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Abstract. This paper introduces a novel algorithm for Reinforce-
ment Learning (RL) in Regular Decision Processes (RDPs), a model
of non-Markovian decision processes where dynamics and rewards
depend on regular properties of the history. Our algorithm is inspired
by Monte Carlo tree search (MCTS), yet it is improved with state
merging capabilities. Performing merges allows us to evolve the tree
model into a graph over time, as we periodically perform similar-
ity tests borrowed from automata learning theory to learn states that
are equivalent to one another. This results in improved efficiency and
scalability over standard MCTS. We present empirical results that
demonstrate orders of magnitude performance improvement over the
state-of-the-art RL algorithms for RDPs.

1 Introduction
The use of Monte Carlo tree search (MCTS) has shown to be highly
successful in a variety of applications in the field of reinforcement
learning, with outstanding performance when dealing with large state
spaces [14, 8, 23]. The study of techniques for state merging, state
abstraction, or state aggregation, is widely present in the literature
of reinforcement learning, and a number of these have been applied
to the case of MCTS [11, 12, 27, 15, 24]. A common observation
is that these techniques assume that the observations returned by the
environment constitute a complete representation of the current state
of the world. However, most real-world applications and domains
are naturally non-Markovian [6]. That is, the dynamics and rewards
are functions of the entire history. Therefore, complete histories of
interactions with the environment have to be considered in order to
behave optimally.

A recently introduced formalism, called Regular Decision Pro-
cesses (RDPs) [6], captures a well-behaved class of NMDPs. While
the dynamics of NMDPs can show an arbitrary dependency on the
history of past observations, RDPs work under the assumption that
the reward and dynamics are regular functions of the history, and
therefore representable by finite-state machines. This implies the ex-
istence of an underlying state space where states are determined by
histories. This is a key property that makes them amenable to a range
of solution techniques. We describe an example of an RDP to further
help in drawing an intuition of the concepts introduced throughout
the text.

Example 1 (Flickering Grid [21]). In a Flickering Grid, an agent
is assigned a simple navigational task: it has to reach a designated
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goal location from its initial location. The agent can observe its cur-
rent position in the grid. However, sometimes its sensors malfunction,
and the agent fails to observe its current position. Although with a
low probability, this can repeat for many consecutive time steps. It is
clear that, as long as the agent keeps track of the history of actions,
its current location can be deduced from the history with probability
1. Observations make it easier, but they are not essential. This makes
a flickering grid a Regular Decision Process. The state is the cur-
rent agent’s location, and it can always be exactly inferred from the
history.

In this paper we study how to devise a Monte Carlo tree search
algorithm with state merging for reinforcement learning in RDPs.
More specifically, we employ state merging techniques from proba-
bilistic automata [4] learning and seamlessly combine them within
MCTS. Previous algorithms for reinforcement learning in Regular
Decision Processes have also used automata learning techniques to
learn the model of the decision process, however they solved it using
planning algorithms such as policy iteration and showed low scal-
ability. The motivation for MCTS is exactly its ability to deal with
larger state spaces, which we show to greatly improve when com-
bined with state merging. Since automata learning is in itself a hard
problem, we further adapt MCTS to generate states on demand for
every history such that, even with poor estimates of its values, the
agent is still able to behave in a best-effort fashion in states it has
not visited often enough. Our contributions include the introduction
of a novel solution that combines MCTS and state merging, closely
designed to tackle the current drawbacks in recent works in RDPs,
and an empirical evaluation of the algorithm in comparison to state-
of-the-art techniques in the literature of RDPs.

2 Preliminaries
We start by introducing the key definitions of the setting of this paper.

Non-Markov Decision Processes. A Non-Markov Decision Pro-
cess (NMDP), cf. [6], is a tuple P = ⟨A,O,R, ζ,T,R⟩ with com-
ponents defined as follows. A is a finite set of actions, O is a finite
set of observations, R ⊆ R≥0 is a finite set of non-negative rewards,
ζ is a special symbol that denotes episode termination. Call the ele-
ments of H = (AOR)∗ histories and the elements of E = HA{ζ}
episodes. Then, T : H×A ; (O ∪ {ζ}) is the transition function,
and R : H × A × O ; R is the reward function. The transition
and reward functions can be combined into the dynamics function
D : H× A ; (OR ∪ {ζ}), which describes the probability to ob-
serve next a certain pair of observation and reward, or termination,



given a certain history and action. Namely, D(or|h, a) = T(o|h, a)·
R(r|h, a, o) and D(ζ|h, a) = T(ζ|h, a). We often write an NMDP
directly as ⟨A,O,R, ζ,D⟩. A policy is a function π : H ; A. The
uniform policy πu is the policy defined as πu(a|h) = 1/|A| for ev-
ery a and every h. The dynamics of P under a policy π describe the
probability of an episode remainder, given the history so far, when
actions are chosen according to a policy π; it can be recursively com-
puted as Dπ(aore|h) = π(a|h) · D(or|h, a) · Dπ(e|haor), with
base case Dπ(aζ|h) = π(a|h) ·D(ζ|h, a). Since we study episodic
reinforcement learning, we require episodes to terminate with prob-
ability one, i.e.,

∑
e∈E Dπ(e|ε) = 1 for every policy π.1 This re-

quirement ensures that the following value functions take a finite
value. The value of a policy π given a history h, written vπ(h), is
the expected sum of future rewards when actions are chosen accord-
ing to π given that the history so far is h; it can be recursively com-
puted as vπ(h) =

∑
aor π(a|h) · D(o, r|h, a) · (r + vπ(haor)).

The optimal value given a history h is v∗(h) = maxπ vπ(h),
which can be expressed without reference to any policy as v∗(h) =
maxa

(∑
or D(o, r|h, a) · (r + v∗(haor))

)
. The value of an action

a under a policy π given a history h, written qπ(h, a), is the expected
sum of future rewards when the next action is a and the following ac-
tions are chosen according to π, given that the history so far is h; it is
qπ(h, a) =

∑
or D(o, r|h, a) · (r + vπ(haor)). The optimal value

of an action a given a history h is q∗(h, a) = maxπ qπ(h, a), and it
can be expressed as q∗(h, a) =

∑
or D(o, r|h, a) · (r+v∗(haor)).

A policy π is optimal if vπ(ε) = v∗(ε). For ϵ > 0, a policy π is
ϵ-optimal if vπ(ε) ≥ v∗(ε)− ϵ.

Probabilistic Automata. We follow [3]. A Probabilistic Determin-
istic Finite Automaton (PDFA) is a tuple A = ⟨Q,Σ, τ, λ, ζ, q0⟩
where: Q is a finite set of states; Σ is an arbitrary finite alphabet;
τ : Q×Σ→ Q is the transition function; λ : Q×(Σ∪{ζ})→ [0, 1]
defines the probability of emitting each symbol from each state
(λ(q, σ) = 0 when σ ∈ Σ and τ(q, σ) is not defined); ζ is a spe-
cial symbol not in Σ reserved to mark the end of a string; q0 ∈ Q is
the initial state. An important characteristic in PDFA is called state
distinguishability, which allows for identifying states in the automa-
ton that produce different probability distributions of emitting sym-
bols. For a quantity µ > 0, we say that A is µ-distinguishable if
maxx |λ(q1, x) − λ(q2, x)| ≥ µ for every string x and every two
distinct states q1 and q2. This is a key characteristic exploited by al-
gorithms for learning probabilistic automata.

Regular Decision Processes. A Regular Decision Process (RDP)
[6] is an NMDP P = ⟨A,O,R, ζ,T,R⟩ admitting a finite automa-
ton A that describes its dynamics. Specifically, for every history h,
the output of the transducer isA(h) = D(·|h, ·), i.e. the distribution
on the next observation and reward given an action.2 Results in [20]
show that probabilistic automata, specifically PDFA, is the automata
model that accurately captures the dynamics of an RDP.

Markov Decision Processes. A Markov Decision Process (MDP)
[5, 18] is a decision process where the transition and reward func-
tions (and hence the dynamics function) depend only on the last ob-
servation in the history, taken to be an arbitrary observation when the
history is empty. Thus, an observation is a complete description of
the state of affairs, and it is customarily called a state to emphasise

1 A constant probability p of terminating at every step amounts to a discount
factor of 1− p, see [18].

2 In [6] the functions T and R are represented using the temporal logics on
finite traces LDLf . Here instead we use directly finite automata to express
them. Note that all T and R representable in LDLf are indeed expressible
through finite automata.

this aspect. Hence, we talk about a set S of states in place of a set
O of observations. All history-dependent functions—e.g., transition
and reward functions, dynamics, value functions, policies—can be
seen as taking a single state in place of a history.

Episodic RL. Given a decision process P and a required accuracy
ϵ > 0, Episodic Reinforcement Learning (RL) for P and ϵ is the
problem of an agent that has to learn an ϵ-optimal policy for P from
the data it collects by interacting with the environment. The interac-
tion consists in the agent iteratively performing an action and receiv-
ing an observation and a reward in response, until episode termina-
tion. Specifically, at step i, the agent performs an action ai, receiving
a pair of an observation oi and a reward ri, or the termination symbol
ζ, according to the dynamics of the decision process P . This process
generates an episode of the form a1o1r1a2o2r2 . . . anζ. The collec-
tion of such episodes is the data available to the agent for learning.

Monte Carlo methods. Monte Carlo (MC) methods in rein-
forcement learning [25] are simulation-based methods, or rollout-
methods, for estimating the value function. They are characterised
by sampling experiences, i.e. episodes, from the environment and
use their average returns to estimate the value function. With enough
sampling, the averages should converge to the corresponding ex-
pected values, which is the principle idea behind Monte Carlo meth-
ods. Many algorithms rely on Monte Carlo methods, e.g. Monte
Carlo tree search. A background on Monte Carlo tree search is given
in Chapter 4 as we concomitantly describe the concepts we borrow
from it to devise our novel algorithm.

3 Related Work

There exists in the literature a number of related studies to this one
with the goal of improving the performance of MCTS by means of
state merging, state abstraction, or state aggregation. Here we high-
light and point out the differences between existing work and our
approach. [11] propose a value-based state aggregation, and stud-
ies how aggregating states according to their expected value can
improve the performance of MCTS in MDPs. [12] and [27] show
how abstracting the state space to a smaller dimension helps in the
performance of MCTS by exploiting approximate state homomor-
phisms in MDPs. [15] provide a theoretical regret analysis on the
benefit of merging states in Monte Carlo tree search and operating
on a graph instead of a tree, however it does not provide a practi-
cal algorithm and merge criteria for doing so. [24] show a method
for state abstractions based on the geometry of the state space, ag-
gregating newly expanded nodes if similar to a neighbour node in
the same depth of the tree. The common characteristic of the stud-
ies mentioned above are that none of them considers the setting of
NMDPs. That is, state merging, abstraction, or aggregation, are pre-
formed with the assumption that each state holds enough information
in order to be aggregated, and not considering the whole history. In
contrast, our techniques aim to improve the efficiency of the above
algorithms in the non-Markov settings, taking into consideration that
both the reward and the dynamics function are history-dependant.

The closest approaches that take into consideration both rewards
and dynamics of the decision process are [1, 20, 21]. These ap-
proaches focus on Regular Decision Processes, that assume that the
reward and dynamics are representable by finite automata. Given this
characteristic, these approaches rely on automata learning techniques
to effectively cluster histories into one representative state. However,
there are fundamental differences on the approaches [20], [21], and
our approach, which directly impacts the number of samples before



achieving a near-optimal policy. [20] propose an iterative algorithm
that, at each iteration, learns an automaton by sampling a batch of
episodes randomly and solves it by value iteration, with guarantees
that better automata and policies are returned at each iteration. [21]
introduce a smarter way of sampling episodes by taking advantage of
an automaton that is built incrementally, while using RMax to guide
exploration and sample episodes that lead the automata learning al-
gorithm to learn states with higher return, and solving it by value iter-
ation. Our approach also builds an automaton incrementally, but we
will consider a new state for every visited history, i.e. we will learn
directly on histories while learning states concomitantly. This allows
us to take complete advantage of the sampled data and compute (ini-
tially rough) value estimates for every history, and therefore have a
policy with higher average return earlier on. As a drawback, we ini-
tially face a large tree, which motivates our decision on employing
an algorithm such as MCTS, in conjunction with the fact that MCTS
does not need a complete and accurate model of the environment,
in contrast to dynamic programming methods such as value itera-
tion. The tree eventually converges to a graph as states get merged,
and MCTS progressively refines the value estimates for every node,
guided by an exploration policy such as UCB1 [13].

4 Monte-Carlo tree search with state merging
We start this chapter by describing the basic concepts of Monte
Carlo tree search (MCTS) and its execution steps. We proceed by
describing the main ideas and concepts in the literature of Proba-
bilistic Deterministic Finite Automata (PDFA) learning and its state
merging procedure. Finally, we show a detailed overview of our al-
gorithm, specifically on how we connect MCTS and state merging
from PDFA-learning to devise a novel algorithm for reinforcement
learning.

4.1 Monte Carlo tree search

We describe the classic MCTS execution scheme [13, 8]. The algo-
rithm operates over a tree structure, where every node in the tree
represents a history h, and transitions between nodes are defined by
applying an action a, and observing a pair of observation o and re-
ward r, such that h′ = haor then maps to the next node. Every node
in the tree keeps track of basic statistics throughout the algorithm’s
execution, namely N(h) for the number of times a node has been
visited, X(h) for the empirical sum of returns from that node on-
wards, such that the expected average return value for a given history
can be computed as q̂(h) = X(h)/N(h) [13].

The algorithm works by iteratively performing the following four
procedures: selection, expansion, simulation, and backup. The selec-
tion procedure traverses the tree from the root node up to a leaf node
and, and selects nodes according to some tree policy that is usually
the UCB1 for trees action selection policy πs [2, 13]:

πs = πUCT (h) = argmax
a∈A

q̂(ha) + c

√
2 lnN(h)

N(ha)
, (1)

such that c is a constant that controls the exploration factor of the
selection policy, and any action where N(ha) = 0 yields∞.

Once the selection procedure reaches a leaf node, the algorithm
performs an expansion to the tree by adding a new child node from
the previously selected node. Expansions usually follow a criterion
that relies on a minimum number of times that a node in the tree
should be visited before expanding it further, assuming enough sim-
ulations are performed to estimate its expected return. A simulation
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Figure 1: Incremental learning of hypothesis automaton with safe
states as circles and candidate states as squares, and target automa-
ton. Σ = {a, b}.

is performed when a leaf node or a newly expanded node is reached,
and it consists of executing a rollout policy πr up to a specific depth
or to the end of the episode, that traditionally consists of sampling
actions uniformly at random. The total return of a simulation is then
used to perform the backup procedure, which backpropagates the re-
turn to update the value of each traversed node of the tree. The back-
propagation procedure at a given iteration conventionally consists of
updating the empirical returns X(h) and visit counts N(h), result-
ing in an update of the expected average return q̂(h) for every visited
node in the traversed history.

4.2 Learning probabilistic automata and state
merging

Probabilistic Deterministic Finite Automata (PDFA) is the model
that accurately captures the dynamics of RDPs [20], hence the choice
for this formalism. We now present a general description of a PDFA-
learning algorithm, highliting the concepts and features of algorithms
in [19, 9, 17, 3, 4] that are borrowed for developing our algorithm.
These algorithms work by building a hypothesis automaton that ap-
proximates the true target automaton, and incrementally constructs
this hypothesis by means of adding new states and/or merging states.
Let us illustrate by taking Figure 1 as an example. Figure 1b shows
the graph of a target automaton, and Figure 1a shows the graph of
a hypothesis automaton learned so far. States in the hypothesis au-
tomaton are classified as safe (circles) or candidate states (squares).
Safe states in the hypothesis are one-to-one with states in the target
automaton, while candidate states are the frontier of the current hy-
pothesis. As a state is promoted to safe, the frontier is then expanded
by adding new candidate states for every possible transition from the
recently promoted state.

The core of the algorithm are statistical tests, which are periodi-
cally performed to determine when a candidate state can be consid-
ered safe if distinct from all other states, or merged to another state
if equivalent to another state:

Test(q, q′, µ, δ, ϵ), (2)

where q and q′ are states in the hypothesis and µ is the distin-
guishability parameter [3]. The parameters δ and ϵ are the desired
confidence and accuracy, respectively. Note that the implementation
of the Test function may differ from author to author. However, we
consider here a general definition that considers the probably approx-
imately correctly (PAC) framework [26], specifically the one in [21],
such that the tests output the correct answer with high confidence and
accuracy, based on the distinguishability µ of the automata states.



Algorithm 1: MCSM

1 G ← initialise graph with root node as initial state
2 foreach episode do
3 h← ε;
4 s← G(h);
5 while episode is not done do
6 a← choose action according to policy πs if s is safe, otherwise rollout policy πr;
7 o, r ← apply action a;
8 h← haor;
9 s← G(h);

10 merges and promotions← perform statistical tests on G;
11 G ← apply new merges and promotions to the graph G, if any;
12 backpropagate total return collected from episode h;

With enough data collected for each state the algorithm is able to es-
timate the empirical transition probabilities between states with high
accuracy, such that it is able to confidently take decisions to distin-
guish states and approximate the hypothesis graph to the true target
with PAC guarantees.

4.3 Combining MCTS and state merging from
automata learning

We have introduced the basic concepts and procedures of MCTS,
probabilistic automata learning, and state merging. Now we describe
how these can seamlessly be put together as one. Figure 2 provides
an illustration of this process.

Let us start with the first MCTS procedure, selection, and let
Σ = AOR be such that every symbol in the alphabet is a transi-
tion triple of action, observation, and reward. All nodes in the tree
that are traversed during selection will correspond to safe states, ex-
cept for leaf nodes that will correspond to candidate states. It is easy
to see that the concept of nodes in the tree that have already been
expanded in classic MCTS aligns to the one of safe nodes in prob-
abilistic automata learning. That is, the collected data and statistics
each of node/state expanded so far is enough to confidently represent
its possible outcomes. To illustrate, Figure 2a shows a tree structure
where circle nodes represent safe states where the selection phase of
MCTS takes place, and square nodes represent candidate states.

Following the selection procedure, the expansion will correspond
to the promotion of candidate states (leaf nodes) to safe states. As a
state is promoted to safe, new candidate states are created. That is, the
newly promoted safe state is expanded and new candidate states, i.e.
child nodes that represent its direct outcome of applying an action,
are added to the tree as leaves.

The simulation procedure will correspond to the execution of
an exploration policy (the rollout policy) after a candidate state is
reached. Notice that each history and its prefixes generated from sim-
ulations past the candidate state are added to the tree as a node. In
other words, each candidate state holds a prefix tree of possible out-
comes from the rollout policy. As an example, Figure 2a illustrates
smaller square nodes that are created according to the simulations
from each candidate state (bigger square nodes). Finally, the backup
procedure will use the total return of the complete history to back-
propagate the value of all nodes in the tree in which the history tra-
verses.

As mentioned in the previous section, statistical tests will be per-
formed periodically in order to merge or promote candidate states to
safe. The results from these statistical tests will determine when a

node will be promoted or merged. It is simple to see that promoting
a candidate state to safe affects the tree by expanding it. However,
merging states remains a more elaborate process. To illustrate it, let
us take the example in Figure 2b and assume that a statistical test re-
turns that candidate state c1 and safe state q5 are in fact the same, i.e.
their empirical distributions over history suffixes are similar enough
such that the test considers them equal. Merging candidate c1 to safe
q5 will amount to redirecting to q5 all transitions that once pointed to
c1 and propagating the prefix tree of c1 to q5, as illustrated in Figure
2c. Note that merges can also introduce cycles to the graph, as illus-
trated in Figure 2d, where candidate c0 is merged to its parent safe
state q1. Given that the two states reached from different histories
are actually equal, we can refine the count and expected return esti-
mates of the safe state that the candidate was merged onto by taking
N(q1) = N(q1)+N(c0) and X(q1) = X(q1)+X(c0), and recur-
sively to all its children. With subsequent applications of merges, the
tree eventually converges to a graph, and every node that previously
represented a history, now represents equivalence classes of histories.
With the use of MCTS as heuristic to guide the search, we manage to
test and learn states that expand the model towards the goal, as data
is collected towards higher rewarding nodes.

Finally, with the guarantees mentioned in the previous section for
the similarity tests we employ from PDFA learning literature, we
learn the correct and minimal model of the dynamics [3], i.e. the
MCTS tree will converge to the minimal graph over time. Regard-
ing the policy, we inherit guarantees from [13] that it converges in
the limit as UCB1 progressively approximates the value function’s
expected return.

4.4 Algorithm overview

We now describe our algorithm MCSM, a novel algorithm that com-
bines MCTS with state merging from probabilistic automata learning
theory. An overview of MCSM is presented in Algorithm 1, devel-
oped over the ideas presented in the previous section.

The first step of the algorithm is to initialise a graph with a root
initial state (Line 1). With an initialised graph, the agent starts in-
teracting with the environment episodically (Lines 2-12). For each
episode, its history (i.e. sequence of actions, observations, and re-
wards) is initialised as the empty string ε (Line 3). For every history
there is a corresponding node in the graph. If a history does not map
to a node in the current graph, nodes are created on demand.3 For

3 Note that, in classic MCTS, values are not saved and nodes are not created
after the expanded region (fringe) of the tree. Instead, we create nodes that



qε

q2q1 q3

q4c0 q5

c1

(a) Graph without merges (a tree).

qε

q2q1 q3

q4c0 q5

c1

(b) Statistical test.

qε

q2q1 q3

q4c0 q5

(c) Merging a candidate state to a safe state.

qε

q2q1 q3

q4 q5

(d) Performing a cyclic merge.

Figure 2: Overview of Monte Carlo tree search with state merging. For presentation purposes, we omit transition symbols σ ∈ Σ, given
Σ = AOR.

the case of the empty history, the state returned by the graph is the
initial state that is the root node (Line 4). While the episode is not
over (Line 5), the agent chooses actions based on the current state
given by the history so far. The agent chooses actions using the se-
lection policy πs if the current state is safe, i.e. the history maps to
a node in the expanded part of the tree, otherwise according to the
rollout policy πr (Line 6). Applying actions to the environment will
return an immediate observation and reward (Line 7). The observa-
tion and reward are appended to the history (Line 8), and the agent
updates its current state given the current history (Line 9). When an
episode is over, we perform statistical tests over the new graph and
return new merges and promotions (Line 10), which are then applied
to the structure of the graph (Line 11), if any. The final step of the
algorithm is to backpropagate the total return of the collected history
to all nodes traversed in that episode (Line 12).

5 Experiments

We carry out an empirical evaluation to understand the capabilities of
MCSM. We instantiate the algorithm employing a UCB1 policy [2]

keep track of values and nodes for all histories collected throughout the
interactions with the environment, as such data is essential for performing
the statistical tests.

for the selection phase and a uniform policy in the rollout phase, stan-
dard in MCTS algorithms [13, 8]. For the statistical tests, we employ
the similarity test based on [4] that ensures PAC guarantees. The hy-
perparameters used in the statistical tests, such as distinguishability,
confidence, and accuracy, are detailed in appendix.

We compare the performance of MCSM against PAC-RDP [20]
and Markov Abstractions (MA) [21], which are the current state-
of-the-art algorithms for reinforcement learning in Regular Decision
Processes. As a baseline, we consider the RMax [7] algorithm and
a classic MCTS implementation [13, 8]. The RMax algorithm is a
baseline to reflect the performance of an agent that assumes observa-
tions to be Markovian, i.e. acting without taking the history in con-
sideration, while classic MCTS is a baseline that relies on complete
histories in order to take decisions. Other algorithms in the literature
of RDPs such as S3M [1] and RNN2RDP [22] are not in the scope of
this empirical evaluation as they are algorithms that do not provide
guarantees4.

4 Analysing the empirical results in their respective original papers, the re-
ported performance of the S3M algorithm shows that it outperforms our
algorithm in the Malfunction MAB domain, it performs comparably in the
Rotating MAB, and it has poorer performance than ours in the remain-
ing domains. The reported performance of RNN2RDP, on the other hand,
shows that it outperforms our algorithm in the Malfunction MAB domain,
while it performs comparably in the remaining domains.
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Figure 3: Empirical evaluation of MCSM.

We consider six different domains from the literature of RDPs
[1, 21]. The domains comprise Multi-Armed Bandits (MAB) prob-
lems and grid environments that exhibit different temporal aspects
that have to be considered by an agent in order to achieve optimal
behaviour. We now briefly explain each domain. Note that domains
are defined in terms of a parameter k, which makes the domains more
complex as it is assigned larger values, but it has a different meaning
in each domain.

Rotating MAB. [1] It is a MAB with k arms where reward prob-
abilities depend on the history of past rewards: they are shifted
(+1mod k) every time the agent obtains a reward. The optimal be-
haviour is not only to pull the arm that has the highest reward prob-
ability, but to consider the shifted probabilities to the next arm once
the agent is rewarded, and therefore pull the next arm.

Reset-Rotating MAB. [21] Similar to the definition above, how-
ever reward probabilities are reset to their initial state every time the
agent does not get rewarded.

Malfunction MAB. [1] It is a MAB in which one arm has the high-
est probability of reward, but yields reward zero for one turn every
time it is pulled k times. Once this arm is pulled k times, it has zero
probability of reward in the next step. The optimal behaviour in this
domain is not only to pull the arm with highest reward probability,
but to take into consideration the number of times that the arm was
pulled, such that once the arm is broken the optimal arm to pull in
the next step is any other arm with nonzero probability of reward.

Cheat MAB. [1] It is a standard MAB. However, there is a cheat
sequence of k actions that, once performed, allows maximum re-
ward at every subsequent step. The cheat is a specific sequence
[ai, ai+1, ..., ak] of arms that have to be pulled. Observations in this

domain are the arms pulled by the agent. The optimal behaviour is to
perform the actions that compose the cheat, and thereafter any action
returns maximum reward.

Rotating Maze. [1] It is a grid domain with a fixed goal position
that is 5 steps away from the initial position. The agent is able to
move in any direction (up/left/down/right) and the actions have suc-
cess probability 0.9, with the agent moving into the opposite direc-
tion when an action fails. Every k actions, the orientation of the agent
is changed by 90 degrees counter-clockwise. Observations in this do-
main are limited to the coordinates of the grid.

Flickering Grid. [21] An 8x8 grid domain (k = 8) with goal cell
(3, 4), where at each step the agent observes a flicker (i.e. a blank
observation) with 0.2 probability. Episodes in this domain are set to
15 steps.

5.1 Empirical evaluation

Figure 3 shows the performance of our algorithm in comparison to
PAC-RDP [20] and MA [21], in addition to the RMax [7] and MCTS
[13, 8] baselines. Each line represents an average over 5 runs with its
standard deviation. At every 10k training episodes, we evaluate the
current greedy policy of each agent. Note that the greedy policy is the
best policy available to the agent at a given moment as it takes actions
aiming to maximise the total return, and it is better than the policies
used while training that include an exploration bias. Each evaluation
is an average over 50 episodes, where for each episode we measure
the accumulated reward divided by the number of steps taken. In the
MAB domains, episodes are of length 10. The Maze and Flickering
Grid domains have a maximum episode length of 15, with episodes
terminating whenever the goal position is reached.



Our algorithm outperforms the state-of-the-art algorithms for
RDPs, i.e. PAC-RDP and MA. MCSM has better performance in the
Reset-Rotating MAB, Malfunction MAB, Cheat MAB, and Flicker-
ing Grid domains. It has comparable performance with MA in the
Rotating MAB. Regarding the baselines MCTS and RMax, MCSM
outperforms both over time. Interestingly, RMax outperforms all al-
gorithms earlier in the Malfunction MAB, an example domain in
which assuming observations as Markovian results in collecting high
returns immediately. Finally, the MCSM performance is orders of
magnitude higher in the Reset-Rotating MAB, the Cheat MAB, and
the Flickering Grid domains, converging millions of episodes ahead
of other algorithms and baselines.

A key general takeaway is that, although we are interested in a
model-based approach for learning the underlying dynamics of the
RDP and solving the decision process with the learned model, some-
times working directly on histories is beneficial. A clear example
is shown in the Rotating Maze domain, where MCTS and MCSM
perform comparably since reaching the goal takes only 7-8 steps on
average, and the domain stochasticity is very low (0.1 probability of
action failure), therefore not producing a tree of substantial depth be-
fore finding the optimal policy. A counterexample is the Malfunction
MAB domain, which has higher stochasticity in actions’ outcomes,
which shows that merging states gradually improves the policy per-
formance over time, while classic MCTS struggles to compute the
policy for all possible histories. Nonetheless, it is clear that merging
states will reduce the search space and reduce the number of states
for which an algorithm has to estimate the value function, and there-
fore allows for improved performance in the long run.

Reproducibility, source code, and experimental setup. The re-
sults shown in this paper are reproducible, and the definitions of our
experiments are provided in the source code, along with the exact
random seeds to reproduce the results. The source code contains in-
structions on how to run the reported experiments, as well as run-
ning experiments in general using our instantiation of MCSM. A vir-
tual environment is available for running the code with its require-
ments. Our experiments were carried out in a server running Ubuntu
18.04.5 LTS, with 512GB RAM, and 80 cores model Intel Xeon E5-
2698 2.20GHz. Each training run takes one core and the necessary
amount of compute and time is empirically linear on the number of
episodes and steps required for showing convergence. Find the com-
plete code, parameters, and instructions to run the experiments at
https://github.com/whitemech/mcts-state-merging-code-ecai24.

6 Conclusions

We introduced MCSM, a practical and novel algorithm for Monte
Carlo tree search with state merging. The algorithm is built on con-
cepts from automata learning algorithms that intuitively connect with
Monte Carlo tree search. We apply statistical tests from probabilis-
tic automata learning to decide when nodes on the tree should be
merged, incrementally transforming the structure into a cyclic graph
5. The merging process improves the efficiency and scalability of
standard MCTS, as complete branches of the tree get merged and
the overall tree size consequently gets reduced, resulting in a smaller
search space. A cyclic graph ultimately results in a model in which
the agent can exploit by generating infinite episodes, in contrary to
the naturally episodic structure of a tree. Considering a candidate
state for every history allows us to take complete advantage of the

5 To the best of our knowledge, this is the only proposed algorithm based on
MCTS that converges to a cyclic graph structure.

sampled data and compute value estimates for all histories, and there-
fore have a policy with higher average return earlier on. Ultimately,
nodes in the graph are a representation of an equivalence class of
histories, i.e. histories that correspond to the same underlying state
instead of multiple nodes in a tree.

Our experimental evaluation shows that MCSM overperforms
standard MCTS and learns better policies faster as a result of its
merges. MCSM also overperforms state-of-the-art algorithms for
Regular Decision Processes, except for one example in which the
performances match. While we apply this algorithm to Regular De-
cision Processes, which have a one-to-one correspondence to PDFA,
we believe it can also be applied to larger classes of non-Markov
decision processes, since we expand the fringe of candidate states
by considering a new candidate state for every visited history, and
therefore we can assume it applies to several history-based decision
processes.

Finally, we limited our implementation based on classic MCTS,
which employs the UCB1 selection policy and a uniform rollout pol-
icy. However, we believe recent improvements in MCTS and poli-
cies can further benefit the performance of our algorithm with trivial
adaptations in future work. A memory-specific analysis of the algo-
rithm is a clear analysis to be made in future work, as the scope of
this paper has only focused on the sample efficiency of the algorithm.
In other directions, techniques to prune the search could be applied,
including the study of safety and advice properties that can be used
to direct the search when the agent visits histories that violate such
properties [16, 10].

A Hyperparameters details
We now report and explain the parameters used in the experimen-
tal evaluation in Table 1. The hyperparameters regard the statistical
tests from probabilistic automata learning, and are strictly domain-
dependent. First, the delay parameter [21], sets the length of his-
tories that must be considered in order to distinguish states during
the statistical tests. Second, the distinguishability parameter µ [3],
a parameter that needs to be computed taking into consideration the
probabilities that define the domain dynamics, such that it reflects the
probability of sampling distinguishing histories. Finally, the param-
eter n is an upper bound on the number of states, i.e. on the actual
number of safe states in the target automaton [4]. Though these pa-
rameters are domain-specific, if domain knowledge is not available
one can employ a search strategy for finding approximate values [4].

Table 1: Domain-specific parameters.

Domain delay µ n

Rotating MAB k = 2 1 0.35 10

Reset-Rotating MAB k = 8 1 0.0874 10

Malfunction MAB k = 5 6 0.0127 10

Cheat MAB k = 4 5 0.0254 10

Rotating Maze k = 3 3 0.15 200

Flickering Grid k = 8 1 0.224 70

In addition to the parameters reported in Table 1, all experi-
ments use other domain-independent parameters that are fixed. More
specifically, we highlight confidence δ and accuracy ϵ parameters
that regard to the PAC guarantees of the statistical test, both set to
value 0.2 on all experiments. Other parameters are fixed to their stan-
dard values according to [4].

https://github.com/whitemech/mcts-state-merging-code-ecai24
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