFF [38] heuristic. We compared all encodings
in terms of coverage (number of solved instances), the total time re-
quired to find a solution, the number of nodes expanded by the plan-
ner during the search, and the size of the solution policies. We ran all
experiments on a Xeon-Gold 6140M 2.3 GHz with 8GB of memory
and a time limit of 900s.

Figure 1. A CLEANING instance with two rooms and three dirty tiles.

5.1 Benchmarks

We designed a new FOND domain called CLEANING to test the
shielding techniques. We generated 6 instances of increasing dimen-
sions, and for each instance, we defined four different classes of
shields that we call Simple, Precendence, Precondition, and Inter-
val. In addition, to demonstrate that our approaches can generalize
to different domains, we also considered the Robot-coffee (ROBOT)
and Blocksworld (BLOCKS) FOND domains. For BLOCKS, we have
8 instances and shields of types Simple and Precendence, while for
ROBOT we have 8 instances and shields of type Precondition and In-
terval. In total, our benchmark features 56 instances: 24 for CLEAN-
ING, 16 for BLOCKS, and 16 for ROBOT. Domains and shields are
described in the following paragraphs and are available at [16].

Cleaning. In this domain, a robot can move between rooms to clean
dirty floor tiles. Each room is encoded as a 3x3 grid and has an en-
try point. Moreover, the robot has a battery that can be charged on
certain floor tiles. The cleaning action is non-deterministic and may
leave the floor dirty. However, this action consumes a level of battery
independently from the outcome. An example of an instance is shown
in Figure 1. The shield of type Simple specifies that the robot must
preserve at least two levels of battery with the formula: ¬charge(l1).
Precedence shields specify an order of achievement of the problem’s
subgoals. In our instances, the goal is to achieve clean(rx , tx) for ev-
ery dirty tile tx inside room rx. To specify that clean(ry , ty) should
be achieved (strictly) before clean(rx , tx), we use the shield:

clean(rx , tx)→ Y(O(clean(ry , ty)))

We then repeat the same shield for every pair of subgoals to force a
total order of achievement of the subgoals. Shields of type Precondi-
tion require that an event can occur only if a certain condition is met.
In our case, we want to enforce the property “The robot cannot go
outside until the room has been completely cleaned”. Let tx be the
access point of room rx . We can do so with the formula:

(outside ∧ Y(pos(rx , tx)))→
∧

{t|dirty(rx ,t)}

clean(rx , t).

Essentially, outside ∧ Y(pos(rx , tx)) becomes true only when the
robot leaves room rx, while

∧
{t|dirty(rx ,t)}

clean(rx , t) becomes true

when all dirty cells of rx become cleaned. Therefore, the shield spec-
ifies that the robot cannot leave a room before cleaning all dirty tiles.
Lastly, Interval is a shield requiring that there cannot be more than k
consecutive states that do not satisfy a certain condition. In our case,
we want the robot to be fully charged at least once every four states.
This property is specified by the formula:

charge(l4) ∨ Ycharge(l4) ∨ YYcharge(l4) ∨ YYYcharge(l4)

Blocksworld. The goal of BLOCKS is to arrange blocks in a partic-
ular configuration. In this version of the domain, an arm can pick up
either one or two blocks at the same time. In our instances, all blocks

Table 1. Coverage, average runtime (Time), average expanded nodes (Expanded), and average size of solution strategies (Policy) achieved by all encodings
across all domains. The best performers are in bold.

Domain Shield
Coverage Time Expanded Policy

ΠTEG ΠVDT ΠRE ΠTEG ΠVDT ΠRE ΠTEG ΠVDT ΠRE ΠTEG ΠVDT ΠRE

CLEANING

Simple 6 6 5 100.64 23.51 105.68 3407.40 746.20 560.00 76.20 70.40 71.60
Precedence 4 6 6 52.19 14.25 36.83 2851.00 461.75 359.25 84.75 81.25 83.00
Precondition 4 6 4 93.42 19.10 156.09 2953.50 673.00 643.00 95.00 88.25 88.25
Interval 4 6 6 234.62 13.32 82.17 6228.00 899.50 667.50 60.75 60.50 76.50

BLOCKS
Simple 2 8 8 3.26 2.00 24.49 298.00 6.00 6.00 6.00 6.00 6.00
Precedence 0 4 5 – 4.08 48.46 – 11.50 11.25 – 11.50 11.25

ROBOT
Precondition 5 8 6 43.27 6.91 88.57 3416.20 662.60 697.60 61.00 61.00 61.00
Interval 6 8 7 39.21 9.17 60.71 2667.83 1054.83 681.50 62.83 63.50 63.17

Total 31 52 47

are initially stacked to form a single tower, and the objective is to put
all blocks on the table. In this domain, we have Simple and Prece-
dence shields. With Simple we prevent the planner from picking up a
tower of two blocks with the formula ¬holding-two. Instead, Prece-
dence specifies that block bi+1 must be placed on the table before
block bi. For example, with four blocks b1 , b2 , b3 , b4 the shield is:

(table(b1)→ YO(table(b2))) ∧ (table(b3)→ YO(table(b4)))

Robot-Coffee. A robot has to prepare coffee in a kitchen and de-
liver it to different offices. The robot can move between offices, and
could non-deterministically spill the coffee while making a delivery.
In this domain, we have Precondition and Interval shields. In partic-
ular, Precondition requires that the robot may enter office ox only if
the coffee has not yet been delivered to ox . Specifically, the shield is:

(at(ox) ∧ Y(¬at(ox)))→ ¬coffee(ox)

Instead, Interval specifies that the robot must hold a mug of coffee at
least every four states with the formula:

has-coffee ∨ Yhas-coffee ∨ YYhas-coffee ∨ YYYhas-coffee.

5.2 Results

Table 1 reports the overall results for all encodings. ΠVDT achieves
the highest overall coverage, followed by ΠRE and by ΠTEG. The
comparison of ΠVDT versus ΠTEG confirms our expectations; ΠVDT

yields encoded problems with fewer reachable states than the prob-
lem encoded by ΠTEG, and as a consequence, myND has to do much
less search when combined with ΠVDT. This behavior can be ob-
served by looking a the number of expanded nodes: on average,
ΠVDT expands from one to two orders of magnitude fewer nodes than
ΠTEG. Figure 3 (left) reports the instance-by-instance comparison be-
tween ΠVDT and ΠTEG in terms of expanded nodes. We observe that
every instance solved by ΠTEG is also solved by ΠVDT and that ΠVDT

expands fewer nodes in all but 1 instance.
The comparison between ΠVDT and ΠRE shows a different picture.

On average, ΠRE expands fewer nodes than ΠVDT, but ΠVDT is both
faster and achieves a higher coverage than ΠRE. Looking at the raw
output logs of myND, across all instances, we observed that on av-
erage ΠRE introduces up to 17332 axioms. As a reference, across all
instances, ΠVDT adds on average 41 axioms. Clearly, ΠRE signifi-
cantly increases both the preprocessing and search times of myND.
Looking at the pairwise comparison reported in Figure 3 (right), we
observe that the number of nodes expanded by ΠRE and ΠVDT is very
similar. Still, myND is much faster with ΠVDT. This indicates that

Figure 2. Survival plot in linear (lhs) and logarithmic (rhs) scale.

Figure 3. Instance-by-instance comparison of ΠVDT (x-axis) versus ΠTEG

(left, y-axis) and ΠRE (right, y-axis) in terms of number of expanded nodes.

myND has to spend time evaluating the truth of the axioms resulting
from ΠRE, and overall takes more time to expand a node. In terms
of the average size of solution policies, we can see that all systems
perform about the same.

Figure 2 reports how each system increases its cover over time. We
can see that ΠVDT dominates the other encodings right from the start.
Instead, ΠTEG is initially faster than ΠRE, which manages to catch up
and surpass ΠTEG after about 46 seconds. This indicates that ΠTEG

might be preferable over ΠRE on small instances. However, compared
to ΠTEG, ΠRE scales to much larger problems.

6 Conclusions

We studied the problem of FOND planning with PPLTL shields. We
propose three techniques to encode S-FOND into FOND planning
for reachability goals. The first encoding handles a shield as a tempo-
rally extended goal, the second encoding modifies the preconditions
of actions to block the execution upon shield violation, while the last
approach uses the notion of regression to prevent the violation of the
shield. Our results show that it is much better to handle shields na-
tively rather than using a technique designed for temporally extended
goals. Future work includes investigating shield-aware heuristics and
encoding approaches for shields interpreted over action executions.

Acknowledgements

This work has been partially supported by ERC Advanced
Grant WhiteMech (No. 834228), PRIN project RIPER (No.
20203FFYLK), EU ICT-48 2020 project TAILOR (GA 952215),
PNRR MUR project FAIR (No. PE0000013), and PNRR MUR
project SERICS (PE00000014).

References

[1] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe reinforcement learning via shielding. In AAAI, pages
2669–2678. AAAI Press, 2018.

[2] B. Aminof, G. De Giacomo, and S. Rubin. Stochastic fairness and
language-theoretic fairness in planning in nondeterministic domains. In
ICAPS, pages 20–28. AAAI Press, 2020.

[3] F. Bacchus and F. Kabanza. Planning for temporally extended goals. In
AAAI, pages 1215–1222. AAAI Press, 1996.

[4] F. Bacchus and F. Kabanza. Planning for temporally extended goals.
Ann. Math. Artif. Intell., 22(1-2):5–27, 1998.

[5] F. Bacchus and F. Kabanza. Using temporal logics to express search
control knowledge for planning. AIJ, 116(1-2):123–191, 2000.

[6] F. Bacchus, C. Boutilier, and A. Grove. Rewarding behaviors. In AAAI,
pages 1160–1167, 1996.

[7] F. Bacchus, C. Boutilier, and A. Grove. Structured solution methods for
non-markovian decision processes. In AAAI, pages 112–117, 1997.

[8] J. A. Baier and S. A. McIlraith. Planning with first-order temporally
extended goals using heuristic search. In AAAI, pages 788–795. AAAI,
2006.

[9] J. A. Baier and S. A. McIlraith. Planning with temporally extended
goals using heuristic search. In ICAPS, pages 342–345. AAAI, 2006.

[10] H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens.
METATEM: A framework for programming in temporal logic. In REX
Workshop, volume 430 of LNCS, pages 94–129. Springer, 1989.

[11] J. Benton, A. J. Coles, and A. Coles. Temporal planning with prefer-
ences and time-dependent continuous costs. In ICAPS. AAAI, 2012.

[12] L. Bonassi, A. E. Gerevini, F. Percassi, and E. Scala. On planning with
qualitative state-trajectory constraints in PDDL3 by compiling them
away. In ICAPS, pages 46–50. AAAI Press, 2021.

[13] L. Bonassi, A. E. Gerevini, and E. Scala. Planning with qualitative
action-trajectory constraints in PDDL. In IJCAI, pages 4606–4613. ij-
cai.org, 2022.

[14] L. Bonassi, G. D. Giacomo, M. Favorito, F. Fuggitti, A. E. Gerevini,
and E. Scala. Planning for temporally extended goals in pure-past linear
temporal logic. In ICAPS, pages 61–69. AAAI Press, 2023.

[15] L. Bonassi, G. D. Giacomo, M. Favorito, F. Fuggitti, A. E. Gerevini,
and E. Scala. FOND planning for pure-past linear temporal logic goals.
In ECAI, volume 372 of Frontiers in Artificial Intelligence and Appli-
cations, pages 279–286. IOS Press, 2023.

[16] L. Bonassi, G. De Giacomo, A. E. Gerevini, and E. Scala. Code and data
for “Shielded FOND: Planning with safety constraints in pure-past lin-
ear temporal logic". https://github.com/LBonassi95/ppltl4shields, 2024.

[17] L. Bonassi, A. E. Gerevini, and E. Scala. Dealing with numeric and
metric time constraints in PDDL3 via compilation to numeric planning.
In AAAI, pages 20036–20043. AAAI Press, 2024.

[18] A. Camacho and S. A. McIlraith. Strong fully observable non-
deterministic planning with ltl and ltl-f goals. In IJCAI, pages 5523–
5531, 2019.

[19] A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier, and S. A. McIl-
raith. Non-deterministic planning with temporally extended goals: LTL
over finite and infinite traces. In AAAI, pages 3716–3724. AAAI Press,
2017.

[20] A. Cecconi, G. D. Giacomo, C. D. Ciccio, F. M. Maggi, and
J. Mendling. Measuring the interestingness of temporal logic behav-
ioral specifications in process mining. Inf. Syst., 107:101920, 2022.

[21] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via
model checking: A decision procedure for AR. In ECP, pages 130–142.
Springer, 1997.

[22] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-
deterministic domains via model checking. In AIPS, pages 36–43.
AAAI, 1998.

[23] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. AIJ, 147(1-2):
35–84, 2003.

[24] G. De Giacomo and S. Rubin. Automata-theoretic foundations of
FOND planning for ltlf and ldlf goals. In IJCAI, pages 4729–4735,
2018.

[25] G. De Giacomo and M. Y. Vardi. Automata-theoretic approach to plan-
ning for temporally extended goals. In ECP, pages 226–238. Springer,
1999.

[26] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dy-
namic logic on finite traces. In IJCAI, pages 854–860. IJCAI/AAAI,
2013.

[27] G. De Giacomo, A. Di Stasio, F. Fuggitti, and S. Rubin. Pure-past linear
temporal and dynamic logic on finite traces. In IJCAI, pages 4959–
4965. ijcai.org, 2020.

[28] G. De Giacomo, A. Di Stasio, L. M. Tabajara, M. Y. Vardi, and S. Zhu.
Finite-trace and generalized-reactivity specifications in temporal syn-
thesis. In IJCAI, pages 1852–1858. ijcai.org, 2021.

[29] P. Doherty and J. Kvarnström. Temporal action logics. In Handbook of
Knowledge Representation, volume 3 of Foundations of Artificial Intel-
ligence, pages 709–757. Elsevier, 2008.

[30] S. Edelkamp. On the compilation of plan constraints and preferences.
In ICAPS, pages 374–377. AAAI, 2006.

[31] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Chapter 16, 1990.

[32] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
analysis of fairness. In POPL, pages 163–173. ACM Press, 1980.

[33] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic: math-
ematical foundations and computational aspects, 1994.

[34] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. De-
terministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. AIJ, 173(5-6):
619–668, 2009.

[35] F. Giunchiglia and P. Traverso. Planning as model checking. In ECP,
pages 1–20. Springer, 1999.

[36] E. A. Hansen and S. Zilberstein. Lao*: A heuristic search algorithm
that finds solutions with loops. Artif. Intell., 129(1-2):35–62, 2001.

[37] J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An
overview. JAIR, 24:519–579, 2005.

[38] J. Hoffmann and B. Nebel. The FF planning system: Fast plan genera-
tion through heuristic search. JAIR, 14:253–302, 2001.

[39] C. Hsu, B. W. Wah, R. Huang, and Y. Chen. Constraint partitioning for
solving planning problems with trajectory constraints and goal prefer-
ences. In IJCAI, pages 1924–1929, 2007.

[40] H. J. Levesque, F. Pirri, and R. Reiter. Foundations for the situation
calculus. Electron. Trans. Artif. Intell., 2:159–178, 1998.

[41] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In
Logic of Programs, pages 196–218. Springer, 1985.

[42] Z. Manna. Verification of Sequential Programs: Temporal Axiomatiza-
tion, pages 53–102. Springer Netherlands, 1982.

[43] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC,
pages 377–410. ACM, 1990.

[44] R. Mattmüller, M. Ortlieb, M. Helmert, and P. Bercher. Pattern database
heuristics for fully observable nondeterministic planning. In ICAPS,
pages 105–112. AAAI, 2010.

[45] A. Micheli and E. Scala. Temporal planning with temporal metric tra-
jectory constraints. In AAAI, pages 7675–7682. AAAI Press, 2019.

[46] D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman. SHOP2: an HTN planning system. J. Artif. Intell. Res., 20:
379–404, 2003.

[47] M. Pistore and P. Traverso. Planning as model checking for extended
goals in non-deterministic domains. In IJCAI, pages 479–486. Morgan
Kaufmann, 2001.

[48] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977.

[49] J. Rintanen. Regression for classical and nondeterministic planning. In
ECAI, volume 178 of Frontiers in Artificial Intelligence and Applica-
tions, pages 568–572. IOS Press, 2008.

[50] G. Röger, F. Pommerening, and M. Helmert. Optimal planning in the
presence of conditional effects: Extending lm-cut with context splitting.
In ECAI, pages 765–770, 2014.

[51] M. Steinmetz, J. Hoffmann, A. Kovtunova, and S. Borgwardt. Classi-
cal planning with avoid conditions. In AAAI, pages 9944–9952. AAAI
Press, 2022.

[52] S. Thiébaux, C. Gretton, J. K. Slaney, D. Price, and F. Kabanza.
Decision-theoretic planning with non-markovian rewards. J. Artif. In-
tell. Res., 25:17–74, 2006.

[53] J. Torres and J. A. Baier. Polynomial-time reformulations of LTL tem-
porally extended goals into final-state goals. In IJCAI, pages 1696–
1703. AAAI Press, 2015.

