
Robotics 1
Midterm Test — November 22, 2024

Exercise 1

The end-effector of a robot manipulator has an initial orientation specified by the ZXY Euler angles
(α, β, γ) = (π/2, π/4,−π/4) [rad] and should reach a final orientation specified by an axis-angle pair (r, θ),
with r = (0,−

√
2/2,
√

2/2) and θ = π/6 rad. What is the required rotation matrix Rif between these two
orientations? Represent Rif by the RPY-type angles (φ, χ, ψ) around the fixed-axes sequence YXY.

Exercise 2

A cylinder of height h and radius r lies on the plane (xw, yw) in the initial pose shown in Fig. 1, with a
frame RFc = (xc, yc, zc) attached to the geometric center of its body. The cylinder rolls without slipping
by a ground distance d > 0 in the yw-direction, and rotates then by an angle ϑ around the original zw-axis.
Finally, a rotation ϕ is performed around the current direction of the zc-axis. Determine the expression of
the elements of the homogeneous transformation matrix wT c(h, r, d, ϑ, ϕ) that characterizes the final pose
of the cylinder. Evaluate then wT c for h = 0.5, r = 0.1, d = 1.5 [m] and ϑ = π/3, ϕ = −π/2 [rad]. Hint:
Check your intermediate results with simpler data.
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Figure 1: The initial set-up of a cylinder in the
world frame.

Exercise 3

Consider the PPR planar robot with a 2-jaw gripper in Fig. 2, shown together with the world frame RFw.

• Assign the link frames and fill in the associated table of parameters according to the Denavit–Hartenberg
(DH) convention (use the extra sheet). The origin of the last DH frame should be placed at the gripper’s
center (point P ). Choose the frames so that there is no axis pointing inside the sheet.

• Determine the homogeneous transformation matrices wT 0 and 3T e, respectively between the world
frame RFw and the zero-th DH frame RF0 and between the last DH frame RF3 and the end-effector
frame RFe placed at the gripper, with the usual convention (ze in the approach direction and ye in the
open/close slide direction of the jaws).

• Provide the direct kinematics for the end-effector position wpe ∈ R3.

• When the two prismatic joints are limited as qi ∈ [qi,m, qi,M ], under the assumption that qi,M−qi,m > 2L,
for i = 1, 2, and the revolute joint is in the range q3 ∈ [−3π/4, 0], sketch the primary workspace of this
robot and locate the relevant points on its boundary.
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Figure 2: A PPR planar robot with last link of
length L.
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Exercise 4

With reference to the scheme in Fig. 3, assume that the three toothed gears of the transmission have
radius, respectively, rm = 0.5, re = 40, and rl = 10 [cm]. The motor inertia is Jm = 7.1 · 10−4 kgm2, while
the inertia of the link around its rotation axis is denoted by Jl. An incremental encoder is mounted on
the axis of the middle gear. Gravity is absent and inertia and friction of the gears are negligible.
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Figure 3: Transmission gears from motor to link,
using an incremental encoder.

• What is the value of the link inertia Jl that optimizes torque transmission?

• With this Jl, what is the acceleration θ̈l when the motor delivers on its axis a torque τm = 10 [Nm]?

• For a link resolution of 0.01◦, how many pulses per turn (with quadrature) should the encoder have?

• With this resolution, what is the average speed θ̇m when the encoder increments 100 pulses per second?

Exercise 5

L
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j3j4

Figure 4: An RPPR spatial robot.

i αi ai di θi

1 0 0 0 q1

2 π/2 0 q2 0

3 0 0 q3 0

4 0 L 0 q4

Table 1: D-H parameters of the RPPR robot.

The RPPR spatial robot shown in Fig. 4 has the DH parameters given in Tab. 1.

• Draw the corresponding DH frames (use the extra sheet) and give the values, or at least the signs, of
the components of q in the shown configuration.

• Consider the task vector

r =


px
py
pz
α

 =


sin q1q3 + L cos q1 cos q4
− cos q1q3 + L sin q1 cos q4

q2 + L sin q4
q4

 . (1)

Solve the inverse kinematics problem in closed form for a given rd ∈ R4, determining also the possible
singular situations. With L = 1.5 m, provide the numerical solutions for these data: rd1 = (2, 2, 4,−π/4),
rd2 = (0, 0, 3, π/2), rd3 = (1, 1, 2, 0), and rd4 = (0, 1.5, 4, 0) [m,m,m,rad].

[180 minutes, open books]
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Solution
November 22, 2024

Exercise 1

The initial orientation is specified by a ZXY Euler sequence (α, β, γ), which is associated to the rotation
matrix

Rin(α, β, γ) = Rz(α)Rx(β)Ry(γ) =

 cosα − sinα 0

sinα cosα 0

0 0 1


 1 0 0

0 cosβ − sinβ

0 sinβ cosβ


 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ



=

 cosα cos γ − sinα sinβ sin γ − sinα cosβ cosα sin γ + sinα sinβ cos γ

sinα cos γ + cosα sinβ sin γ cosα cosβ sinα sin γ − cosα sinβ cos γ

− cosβ sin γ sinβ cosβ cos γ

 .

When evaluated with the data, we obtain

Ri = Rin(π/2, π/4,−π/4) =

 0.5000 −0.7071 0.5000

0.7071 0 −0.7071

0.5000 0.7071 0.5000

 .

On the other hand, the final orientation is given by the axis-angle method, with unit vector r and angle θ

Rfin(r, θ) = rrT +
(
I − rrT

)
cos θ + S(r) sin θ.

When evaluated with the data, we obtain

Rf = Rfin

(
(0,−

√
2/2,
√

2/2), π/6
)

=

 0.8660 −0.3536 −0.3536

0.3536 0.9330 −0.0670

0.3536 −0.0670 0.9330

 .

Therefore, the relative rotation to be realized is

Rif = RT
i Rf =

 0.8598 0.4495 0.2424

−0.3624 0.2026 0.9097

0.3598 −0.8700 0.3371

 .

The RPY-type YXY sequence (φ, χ, ψ) is associated to the rotation matrix

Rif (φ, χ, ψ) = Ry(ψ)Rx(χ)Ry(φ)

=

 cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ


 1 0 0

0 cosχ − sinχ

0 sinχ cosχ


 cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ



=

 cosφ cosψ − sinφ cosχ sinψ sinχ sinψ sinφ cosψ + cosφ cosχ sinψ

sinφ sinχ cosχ − cosφ sinχ

− cosφ sinψ − sinφ cosχ cosψ sinχ cosψ cosφ cosχ cosψ − sinφ sinψ

 .

The solution of the inverse problem for this sequence of angles

Rif (φ, χ, ψ) = Rif

is obtained from the expressions in the second row and second column of the above matrix. Denoting the
numerical elements of matrix Rif by Rij , under the regularity assumption

σ =
√
R2

21 +R2
23 = | sinχ| 6= 0,
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one obtains

χ+,− = ATAN2

{
±
√
R2

21 +R2
23, R22

}
,

and for each sign in this expression, the two pairs

φ+ = ATAN2 {R21,−R23} ψ+ = ATAN2 {R12, R32}

and
φ− = ATAN2 {−R21, R23} ψ− = ATAN2 {−R12,−R32} .

When substituting the numerical values, we find σ = 0.9793 and thus the two regular solutions φ+

χ+

ψ+

 =

 −2.7625
1.3668
2.6647

  φ−

χ−

ψ−

 =

 0.3791
−1.3668
−0.4769

 [rad].

Finally, a convenient check of the correctness of the obtained results is to verify that

RiRif (φ+, χ+, ψ+)RT
f = I,

and the same for the second solution (with the − superscripts).

Exercise 2

The initial pose of the cylinder with respect to the world frame is

wT in
c =


0 0 1 h/2

1 0 0 0

0 1 0 r

0 0 0 1

 .

When rolling the cylinder, a displacement d > 0 in the current xc-direction corresponds to a clockwise
rotation α around zc. Setting α = −d/r < 0, the three elementary motions are described respectively by

T d =


cosα − sinα 0 d

sinα cosα 0 0

0 0 1 0

0 0 0 1

 T ϑ =


cosϑ − sinϑ 0 0

sinϑ cosϑ 0 0

0 0 1 0

0 0 0 1

 T ϕ =


cosϕ − sinϕ 0 0

sinϕ cosϕ 0 0

0 0 1 0

0 0 0 1

 ,

which are combined as follows. The first rolling motion is defined with respect to the current pose wT c

(namely, the initial one); thus

T 1 = wT in
c T d =


0 0 1 h/2

cosα − sinα 0 d

sinα cosα 0 r

0 0 0 1

 =


0 0 1 h/2

cos(d/r) sin(d/r) 0 d

− sin(d/r) cos(d/r) 0 r

0 0 0 1


and one can see that the displacement d > 0 occurs in fact along the yw-direction of the world frame.
Moreover, if the distance travelled was d = 2πr (α = −2π, one full rotation), the orientation of the frame
RFc at the end would be again wRc, as in the initial configuration, whereas for d = πr/2 (α = −π/2, one
fourth of a clockwise rotation), the axis xc would be aligned with −zw. The second rotation by ϑ occurs
around the fixed axis zw; thus, the order in the matrix product is

T 2 = T ϑ T 1 = T ϑ
wT in

c T d =


− sinϑ cosα sinϑ sinα cosϑ (h/2) cosϑ− d sinϑ

cosϑ cosα − cosϑ sinα sinϑ d cosϑ+ (h/2) sinϑ

sinα cosα 0 r

0 0 0 1

 .
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One can easily check that a rotation by ϑ = π/2 (counterclockwise around zw) brings the position of the
origin Oc to wpc = (−d, h/2, r), as expected. Finally, the third rotation by ϕ is defined again with respect
to the current orientation of axis zc; thus, we obtain the general symbolic expression

T 3 = T 2 T ϕ = T ϑ
wT in

c T d T ϕ

=


− cosα sinϑ cosϕ+ sinα sinϑ sinϕ cosα sinϑ sinϕ+ sinα sinϑ cosϕ cosϑ (h/2) cosϑ− d sinϑ

cosα cosϑ cosϕ− sinα cosϑ sinϕ − sinα cosϑ cosϕ− cosα cosϑ sinϕ sinϑ (h/2) sinϑ+ d cosϑ

cosα sinϕ+ sinα cosϕ cosα cosϕ− sinα sinϕ 0 r

0 0 0 1

 .

Substituting the given data, the final pose of the cylinder is

wT c = T ϑ=π/3
wT in

c (h = 0.5, r = 0.1) T d=1.5 T ϕ=−π/2 =


0.5632 0.6579 0.5000 −1.1740

−0.3251 −0.3798 0.8660 0.9665

0.7597 −0.6503 0 0.1000

0 0 0 1

 .

Exercise 3

The assignment of DH frames for the PPR planar robot is shown in Fig. 5, with Tab. 2 containing the
corresponding parameters. By following the given specifications, this assignment is unique up to the choice
of the direction of the axis x3 (which may instead point toward the axis of joint 3). Note that the third
link points along yw when q3 = 0.

yw
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z1
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x2
x3

ze

ye

y3

y2

q3

q1

q2
P = O3

Figure 5: Assignment of DH frames for the PPR robot of Fig. 2.

i αi ai di θi

1 −π/2 0 q1 0

2 −π/2 0 q2 −π/2

3 0 L 0 q3

Table 2: DH parameters for the frame assignment in Fig. 5.
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The two constant homogenous transformation matrices are

wT 0 =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 , 3T e =


0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 1

 .

Being P = O3 = Oe, the direct kinematics for the end-effector position is extracted from

wpe,hom = wT 0
0A1(q1) 1A2(q2) 2A3(q3) 3T e

(
0

1

)
=


q2 − L sin q3
q1 + L cos q3

0

1

 =

( wpe
1

)
.

Figure 6 shows the primary workspace of the PPR planar robot for the given joint ranges. The darker
yellow region shows the excursion of the two prismatic joints; the bottom-left corner is cut away by the
length L of the third link and specifically by the lower limit q3 = −3π/4 of the revolute joint (i.e., the last
link points at most 45◦ downwards).
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q2,m + 𝐿/ 2

L

L

L

L
q1,m + 𝐿 2

q1,m + 𝐿/ 2

Figure 6: Primary workspace of the PPR robot, with the relevant points of interest.

Exercise 4

The transmission ratios of interest are

nme =
re
rm

=
40

0.5
= 80 nel =

rl
re

=
10

40
= 0.25 ⇒ n = nme · nel =

rl
rm

= 20.

The matching condition for the link inertia that optimizes the transfer from motor torque to link acceler-
ation is

Jl = Jmn
2 = 7.1 · 10−4 400 = 0.284 kgm2.

From the torque balance

τm = Jm θ̈m +
1

n
Jl θ̈l = Jm

(
n θ̈l
)

+
1

n

(
Jm n

2) θ̈l = 2Jm n θ̈l,
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we compute the link acceleration

θ̈l =
τm

2nJm
=

10

40 · 7.1 · 10−4
= 352 rad/s2,

which is indeed a very large value (because the delivered torque τm is already extremely high!). To obtain
the desired resolution ∆l on the link side, we have on the encoder axis

∆e = nel ∆l = nel 0.01◦ = 0.25
0.01

360
=

2.5 · 10−3

360
fraction of a turn.

Thus, the number of pulses per turn of the incremental encoder should be

N =
1

∆e
=

360

2.5 · 10−3
= 144000.

Accordingly, the pulses per turn of the optical disc are at least Ne = dN/4e = 36000 (i.e., before electronic
quadrature). When counting an increment of 100 pulses per second on the encoder axis, the motor velocity
will be

θ̇m = −nme θ̇e = −80
100

144000
= −0.056 turns/s (·2π = −0.349 rad/s,)

with the sign − due to the inverse rotation between motor and encoder (whereas sign(θ̇l) = sign(θ̇m)).

Exercise 5

Using the set of DH parameters given in Tab. 1, the unique corresponding assignment of DH frames is
given in Fig. 7. In the shown configuration, we have q = (π/4, q2 > 0, q3 > 0, π/2).

L

P = O4

x0

z0

z1

x1

y0

z2z3

x2x3

O2

O3

O0 = O1

z4

x4

q1

q4

q3

q2

Figure 7: Assignment of DH frames for the RPPR robot of Fig. 4.

For completeness, the final pose of the frame RF4 is expressed by the homogeneous transformation matrix

0T 4(q) =


cos q1 cos q4 − cos q1 sin q4 sin q1 sin q1q3 + L cos q1 cos q4

sin q1 cos q4 − sin q1 sin q4 − cos q1 − cos q1q3 + L sin q1 cos q4

sin q4 cos q4 0 q2 + L sin q4

0 0 0 1

 .
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One can easily recognize that the first three components of the task vector r in eq. (1) coincide with the
position 0p4. For a given rd = (pxd, pyd, pzd, αd), the inverse kinematics (IK) problem is solved as follows.
First set

q4 = αd, (2)

and from the third equation in (1)
q2 = pzd − L sinαd. (3)

Replace (2) in the first two equations in (1), which are rearranged as

pxd = q3 sin q1 + L cosαd cos q1

pyd = −q3 cos q1 + L cosαd sin q1.
(4)

Squaring and summing yields
p2xd + p2yd = q23 + L2 cos2 αd,

and thus
q
{+,−}
3 = ±

√
p2xd + p2yd − L2 cos2 αd. (5)

When the argument of the square root in (5) is negative, the result is imaginary and the desired positionis
outside the reachable workspace of the robot.1 On the other hand, when q3 = 0, we have a singular con-
figuration. For each solution in (5), we obtain from (4) a linear system in the two unknowns (cos q1, sin q1)(

L cosαd q
{+,−}
3

−q{+,−}3 L cosαd

)(
cos q1

sin q1

)
=

(
pxd

pyd

)
,

which is solved by

q
{+,−}
1 = ATAN2

{
pydL cosαd + pxd q

{+,−}
3 , pxdL cosαd − pyd q{+,−}3

}
(6)

under the assumption that the determinant of the coefficient matrix

L2 cos2 αd + (q
{+,−}
3 )2 = p2xd + p2yd > 0.

When p2xd + p2yd = 0, then in order to have a real value for q3 from (5), it must be αd = q3 = ±π/2. In this
case, q1 is undefined and we are again in a singularity. The four numerical cases to be solved summarize
all possible cases for the IK problem (with units of q being [rad,m,m,rad]):

rd1 =


2
2
4
−π/4

 ⇒ q{+} =


1.9718
5.0607
2.6220
−0.7854

 q{−} =


−0.4010
5.0607
−2.6220
−0.7854

 (two regular solutions)

rd2 =


0
0
3
π/2

 ⇒ q =


undefined

1, 5
0

1.5708

 (singularity with infinite solutions)

rd3 =


1
1
2
0

 ⇒ no solution for q (the task data are out of the reachable workspace)

rd4 =


0

1.5
4
0

 ⇒ q =


1.5708

4
0
0

 (singularity with only one solution).

1One can consider the reachable workspace of this robot as a collection of primary workspaces WS1(α),
parametrized by the angle α (the fourth component in r). The primary workspace WS1 will be the union of
the sets WS1(α) over all possible values of α. A point p ∈ R3 belongs to the secondary workspace WS2 if it belongs
to WS1(α) for all possible values of α (thus, to the intersection of all sets WS1(α)).
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In the last case, the point p = (0, 1.5, 4) ∈ R3 is on the boundary of WS1(0), i.e., the primary workspace
obtained for α = 0. This boundary is the surface of an infinite cylinder having its main axis coincident
with z0 and radius R = L = 1.5 m; the primary workspace is the (unlimited) part of R3 in the outside of
this surface.

∗ ∗ ∗ ∗ ∗
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