
With Great Power Comes Great Responsibility:
Security and Privacy Issues of Modern
Browser Application Programming Interfaces
Harun Oz, Cyber-Physical Systems Security Lab, Florida International University

Daniele Cono D’Elia, Sapienza University of Rome, Italy

Güliz Seray Tuncay, Google, Mountain View, CA, USA

Abbas Acar, Cyber-Physical Systems Security Lab, Florida International University

Riccardo Lazzeretti, Sapienza University of Rome, Italy

Selcuk Uluagac, Cyber-Physical Systems Security Lab, Florida International University

Abstract—This article provides an overview of security and privacy challenges
and concerns that come with modern browser application programming interfaces.
We aim to inform the community about intrinsic risks associated with their usage
and suggest possible directions to tackle them more effectively.

Index Terms: Emerging technologies, Web Browser, Web Security, Browser
Security, Browser API Security

Since its inception in 1993, the World Wide Web
has undergone a remarkable evolution, transitioning
from a repository of static HTML pages to a dynamic
and feature-rich ecosystem. This transformation has
been largely driven by the introduction and integra-
tion of new technologies into the web ecosystem. A
prominent example is the modern browser application
programming interface (API), which has been instru-
mental in equipping developers with tools to create web
applications that are not only dynamic but also feature-
rich, rivaling the capabilities of traditional desktop ap-
plications [1].

Browser APIs enable web applications to interact
with and retrieve information from the system’s hard-
ware components, manipulate data within both the
browser and the user’s local file system, and customize
their user interface to facilitate more engaging user ex-
periences. As web applications are platform-agnostic
(e.g., operating system independent) and can be more
cost-effective to maintain and update than some mobile
or desktop applications, the introduction of modern
browser APIs also motivates major companies to port
their native applications to the web.

However, with great power comes great responsi-
bility (https://en.wikipedia.org/wiki/With_great_power_
comes_great_responsibility). While browser APIs en-

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

able the development of powerful web applications,
they are a double-edged sword. On the one hand, they
significantly extend the capabilities of web applications,
leading to improved user experiences and the ability
to fully utilize the underlying hardware and software
infrastructure. On the other hand, the power and flexi-
bility of these APIs introduce new security and privacy
challenges. As web applications gain deeper access to
system resources, these APIs may extend the attack
surface and become potential vectors for various types
of attacks.

While browser vendors are actively working to inte-
grate these APIs securely into the web ecosystem, it is
important to acknowledge that, like any other software,
these APIs may contain vulnerabilities that malicious
actors could exploit. The implications of these vul-
nerabilities depend on the very features of browser
APIs but also on factors like implementation errors,
unintended use, and unexpected composition [2]. Even
though state-of-the-art browsers readily ship various
mitigations to potential attacks, in some cases these
might still fall short. For instance, we are aware of a
few studies that exposed vulnerabilities within specific
browser APIs related to battery status [3], filesys-
tem [4], and screen sharing [5]; Snyder et al. also
explored selective restrictions on a per-site basis [2].

In this work, we underline and review general se-
curity and privacy concerns within browser APIs. We
first provide our readers with an overview of typical
browser APIs functionality, identifying three groups:

October Published by the IEEE Computer Society IEEE Security and Privacy Magazine 1

https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility
https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility


Device Interaction APIs, Data Management APIs, and
User Interaction APIs. Next, we present a research
agenda that sheds light on the intricate balance be-
tween functionality and security within the realm of
modern web applications. We also further detail a few
scenarios where existing defenses struggle to com-
prehensively address browser security problems. Our
objective is to inform the community about the potential
risks of these APIs and stimulate a discourse that could
lead to a more secure and private web ecosystem.

Browser APIs
Browser APIs are essential components of web
browsers. In essence, they are a set of programming
interfaces and standards for accessing and integrating
the functionalities offered by a web browser.

From an implementation standpoint, these APIs
are exposed as objects within the global scope of a
web page. Developers can utilize browser APIs di-
rectly in their code, without needing plugins or external
software. When a web page is loaded, the browser’s
JavaScript engine initiates a runtime environment that,
among other things, grants access to a variety of
browser APIs. Code can easily interact with these APIs
via Javascript methods and properties associated with
each API.

Community members, working groups, and
browser vendors continuously work on new APIs to
accommodate emerging technological opportunities
and processes. Once an experimental API proposal
reaches a sufficient level of maturity, it undergoes the
scrutiny of standardization organizations. Passing this
step does not necessarily imply universal availability,
as a vendor may choose to not implement an API or
offer only a restricted version of it due to business
strategy, security considerations, or privacy concerns.

Browser vendors take a comprehensive approach
to safely introduce new APIs, focusing on enhancing
functionality while maintaining security. Before their re-
lease, new APIs undergo rigorous security reviews and
testing, including automated and manual evaluations
to identify and mitigate potential vulnerabilities. Some
vendors also have trial programs that allow developers
to test new features on their websites and provide
feedback before these APIs are fully integrated into the
vendor’s platform. Additionally, some APIs may initially
be available only behind feature flags, limiting their use
until they are proven stable and secure.

The methods and properties inherent in main-
stream browser APIs have significantly enhanced the
capabilities and functionalities of web applications
from various perspectives. In this work, we categorize

browser APIs into three groups based on their core
objectives and distinct capabilities (Figure 1):

1) Device Interaction APIs: These allow web appli-
cations to interact directly with the user’s device.

2) Data Management APIs: These allow web appli-
cations to interact with various storage mecha-
nisms for storing user and website data.

3) User Interaction APIs: These enhance user inter-
actions in web applications.

Next, we provide examples and use cases for each
API group and explore their features in more detail.

Device Interaction APIs. These APIs facilitate di-
rect communication between web applications and the
user’s device hardware, providing a standardized inter-
face for data exchange and control in either direction.

The use of device-specific features can enhance
the overall user experience, making it more interactive
and responsive to the user’s environment. Interaction
is typically event-driven, meaning the API responds to
changes in device state or user actions. The features
of Device Interaction APIs include:

Accessing Hardware Features: A notable example is
given by the Media Capture and Streams API,
which enables web applications to access device hard-
ware such as cameras and microphones. This API me-
diates the interaction by requesting permissions from
the user and then providing the web application with a
stream of data from the hardware, enabling tasks like
capturing photos, recording audio and video, and real-
time communication. Modern web applications can
also probe the battery status of the host system via
the Battery Status API and adjust their resource
usage accordingly. In the realm of experimental APIs,
the WebGPU API can support the drawing of complex
images and also general-purpose GPU computations
by harnessing GPU resources and APIs within the
browser.

Sensing Device State and Environment: Device Inter-
action APIs can be utilized to sense the state of
the device and its environment. For example, the
DeviceOrientation and DeviceMotion APIs, by
accessing data from internal sensors such as gy-
roscopes and accelerometers, allow applications to
detect and respond to changes in device orientation
and motion. The information can be used for various
purposes, such as rotating the user interface to match
the device orientation or creating motion-driven games.

Geolocation and Mapping: Device Interaction APIs
can also facilitate location-based services. For in-
stance, the Geolocation API leverages GPS,
nearby cellular networks, Wi-Fi nodes, or other sensor

2 With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming InterfacesOctober 2024



FIGURE 1. Types of modern browser APIs.

inputs to provide accurate location data. Web applica-
tions can then utilize this data for services like maps,
local search results, or location-aware gaming.

Data Management APIs. Modern web browsers in-
clude different options for storing user and website
data. The stored data can serve various purposes,
such as saving website content for offline use, caching,
or retrieving the user’s information. To interact with data
storage mechanisms, web applications utilize Data
Management APIs. Key features of these APIs include:

Local and Session Storage Interaction: Data Manage-
ment APIs offer key-value storage mechanisms that
are fundamental to modern web application functional-
ity. Specifically, the Web Storage API provides local
and session storage: the former for persistent data to
keep across multiple sessions, the latter for transient
data needed only for the duration of a session.

Complex Data Resource Interaction: The IndexedDB

API offers a robust solution for more advanced data
storage needs. This API allows for the storage of
significant amounts of structured data, including files
and blobs, and supports high-performance searches
using indexes. It is ideal for applications that need
to handle large datasets, such as multimedia content,
email clients, or complex web-based games.

Management of Cached Data: Modern web applica-
tions can also resort to cached data. The Cache

interface available within the Service Worker API

lets them manage a cache of network responses: this
is a crucial capability, for example, to work offline or
load faster by caching essential resources and assets.

Interacting with the Local File System: Web applica-
tions may also interact with the local file system of
the user device. Through the File System Access

API, they can modify a user-selected subset of files
and directories in the file system much like native
applications. This is essential for applications that deal
with document editing, image and video processing, or
any other form of user-generated content.

User Interaction APIs. These APIs can significantly

enhance modern web applications by facilitating more
engaging and tailored user experiences. They en-
compass a variety of capabilities, from modifying the
display environment to actively engaging users with
timely notifications and understanding user activity. Key
features of these APIs include:

Maximizing Display in a Browser: User Interaction
APIs can change the display size in a browser.
For example, the Fullscreen API enables web
applications to expand their content to fill the entire
screen, eliminating the browser interface elements
for a more immersive viewing experience. This is
particularly impactful in applications like media players
or gaming platforms, where a larger viewing area
provides a more immersive experience.

Direct User Engagement: By utilizing User Interaction
APIs, websites can engage with users. For example,
with the Web Notifications API, applications can
send notifications through the native system of the de-
vice. With this feature, users can be engaged through
real-time alerts and messages, even when they are not
actively on the web page.

Activity Insights: In addition to interactive capabilities,
User Interaction APIs can also be used to track user
activity. For example, the Idle Detection API en-
ables a web application to detect when the user
becomes idle based on various indicators, such as
keyboard or mouse activity and screensaver activation.
This enables the application, for instance, to detect
which of multiple devices the user is actively using and
deliver messages to that device.

Security & Privacy Concerns
Browser APIs have become integral to modern web de-
velopment, powering a vast array of interactive and dy-
namic features that create seamless user experiences.
As browser vendors constantly innovate and introduce
new capabilities, comprehensive security reviews and
testing processes are essential to mitigate potential
risks. Despite these efforts, the introduction of new

October 2024With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming Interfaces 3



APIs can inadvertently open avenues for novel attacks
or raise unexpected privacy concerns, highlighting the
ongoing challenge of balancing functionality and secu-
rity in the ever-evolving web landscape. In the follow-
ing, we elaborate on prominent threats that we foresee.

Security Concerns
Abusing Device Resources: Despite the security pro-
visions available in browsers, the interaction of web
applications with device hardware may still introduce
a variety of threats. For example, an adversary could
create a web application that continuously activates the
vibration feature (via the Vibration API), leading
to significant CPU strain and rapid battery depletion,
especially in mobile devices. Researchers have also
demonstrated [6] how a threat actor may abuse re-
sources for persistent and stealthy computation (e.g.,
cryptojacking), creating botnets able to perform un-
wanted computation or harmful operations even after
the user closes the tab of the malicious website.

Enhanced XSS Attacks: Traditional Cross-Site Script-
ing (XSS) attacks typically involve injecting malicious
scripts into static web pages, which then execute in
the context of the browser. The introduction of modern
browser APIs has inadvertently broadened the attack
surface for XSS attacks. As these APIs enable more
complex storage mechanisms and interactions with
the DOM, attackers may find new vectors to inject
malicious scripts into web applications. For example,
using the IndexedDB API, an attacker could insert
a malicious script into the database that a web ap-
plication uses for storing user data [7]. This could
lead to unauthorized actions such as stealing user
session tokens or manipulating stored data. A pertinent
study [8] examining XSS threats from insecure use
of client-side storage found that more than 8% of the
Alexa Top 5,000 domains have unfiltered data flows
from persistent storage to dangerous sinks, highlight-
ing a significant reliance within browser APIs on the
assumed integrity of storage content.

New Malware Strains: The capabilities behind modern
browser APIs may be abused for enhanced malware
designs. For example, their powerful features can
help adversaries create browser-based ransomware
that operates directly from browsers. Researchers
demonstrated [4] the attack using the File System

Access API. Specifically, an adversary can create a
web application that tricks users into granting access
to sensitive areas of their local file system, bypassing
the security model of the API. Once this access is
obtained, the malicious web page encrypts the user’s
files directly through the browser. Unlike traditional

malware, the attack does not require a covert infection
vector to stay undetected and runs entirely within the
browser.

Enhanced Phishing Attacks: As some browser APIs
are capable of modifying the user’s screen, at-
tackers may abuse them to create deceptive inter-
faces that mimic familiar and trusted user interfaces.
These interfaces can then be used for phishing at-
tacks. For example, by utilizing the Fullscreen

API, an attacker could create a webpage that
closely resembles the login page of a popular ap-
plication (https://textslashplain.com/2023/09/12/attack-
techniques-fullscreen-abuse/). Once the user navi-
gates to it, the attacker can trigger the API to display
the page in full-screen mode, where interface elements
that help users identify whether the website is legit-
imate, such as the address bar, are not visible. The
resemblance to the legitimate website may also likely
overshadow, in the user’s perception, the visual indica-
tors from the browser about the webpage entering this
mode. Along similar lines, the Screen Capture API

offers another vector for phishing attacks. For example,
an attacker, after compromising a user’s account, could
trick their friends into joining a screen-sharing session
and visiting a malicious website. Unsuspecting users
might not realize the malicious website can access
cross-origin data, potentially capturing sensitive infor-
mation from logged-in accounts (e.g., banking or so-
cial media) by opening pages through hidden iframes
or new windows [5]. This may go unnoticed due to
the limitations of human vision, such as with briefly
displayed flashing content or content that is almost
transparent. In a similar fashion, the attacker may steal
cross-site request forgery tokens, which could enable
further attacks to the user.

Privacy Concerns
Enhanced Fingerprinting Risks: Traditional fingerprint-
ing techniques, such as collecting stateful data like
cookies, offer limited insights and can often be con-
trolled by the user. In contrast, web applications lever-
aging modern browser APIs can access a much
broader spectrum of data about a user’s device and
browser environment. This can favor the development
of sophisticated browser fingerprinting methods and an
extended range of fingerprinting surfaces. Researchers
have shown [3] that seemingly benign data retrieved
via the Battery Status API, such as the frequency
of battery status changes, can serve as a finger-
printing vector. The abundance of browser APIs can
inadvertently facilitate such attacks: a recent study
has revealed that 231 APIs (constituting 3.1% of all

4 With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming InterfacesOctober 2024

https://textslashplain.com/2023/09/12/attack-techniques-fullscreen-abuse/
https://textslashplain.com/2023/09/12/attack-techniques-fullscreen-abuse/


Chromium APIs) are actively utilized for browser fin-
gerprinting across the Alexa Top 10,000 domains [9].
A subsequent repetition of the experiments 11 months
later uncovered an additional 18 APIs being exploited
for fingerprinting purposes. On the bright side, finger-
printing methodologies from researchers can also be
used to strengthen the efforts that browser vendors
already put in privacy protection, as with standardized
API outputs and stringent permission requirements.

Location Tracking Concerns: As discussed, certain
browser APIs can access user location information.
Although these APIs are designed to enhance user
experience with location-based services, they can be
misused for unauthorized location tracking. A main
issue lies in their too coarse-grained permission and
location models: for example, web applications can ac-
cess either precise location information or none, even
in situations where only a rough estimate would suffice.
A study on 1,196 websites that use the Geolocation

API revealed that about half of them required exces-
sive privileges for their functionality [10].

Research Agenda
We believe the community is faced with a clear and
pressing need for ongoing research to develop more
efficient, automated, and developer-friendly security
solutions that can keep pace with the rapid develop-
ment of browser APIs and their potential exploitation
in the wild. This may include a mix of new defenses
and adapting existing mechanisms for their current
ineffectiveness against threats involving these APIs,
ensuring that security measures evolve in tandem with
the capabilities and complexities of web applications.
In the following, we share our reflections and present
a research agenda to motivate future research on
security and privacy issues of modern browser APIs.

Designing Defense Solutions
Browser APIs have not only revolutionized the ca-
pabilities of web applications, but also transformed
the landscape of cybersecurity threats. Despite the
efforts made by the browser vendors to secure them,
these APIs have given rise to novel attacks and added
complex dimensions to existing attack vectors, chal-
lenging the effectiveness of traditional defense solu-
tions. Many consider sandboxing mechanisms the first
line of defense within browsers, as they enhance the
overall safety of web applications and thwart traditional
browser attacks by isolating execution environments.
However, sandboxing an execution instance would
not prevent a web application from abusing trusted

browser APIs, as for example with the ransomware [4]
and the botnet [6] attacks mentioned earlier in the
article. Based on the knowledge gained from our study,
in the following, we focus on two relevant research di-
rections that elude traditional security measures avail-
able within browsers and the operating system. By
describing possible challenges we foresee in defense
design, we hope to motivate the research community to
develop robust defense solutions against the security
and privacy issues rooted in modern browser APIs.
Attacks through ‘Benign’ Browser Processes.
Some attack vectors traditionally exclusive to native
applications have found a new breeding ground within
web applications, as with ransomware attacks [4] and
botnets [6] deployed through modern browser APIs.

Current defense mechanisms may fall short in de-
tecting threats operating within a browser. In the case
of malware, antivirus products aim to capture and block
suspicious activities involving file system access and
network communications, particularly when they origi-
nate from untrusted executable files or abused (e.g.,
injected) processes. However, in this new scenario,
execution is subtly interspersed with the benign activity
of the browser, posing a harder detection challenge.

This increased difficulty affects general security
methodologies, such as monitoring system calls and
other events from process activity, which have been
instrumental in detecting various types of issues in the
past. Constant monitoring of browser-initiated activity,
especially if bolstered to also recognize interspersed
threads of activities, may lead to significant runtime
overhead and degrade user experience.

Future research should look at developing spe-
cialized detection techniques to handle behavioral
patterns unique to browser environments. Cross-
fertilization opportunities may exist with defensive re-
search on multi-process malware, for which activity-
based detection faces analogous challenges but data-
flow correlation via specific objects seems possi-
ble [11].

Research Direction 1: Future research should
concentrate on detection techniques capable of
distinguishing between benign and malicious activi-
ties within browsers, taking into account the unique
execution patterns of emerging web technologies.

Revamping Known Attacks. The integration of
browser APIs into web applications has inadvertently
provided new avenues for revitalizing traditional secu-
rity threats. In the Security Concerns discussion, we
anticipated how browser APIs may enable XSS attacks
via their storage mechanisms. Traditional defenses are

October 2024With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming Interfaces 5



capable of significantly hindering conventional XSS
attacks: for example, output encoding effectively neu-
tralizes scripts injected in the HTML DOM by sanitizing
special characters in user input before rendering them
on the web page. However, they do not extend to local
storage from the IndexedDB or Web Storage APIs.
These storage mechanisms can be used to store and
retrieve complex data structures, including executable
scripts, without any sanitization.

Trusted Types have thus been proposed as a
broader mitigation, locking down risky injection sinks
by ensuring that data can reach them only after a
developer-supplied sanitizer function processes it. This
design limits by construction potential threats involving
risky browser APIs, offloading to developers the trust-
worthiness check on data. A recent study conducted
with web developers reveals that implementing Trusted
Types, at least in the proposed form, can be time-
consuming and demand significant engineering effort
to properly write a secure filtering function [12].

Research Direction 2: Browser APIs may enable
traditional attack vectors in new contexts, hitting
blind spots in current defenses. Future work should
evaluate and adapt them to these new threats.

Analyzing Web Application Behavior
Given the complexity and dynamic nature of browsers,
another critical area requiring concerted effort is the
development of solutions for fine-grained analysis of
web application behavior. These strategies may focus
on understanding and responding to the nuanced be-
haviors from the heterogeneous uses of browser APIs.

Fine-grained analysis requires a detailed under-
standing of how browser APIs interact with web appli-
cations and the underlying browser environment. Static
analysis tools and techniques might be useful for a
broad review of API usage patterns but also have
limitations, particularly when dealing with obfuscated
code or dynamic runtime behaviors. Analyzing the
web application as it executes may be inevitable, and
will therefore be the focus of the remainder of this
section. Dynamic analysis can be performed on web
applications by utilizing different techniques, two of
which we will explain here.

Instrumentation and API Hooking. These techniques
involve modifying the browser environment to monitor
browser API calls by using browser debugging pro-
tocols, such as Chrome’s DevTools Protocol. These
protocols open a gateway to the browser’s internal op-
erations and enable deep access to its functionalities.
Moreover, by hooking into specific browser API calls,

every invocation can be captured and logged, enabling
the recording of the parameters being passed and the
responses from these APIs. As an example, Listing 1
shows how the getCurrentPosition method from
the Geolocation API can be intercepted to log and
possibly shepherd its usage.

Runtime.evaluate({
expression: ‘
if (navigator.geolocation) {

const originalGetCurrentPosition =
navigator.geolocation.
getCurrentPosition;

navigator.geolocation.
getCurrentPosition = function() {
console.log(’Location Accessed’);
return originalGetCurrentPosition

.apply(this, arguments);
};

}
awaitPromise: true

});

Listing 1. A sample instrumentation snippet.

Techniques of this kind assist defense mechanisms
in identifying unauthorized or unusual API usage and
getting a complete picture of the behavior of a web
application. Moreover, they can contribute to enhance
broader security analysis frameworks. An example of
their usefulness is given in [13], where the authors
identify points in obfuscated JavaScript code where
privacy-sensitive APIs are used and provide resource
replacements compatible with content blocking tools.

Similar interposition mechanisms have historically
been instrumental in tackling many traditional security
problems. However, implementing reliable and accu-
rate interposition mechanisms poses well-known chal-
lenges when it comes to compatibility, coverage, per-
formance, and transparency properties of the instru-
mentation, especially for security uses. Looking at what
related software and systems security research fields
experienced (for example, with continuously evolving
static and dynamic binary instrumentation techniques),
we advocate for further research in easing the capa-
bilities, usability, and performance of instrumentation
mechanisms for web browsers. The downstream users
of these improved mechanisms can be innumerous: for
example, new mechanisms that like [13] provide plug-
and-play security and privacy mitigations for users, or
tools for execution dissection and understanding tasks
(e.g., as in [4] by pausing execution upon specific
events to examine the ongoing effects of an attack).

Tracing. Tracing is a pivotal technique for analyzing
web application behavior as it offers a detailed view

6 With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming InterfacesOctober 2024



of the operational dynamics between web applications
and the browser’s rendering engine, along with their
interactions with browser APIs. This method allows
developers to capture a comprehensive snapshot of
a web application’s runtime behavior to shed light on
the intricate operations of browser APIs, JavaScript
execution, and other crucial processes.

Figure 2 depicts an exemplary trace collection pro-
cess. By employing custom scripts or leveraging the
browser’s built-in tracing tools, developers can trace
web applications with a fine-grained granularity. These
traces, once collected, can undergo different meticu-
lous analyses such as timeline analysis, which involves
scrutinizing the sequence of events, JavaScript execu-
tion patterns, and memory usage to gain a thorough
understanding of web application behavior.

Currently, the state-of-the-art tracing system is Visi-
bleV8 [14], which logs interactions involving JavaScript
calls to native functions provided by the browser, such
as accessing properties on browser-backed objects
like window and document. This capability allows it
to effectively monitor many traditional web interactions,
and by now several research works have built on it.

Unfortunately, VisibleV8 fails to observe behav-
iors when browser APIs orchestrate operations that
do not directly call native functions or access native
properties. Some APIs may handle data and execute
operations internally within the JavaScript engine or via
optimized pathways that do not hit the probes of the
tracing system. Also, core parts of some operations (for
example, a network request with the Fetch API) may
be handled by browser layers that do not necessarily
expose native interactions to the JavaScript engine,
which is what tracing tools monitor. This highlights a
critical gap in the monitoring capabilities of state-of-
the-art tools in the face of subtle and complex inter-
actions within modern web applications. Additionally,
as current tracing systems are often tied to a particu-
lar browser implementation, manual work is currently
needed to use them with newer browser versions.

Research Direction 3: Future research should
focus on developing tools to comprehensively cap-
ture events related to browser API usage, pursu-
ing completeness of the interposition, fine-grained
granularity of the collected information, and com-
patibility across browser products and releases.

User Studies
While technical users who design and analyze browser
APIs might be aware of the security and privacy issues
that come with them, a significant portion of the general

FIGURE 2. An illustration of a trace collection process for
analyzing web application behavior.

population most likely does not. Non-technical users,
often the most susceptible to the risks associated with
new technologies, ideally should not be burdened with
understanding the technical intricacies of mitigating the
security and privacy concerns posed by browser APIs.

Browser vendors have recently investigated user’s
behavior on permission dialogs using telemetry and
large-scale user studies [15] to optimize the user in-
terface and the activation logic, so as to minimize
interruptions to the browsing experience without un-
dermining legitimate website functionality enabled by
browser APIs that the user needs to grant permission
to. Orthogonal research efforts [2] have then explored
ways to enforce the least privilege principle on permis-
sions without impacting website functionality.

We believe all these efforts tackle a dimension of
remarkable importance. However, we note a shortage
of studies on how non-technical users perceive and
interact with requests generated from different browser
APIs and applications using them. In particular, an
understudied aspect in users’ trust is the limits within
which users feel safe when different sources of sensi-
tive information are involved in requests. These limits
contribute to determine which requests users perceive
as legitimate and which they see as suspicious or
potentially harmful. One way to implement such a study
would be to simulate attack scenarios in a controlled
environment to assess how users detect and react
to security or privacy threats and obtain insights into
their innate ability to identify suspicious or potentially
harmful behavior. The resulting insights may be ben-
eficial for improving the way permission prompts are
presented to users to favor effective decisions.

October 2024With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming Interfaces 7



On the other hand, we previously presented secu-
rity and privacy concerns that a user would be unable
to react to, such as with cross-site scripting attacks.
Another dimension worth analyzing would thus be the
visibility of risk in the first place: studies of this kind
would unveil where gaps are and how users would
perceive potential solutions for their mitigation.

By conducting these varied and targeted studies,
the community may understand user behavior better
and use this knowledge to develop more user-friendly
security measures, ensuring a safer and more secure
browsing experience without overwhelming the user
with additional permission dialogs and controls.

Research Direction 4: Non-technical users incur
additional risk exposure from the plethora of sce-
narios enabled by modern browser APIs. Future
research should investigate risk visibility and trust
in users to obtain insights for the design of new
impactful, user-friendly security measures.

Platform Heterogeneity
Currently, more than half of the online population use
traditional desktops and laptops to browse the Internet,
while the rest utilize alternative platforms such as
mobile devices, tablets, or smart home devices (https:
//explodingtopics.com/blog/mobile-internet-traffic). The
diversity of devices, each with its own set of hardware
capabilities and user interaction patterns, creates a
complex landscape for browser API implementation,
requiring careful consideration to ensure functionality
and security across platforms.

For instance, resource exhaustion attacks via
browser APIs on resource-constrained systems such
as mobile devices can be particularly impactful. These
attacks may target the limited processing power, mem-
ory, and battery life inherent to mobile technology. Ad-
ditional countermeasures might be needed depending
on the specificity of the threats, such as more strin-
gent controls over browser APIs that access hardware
features or improved management of background data
access from web applications to mitigate unauthorized
tracking and data leakage risks. As a closely related
point, the integration of browser APIs into browsers
for mobile devices and other platforms can introduce
unique privacy concerns. For example, mobile devices
naturally have access to more sensitive data (such as
location, contact lists, and personal media) and to more
types of sensors compared to desktop systems.

From a technical standpoint, all the factors men-
tioned above make us call for research in developing
analysis environments that can assess the behaviors

of web applications on heterogeneous device types.

Research Direction 5: Future research should
look at the security and privacy issues of modern
browser APIs across different platforms and tackle
the further challenges that non-desktop platforms
bring by developing appropriate techniques and
tools.

Conclusion
The introduction of modern browser APIs has revo-
lutionized web content development and enabled the
creation of more advanced and interactive web appli-
cations for all Internet users. Modern web browsers
employ a variety of defense mechanisms to counter
potential attacks; nevertheless, there are still instances
where these measures fall short. In this work, after
providing a general categorization of browser APIs in
three groups, we identify and examine security and
privacy issues associated with these APIs. We then
discuss issues learned from our study, enumerating
five research directions to motivate work capable of
addressing the intricate balance between functionality
and security when dealing with modern browser APIs.
We hope the insights derived from this work will aid
the community in identifying and understanding the
multifaceted security and privacy concerns within these
APIs.

Acknowledgments
We thank our anonymous reviewers for their precious
feedback. This work was partially supported by the
US National Science Foundation (Awards: 2039606,
2219920), Florida International University Graduate
School, Cyber Florida, the Google ASPIRE Program,
and the Italian MUR National Recovery and Resilience
Plan funded by the European Union - NextGenera-
tionEU through projects SERICS (PE00000014) and
Rome Technopole (ECS00000024). The views ex-
pressed are those of the authors only, not of the
funding agencies.

REFERENCES
1. P. Snyder, L. Ansari, C. Taylor, and C. Kanich,

“Browser feature usage on the modern web,” in ACM
Internet Measurement Conference, 2016, pp. 97–
110.

2. P. Snyder, C. Taylor, and C. Kanich, “Most websites
don’t need to vibrate: A cost-benefit approach to

8 With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming InterfacesOctober 2024

https://explodingtopics.com/blog/mobile-internet-traffic
https://explodingtopics.com/blog/mobile-internet-traffic


improving browser security,” in ACM SIGSAC Con-
ference on Computer and Communications Security,
2017, pp. 179–194.

3. Ł. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The
leaking battery: A privacy analysis of the HTML5
battery status API,” in Data Privacy Management,
and Security Assurance, 2016, pp. 254–263.

4. H. Oz, A. Aris, A. Acar, G. S. Tuncay, L. Babun, and
S. Uluagac, “RøB: Ransomware over modern web
browsers,” in USENIX Security Symposium, 2023,
pp. 7073–7090.

5. Y. Tian, Y. C. Liu, A. Bhosale, L. S. Huang, P. Tague,
and C. Jackson, “All your screens are belong to us:
Attacks exploiting the HTML5 screen sharing API,” in
IEEE Symposium on Security and Privacy, 2014, pp.
34–48.

6. P. Papadopoulos, P. Ilia, M. Polychronakis,
E. Markatos, S. Ioannidis, and G. Vasiliadis,
“Master of web puppets: Abusing web browsers for
persistent and stealthy computation,” in Network and
Distributed System Security Symposium, 2019.

7. S. Kimak and J. Ellman, “The role of HTML5 In-
dexedDB, the past, present and future,” in Interna-
tional Conference for Internet Technology and Se-
cured Transactions (ICITST). IEEE, 2015, pp. 379–
383.

8. M. Steffens, C. Rossow, M. Johns, and B. Stock,
“Don’t trust the locals: Investigating the prevalence
of persistent client-side cross-site scripting in the
wild,” in Network and Distributed System Security
Symposium, 2019.

9. J. Su and A. Kapravelos, “Automatic discovery of
emerging browser fingerprinting techniques,” in ACM
Web Conference, 2023, pp. 2178–2188.

10. H. Kim, S. Lee, and J. Kim, “Exploring and mitigating
privacy threats of HTML5 Geolocation API,” in Annual
Computer Security Applications Conference, 2014,
pp. 306–315.

11. D. C. D’Elia and L. Invidia, “Rope: Bypassing be-
havioral detection of malware with distributed ROP-
driven execution,” in Black Hat USA 2021. Las
Vegas, NV, USA: Black Hat, 2021.

12. S. Roth, L. Gröber, P. Baus, K. Krombholz, and
B. Stock, “Trust me if you can – how usable is trusted
types in practice?” in USENIX Security Symposium,
2024, pp. 6003–6020.

13. M. Smith, P. Snyder, B. Livshits, and D. Stefan,
“SugarCoat: Programmatically generating privacy-
preserving, web-compatible resource replacements
for content blocking,” in ACM SIGSAC Conference
on Computer and Communications Security, 2021,
pp. 2844–2857.

14. J. Jueckstock and A. Kapravelos, “VisibleV8: In-

browser monitoring of JavaScript in the wild,” in ACM
Internet Measurement Conference, 2019, pp. 393–
405.

15. M. Harbach, I. Bilogrevic, E. Bacis, S. Chen, R. Up-
pal, A. Paicu, E. Klim, M. Watkins, and B. Engedy,
“Don’t interrupt me - a large-scale study of on-device
permission prompt quieting in Chrome,” in Network
and Distributed System Security Symposium, 2024.

Harun Oz is a Ph.D. candidate at Florida International
University, Miami, USA, where he is currently a gradu-
ate research assistant in the Cyber-Physical Systems
Security Lab. His research interests include application
of advanced machine learning techniques to explore
the security and privacy implications of emerging tech-
nologies and their associated threats. He received a
M.Sc. in computer science from the Florida Interna-
tional University. Contact him at hoz001@fiu.edu.

Daniele Cono D’Elia is a tenure-track assistant profes-
sor at Sapienza University of Rome, Italy. His research
spans several fields of software and systems security,
with a main focus on how program analysis techniques
can boost accuracy and performance aspects of secu-
rity policies. D’Elia received his Ph.D. in engineering in
computer science from Sapienza University of Rome,
Italy. Contact him at delia@diag.uniroma1.it.

Güliz Seray Tuncay is a senior research scientist in
the Android Security and Privacy group at Google.
Tuncay received her Ph.D. in Computer Science from
the University of Illinois at Urbana-Champaign. Her re-
search interests include mobile and IoT security, usable
security, web security, and mobile computing. Contact
her at gulizseray@google.com.

Abbas Acar is a postdoctoral associate in the Cyber-
Physical Systems Security Lab at Florida International
University, Miami, USA. His research interests include
privacy-aware technologies, alternative authentication
methods, and security/privacy issues related to the
Internet of Things. Acar received his Ph.D. in electrical
and computer engineering from Florida International
University. Contact him at aacar001@fiu.edu.

Riccardo Lazzeretti is an associate professor in en-
gineering in computer science at Sapienza Univer-
sity of Rome, Italy. His research focuses on security
and privacy, with a particular focus on the Internet
of Things. Lazzeretti received his Ph.D. in informa-
tion engineering from the University of Siena, Italy.
He is a Senior Member of IEEE. Contact him at
lazzeretti@diag.uniroma1.it.

October 2024With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming Interfaces 9

mailto:hoz001@fiu.edu
mailto:delia@diag.uniroma1.it
mailto:gulizseray@google.com
mailto:aacar001@fiu.edu
mailto:lazzeretti@diag.uniroma1.it


Selcuk Uluagac is a professor in the School of Com-
puting & Information Sciences at Florida International
University, Miami, USA, where he leads the Cyber-
Physical Systems Security Lab. His research focuses
on cybersecurity and privacy with practical and applied
aspects. He received his Ph.D. from Georgia Institute of
Technology and M.Sc. from Carnegie Mellon University.
Contact him at https://users.cs.fiu.edu/~suluagac/.

10 With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser Application Programming InterfacesOctober 2024

https://users.cs.fiu.edu/~suluagac/

	Browser APIs
	Security & Privacy Concerns
	Security Concerns
	Privacy Concerns

	Research Agenda
	Designing Defense Solutions
	Analyzing Web Application Behavior
	User Studies
	Platform Heterogeneity

	Conclusion
	Acknowledgments
	REFERENCES
	REFERENCES
	Biographies
	Harun Oz
	Daniele Cono D'Elia
	Güliz Seray Tuncay
	Abbas Acar
	Riccardo Lazzeretti
	Selcuk Uluagac


