
Robotics 2

September 19, 2024

Exercise 1

Consider the robot in Fig. 1, with a first revolute and a second prismatic joint, moving in a vertical
plane. The joint coordinates q1 and q2 to be used are also shown in the figure. Friction at the
joints can be neglected.

a) Derive the dynamic model of the robot in the Lagrangian form M(q)q̈+ c(q, q̇) + g(q) = τ . If
needed, introduce any missing kinematic or dynamic parameter.

b) Find a linear parametrization Y (q, q̇, q̈)a = τ of the robot dynamics in terms of a vector
a ∈ Rr of dynamic coefficients and a 2× r regressor matrix Y . Discuss the minimality of r.
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Figure 1: An RP planar robot with an offset at the base.

Exercise 2

For the RP robot of Fig. 1, consider the joint trajectory

q(t) =

(
q1(t)

q2(t)

)
=

(
a+ b

(
1− cos

πt

T

)
k

)
t ∈ [0, T ], (1)

with positive values a, b, k and T . Compute the value of the integral of the generalized momentum
p = M(q)q̇ when the robot moves along this trajectory, namely the vector

h =

∫ T

0

p(t) dt.

Exercise 3

For a generic robot with n joints, assume that the velocity q̇ ∈ Rn is the control input (kinematic
control). At a given configuration q, determine the optimal command q̇∗ that solves the following
optimization problem:

min
q̇
pT q̇ s.t. pa = c,

being p ∈ Rn the generalized momentum, pa ∈ Rna the vector of its first na < n components, and
c ∈ Rna a constant vector with all positive components. Provide then the explicit expression of
the solution q̇∗ of this problem for the case of the RP robot in Fig. 1.
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Exercise 4

Figure 2 shows the RP robot of Exercise 1 in contact with a vertical wall that is assumed to be
compliant. The contact point is at (xE , yE). Design a regulation control law for τ ∈ R2 such that
the robot-environment system behaves during the transient as

Md ẍ+Dd ẋ+Kd (x− xE) = Fd (2)

ÿ +KD ẏ +KP (y − yE) = 0, (3)

in terms of coordinates (x, y) of the end-effector. The target parameters Md, Dd, Kd, KD, and KP

are all chosen positive, while Fd > 0 is the desired contact force to be applied to the wall. Give the
expressions of all the terms needed in the control law and determine the final equilibrium position
of the end-effector.
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Figure 2: The RP robot in contact with a compliant wall.

Exercise 5

Consider once again the robot in Fig. 1, moving now on a horizontal plane. For the trajectory
specified in eq. (1), provide the expression of the torque τ (t) solving the inverse dynamics problem.
Moreover:

• find the minimum motion time T = T ∗ of the trajectory such that the torque τ1 at the first joint
satisfies the bound |τ1(t)| ≤ τmax,1, for all t ∈ [0, T ∗];

• accordingly, compute the value τ2(t̄) of the force at the second joint in correspondence to the
time instant(s) t̄ at which the torque of the first joint saturates, i.e., when |τ1(t̄)| = τmax,1.

[210 minutes (3.5 hours); open books]

2



Solution
September 19, 2024

Exercise 1

First note that the joint variable q1 defined in Fig. 1 is the one of a DH convention. In addition to
the parameters defined in the figure, let dc1 > 0 be the distance of the center of mass of link 1 from
the first joint axis and l1 > 0 the distance between the two joint axes (i.e., the DH parameter a1).
In the present case of a planar robot, the computation of the kinetic energy T and, from there, of
the robot inertia matrix M(q) are quite standard:

T1 =
1

2
(I1 +m1d

2
c1)q̇21

pc2 = l1

(
c1
s1

)
+ q2

(
s1
−c1

)
⇒ vc2 = ṗc2 =

(
c1 −s1
s1 c1

)(
q2
l1

)
q̇1 +

(
s1
−c1

)
q̇2

T2 =
1

2
I2q̇

2
1 +

1

2
m2‖vc2‖2 =

1

2
I2q̇

2
1 +

1

2
m2

(
(l21 + q22)q̇21 + q̇22 − 2l1q̇1q̇2

)
T = T1 + T2 =

1

2
q̇TM(q)q̇ ⇒ M(q) =

(
I1 +m1d

2
c1 + I2 +m2(l21 + q22) −m2l1

−m2l1 m2

)
.

From this, the components of the Coriolis and centrifugal vector c(q, q̇) are computed using the
matrices of Christoffel symbols:

C1(q) =
1

2

{(
0 2m2q2

0 0

)
+

(
0 0

2m2q2 0

)
−O

}
=

(
0 m2q2

m2q2 0

)
⇒ c1(q, q̇) = q̇TC1(q)q̇ = 2m2q2q̇1q̇2

C2(q) =
1

2

{
O +OT −

(
2m2q2 0

0 0

)}
=

(
−m2q2 0

0 0

)
⇒ c2(q, q̇) = q̇TC2(q)q̇ = −m2q2q̇

2
1 .

Similarly, for the potential energy U and gravity vector q(q):

U1 = m1g0dc1s1 U2 = m2g0 (l1s1 − q2c1) ⇒ U = U1 + U2

⇒ g(q) =
∂U

∂q
= g0

(
(m1dc1 +m2l1)c1 +m2q2s1

−m2c1

)
.

Finally, introducing the r = 3 dynamic coefficients

a =

 a1
a2
a3

 =

 I1 +m1d
2
c1 + I2 +m2l

2
1

m2

m1dc1 +m2l1

 ,

the complete dynamic model is linearly parametrized as

M(q)q̈ + c(q, q̇) + g(q) = Y (q.q̇, q̈)a = τ ,

with the 2× 3 regressor matrix Y of the linear parametrization given by

Y =

(
q̈1 −l1q̈2 + 2q2q̇1q̇2 + g0q2s1 g0c1

0 q̈2 − l1q̈1 − g0c1 0

)
,
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where g0 = 9.81 m/s2 and the kinematic length l1 > 0 are assumed to be known.

The number of dynamic coefficients is indeed minimal, unless the first link is balanced around the
axis of its rotation, i.e., of joint 1, in which case dc1 = 0; the third dynamic coefficient becomes
then proportional to a2 = m2 (by the known factor l1) and is thus no longer needed.

Exercise 2

Along the trajectory in eq. (1), since q2 = k the inertia matrix of the RP robot in Fig. 1 becomes
constant:

M̄ =

(
I1 +m1d

2
c1 + I2 +m2(l21 + k2) −m2l1

−m2l1 m2

)
.

Therefore, the integral of the generalized momentum is easily computed as

h =

∫ T

0

p(t) dt = M̄

∫ T

0

q̇(t) dt = M̄

∫ T

0

dq

dt
dt = M̄

∫ q(T )

q(0)

dq = M̄ (q(T )− q(0)) .

Being from (1)

q(0) =

(
a
k

)
q(T ) =

(
a+ 2b
k

)
⇒ q(T )− q(0) =

(
2b
0

)
,

we obtain

h = 2b

(
I1 +m1d

2
c1 + I2 +m2(l21 + k2)
−m2l1

)
.

Exercise 3

Partition the robot inertia matrix by rows and columns as

M(q) =

(
Ma(q)
M b(q)

)
=

(
Maa(q) Mab(q)
M ba(q) M bb(q)

)
,

where M ba = Mab, with the dimensions

Ma : na × n M b : (n− na)× n Ma : na × na.

Note also that matrix Ma has always full (row) rank na (since all rows of M are linearly inde-
pendent) and the square matrix Maa is nonsingular (as a diagonal block of the inertia matrix).

With the above in mind, the problem is a regular LQ optimization as encountered in the resolution
of redundancy:

min
q̇
q̇TM(q)q s.t. Ma(q)q̇ = c,

with the quadratic objective having a weighting matrix M > 0 (and actually being equal to
twice the robot kinetic energy) and the Ma playing the role of a ‘Jacobian’ in the linear equality
constraint. Thus, the solution has the form of a weighted pseudoinverse:

q̇∗ = M−1(q)MT
a (q)

(
Ma(q)M−1(q)MT

a (q)
)−1

c. (4)

Moreover, it is easy to see that simplifications occur in this case since the matrix in the constraint
is part of the weighting matrix of the problem. In fact, from the identity

I = MM−1 =

(
Ma

M b

)
M−1 =

(
Ia O
O Ib

)
⇒ MaM

−1 =
(
Ia O

)
,
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it also follows

M−1MT
a =

(
Ia
O

)
MT

aM
−1Ma = Maa.

Substituting these in (4) yields finally

q̇∗ =

(
q̇∗a
q̇∗b

)
=

(
M−1

aa (q) c
0

)
.

The solution is easy to be interpreted: in order to minimize the robot kinetic energy when some
components of the generalized momentum are kept constant, the homologous components of the
joint velocity, i.e., q̇a, are used to maintain the constraint while the remaining joint velocity
components, i.e., q̇b, are set to zero. Note that if c = 0, the solution is simply q̇∗ = 0 (the robot
does not move). With a trivial modification, the result applies also to the case when an arbitrary
subset of components of p is kept constant — not necessarily the first na components.

Applying the solution to the RP robot in Fig. 1 gives

q̇∗ =

 c

I1 +m1d2c1 + I2 +m2(l21 + q22)

0

 .

Exercise 4

Despite the robot task is a Cartesian regulation problem (of the hybrid type), i.e., to keep a
constant position while applying a constant force with the end-effector, the desired linear and
decoupled dynamics of the closed-loop system expressed by eqs. (2) and (3) requires the resort to
a feedback linearization approach.

For this, we also need to define the Jacobian matrix for the position of the robot end-effector. Let
l2 > 0 be the distance from the center of mass of the second link to the end-effector. From

pee =

(
x
y

)
=

(
l1c1 + (q2 + l2)s1

l1s1 − (q2 + l2)c1

)
we obtain

J(q) =
∂pee
∂q

=

(
−l1s1 + (q2 + l2)c1 s1

l1c1 + (q2 + l2)s1 −c1

)
.

The determinant of this matrix is detJ = −(q2 + l2).

The dynamic model of the robot in contact is then

M(q)q̈ + c(q, q̇) + g(q) = τ + JT(q)F , (5)

where F ∈ R2 is a generic force applied from the environment to the robot end-effector, while the
terms M , c, and g have already been defined in the solution of Exercise 1. The control law that
achieves feedback linearization in the Cartesian space is

τ = M(q)J−1(q)
(
a−J̇(q)q̇

)
+ c(q, q̇) + g(q)− JT(q)F , (6)

where we assumed to be out of singularities, i.e., q2 6= −l2. The only term still missing is the
derivative of the Jacobian matrix, namely

J̇(q) =

(
−(l1c1 + (q2 + l2)s1)q̇1 + c1q̇2 c1q̇1

(−l1s1 + (q2 + l2)c1)q̇1 + s1q̇2 s1q̇1

)
,
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which appears in the end-effector acceleration

p̈ee = J(q)q̈ +J̇(q)q̇.

Using the law (6) in (5) gives

p̈ee = a or

(
ẍ
ÿ

)
=

(
ax
ay

)
,

thus achieving exact linearization and input-output decoupling. The synthesis of the two compo-
nents of the acceleration command a is completed as

ax =
1

Md
(Kd (xE − x)−Dd ẋ+ Fd) (7)

ay = KP (yE − y)−KD ẏ, (8)

giving the final desired dynamic behavior. At the equilibrium (ẋ = ẏ = 0, ẍ = ÿ = 0), from eqs. (2)
and (3) one has

x̄ = xE +
1

Kd
Fd ȳ = yE F̄x = Kd (x̄− xE) = Fd,

i.e., the robot end-effector penetrates (x̄ > xE) by a (small) amount horizontally into the wall,
so as to realize the desired contact force Fd, whereas its vertical position is kept at the desired
height yE of the contact point.

Note that the control law can be interpreted as a hybrid force-position scheme in which the force
loop is designed mimicking an impedance law, with the desired contact force Fd in place of the
measured one (i.e., Fx) on the right-hand side of eq. (2).

Exercise 5

The first and second time derivatives of the trajectory (1) are

q̇(t) =

 bπ

T
sin

πt

T
0

 q̈(t) =

 bπ2

T 2
cos

πt

T
0

 .

Setting g ≡ 0 and substituting the trajectory in the dynamic model yields for the inverse dynamics

τ (t) =

(
τ1(t)

τ2(t)

)
=


(a1 +m2k

2) bπ2

T 2
cos

πt

T

−m2bπ
2

T 2

(
l1 cos

πt

T
+ k sin2 πt

T

)
 t ∈ [0, T ],

with the already defined dynamic coedfficient a1 = I1 +m1d
2
c1 + I2 +m2l

2
1.

The maximum absolute value of the torque at the first joint is reached at the initial and final
instants (t̄ = {0, T}):

|τ1(0)| = |τ1(T )| = (a1 +m2k
2) bπ2

T 2
≤ τmax,1.

Thus, the minimum feasible motion time is

T ∗ =

√
(a1 +m2k2) bπ2

τmax,1
.
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Accordingly, the force at the second joint in the two instants t̄ = 0 and t̄ = T will be:

τ2(0) = − m2l1
a1 +m2k2

τmax,1 τ2(T ) = −τ2(0).

∗ ∗ ∗ ∗ ∗
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