Fully Dynamic Algorithmsfor Maintaining All-Pairs Shortest Paths and Transitive
Closurein Digraphs

Valerie King
Department of Computer Science
University of Victoria
P.O. Box 3055
Victoria, BC, Canada
V8W 3P6
email: val@csr.uvic.ca*

Abstract

This paper presentsthefirst fully dynamic algorithmsfor
maintaining all-pairs shortest paths in digraphs with posi-
tive integer weights less than b. For approximate shortest
paths with an error factor of (2 + ¢), for any positive con-
stant ¢, theamortized updatetimeis O(n?log? n/ loglogn);
for an error factor of (1 + ¢) the amortized update time is
O(n?log®(bn)/€?). For exact shortest paths the amortized
update time is O(n?°/blogn). Query time for exact and
approximate shortest distancesis O(1); exact and approx-
imate paths can be generated in time proportional to their
lengths.

Also presented is a fully dynamic transitive closure al-
gorithmwith updatetime O(n?logn) and query time O(1).
The previously known fully dynamic transitive closure algo-
rithm with fast query time has one-sided error and update
time O(n?%).

The algorithms use simple data structures, and are de-
terministic.

1. The problem

A fully dynamic graph algorithm is a data structure for a
graph which implements an on-line sequence of update op-
erationsthat insert and del ete edgesin the graph and answers
queries about a given property of the graph. A dynamic al-
gorithm should process queries quickly and must perform
update operations faster than computing from scratch (as
performed by the fastest “ static” algorithm).

We givefully dynamic algorithmsfor the following prob-
lems on directed graphs: transitive closure, and approxi-

*This work was done while the author was visiting U.C. Berkeley and
ICSl in Berkeley.

mate and exact all-pairs shortest paths, on graphswith edge
weights which are positive integers bounded by b. Another
conseguence of our work is an all-pairs shortest path algo-
rithm for edge deletions only.

Our data structures implements the following update op-
erations:

e insert(E,): insertsaset of edgesincident to thesame
vertex v.

e delete(E'): deletesany arbitrary subset £’ of edges
currently in the graph.

For transitive closure, the query operationis of the form:
e (A) Isthere apath from u to w in the current graph?
For all-pairs shortest paths, the queries are of the form;
e (A) What isthe shortest distance from « to w?
o (B) Generate a shortest path from u to w.

For approximate all-pairs shortest paths, the queries are
of the form:

e (A) What is an upper bound on the shortest distance
from u to w which iswithin afactor of (1 + ¢) of the
shortest distance?

¢ (B) Generate a path from u to w whose distance is
within afactor of (1 + €) of the shortest distance.

Let n bethe number of verticesin the graph and m bethe
number of edgesinitialy in the graph. All update times are
amortized over aworst case sequence of operationsof length
Q(m/n). All query times are proportional to the length of
the output; in particular, type (A) queriesrunin O(1) time.
All algorithms are deterministic.

For transitive closure, the amortized update time is
O(n?logn) per update. The only previously known fully
dynamic transitive closure algorithm [10] with fast query
time is randomized with one-sided error and has update

time O(n”:_j) where w is the usual exponent of matrix
multiplication. If the method of Coppersmith and Winograd
[3] isused, thisis O(n??8).

For exact al-pairs shortest paths, the amortized update
timeis O(n®>%,/blogn). There are no previously known
fully dynamic algorithms for general graphs. The fastest
static algorithm [15] for exact distancesin a directed graph
runs in time O(b'%n2+#) where i satisfies the equation
w(l,u,1) = 1+ 2p and w(l, u, 1) is the exponent of the
multiplication of an n x n* matrix by an n# x n matrix.
The smallest value known is u = .575, if the method of [3]
is used.

The approximate all-pairs shortest paths agorithms
maintain paths whose distances are bounded above by
the product of the error factor and the actual shortest
distance. The amortized update time in graphs with
unweighted edges and error factor 2 + ¢ for any pos-
itive € is O(nzlogzn/loglogn). For weighted edges
and error factor 1 + ¢, the amortized update time is
O(n?log®(bn)/€?). The fastest static algorithm for approx-
imate all-pairs shortest paths with error factor 1 + € has
running time O ((n* /€) log(b/e)).

For all-pairs shortest paths with edge deletions only, the
total cost is O(mn?b), or O(n?b) per deletion if there are
Q(m) deletions.

1.1. Thetechniques: an overview

In Section 2, we first show that a single-source shortest
path tree up to distance d can be maintained during a se-
quence of any number of edge deletionsin time O(md), in
agraph with positive integer edge weights.

For the exact all-pairs shortest path algorithm with edge
deletions only, we simply maintain a forest of n single-
source shortest path trees of depth nb.

We then show how to maintain exact all-pairs shortest
paths with insertions and deletions for distance up to d. For
each vertex v, we maintain asingle-source shortest path tree
of depth d of vertices which reach v (In,) and another tree
of vertices which are reached by v (Out,). We call this
a “forest of In and Out trees of depth d”. For each pair
of vertices u, w, we keep a count, count(u,w,j), of the
number of In, and Out, such that there is a path from u
to v to w of length j. For each operation insert(E,) we
rebuild In, and Out,.

In Section 3, we show how to maintain the transitive
closure. We keep a hierarchy of Ign forests of In and Out
trees of depth 2, where the edges used to construct a forest
on one level depend on the paths in the forest of the previ-

ous level. In Section 4, we maintain approximate all-pairs
shortest paths by keeping ahierarchy of O(logn/ loglogn)
forests of In and Out trees of depth Ig» or more depending
on the error factor.

We maintain exact shortest paths in Section 4, by main-
taining one forest of In and Out trees of depth v/nb. After
each update, we stitch the paths in these trees together to
generate the shortest paths.

1.2. Related Work

In 1981, Even and Shiloach showed how to maintain a
breadthfirst search tree, which could process any number of
deletions in time O(mn) for m the number of edges, and
n the number of vertices. In 1995, Henzinger and King
[7] recognized that this data structure could be adapted to
directed graphs, to maintain reachability from a single ver-
tex for distances (for unweighted edges) of up to d, for
any number of edge deletions, in time O(md). They use a
forest of such data structures as part of a fully dynamic
transitive closure algorithm with amortized update time
O(nm*=Y<) = O(nm®58) for w = 2.38. Like our exact
shortest paths algorithm, that algorithm involves stitching
together short paths, but uses fast matrix mulitplication to
do so. Itisrandomized, with one-sided error, and hasaslow
query timeof O(n/logn).

In 1999, King and Sagert designed a dynamic transitive
closure algorithm with O(1) query time, and also one-sided
error. They maintain a count of the number of distinct
paths for each pair of vertices, modular a random prime,
for acyclic graphs. Non-acyclic graphs are reduced to the
acyclic case. The cost per update is O(n?a) where a =
min{max size of astrongly connected component, n-?8}.
An advantage of this algorithm is that if the size of the
strongly connected component is no greater than n-28, then
its worst case update time matches its amortized update
time. Using the techniques of King and Sagert, Kapron and
King have devised an exact shortest path algorithm for un-
weighted graphs for distances up to d which has worst case
update time of O(n224).

Here, we incorporate the King-Sagert idea of keeping a
count with the forest data structure of Henzinger-King.

The best amortized update times for partially dynamic
problems are as follows. for maintaining transitive closure
with insertions, O(n)[8, 11]; with deletions, O(m) [11];
with deletionsin acyclic graphs, O(n) [9]; for maintaining
shortest paths with insertions and positive integer weights
no greater than b, O(nblogn) [1].

Klein et.al. give afully dynamic algorithm for the all-
pairs shortest path problem on planar graphs. If the sum of
the absolute values of the edge-lengthsis D then the time
per operationis O(n® 7 lognD).

G. Ramalingham and T. Reps consider the problem of

maintaining shortest pathsin a different model of complex-
ity in which running time is given in terms of a parameter
different frominput size [12, 14]. Their algorithm for main-
taining asingle source shortest path is similar to oursfor the
short distances, deletions-only case. It has been experimen-
tally analyzed by D. Frigioni et. al. [4].

Lower boundsfor dynamictransitive closure and shortest
paths problemshave been considered by several researchers,
but in general, the models assumed are too restrictive to
imply a lower bound for our algorithms. See [14] for a
discussion of theseworks. The only relevant lower boundis
the Q(logn/ loglogn) bound for dynamic connectivity for
undirected graphsin the cell probe model by Henzinger and
Fredman [6].

1.3. Applications

In a 1990 survey of the application of graph algorithms
to data bases, Yannakakis discusses the application of par-
tially dynamic transitive closure to problems in data bases.
The “regular path problem” in data bases corresponds to
computing transitive closurein a directed graph where each
relation in the data base corresponds to & sets of k edges
with a common endpoint in a directed graph. Here, & is
the number of states of a finite automaton for a regular
language. With the new fully dynamic transitive closure
algorithm presented here, each new relation can be inserted
in O(k(nk)?log(kn)) time. Each deletion of arelation can
be accomplishedin O((nk)? log(kn)) time. Seeaso[2]. In
[5], the question of maintaining distances between objects
inavery large data baseis posed.

Reps and others have investigated the application of dy-
namic shortest pathsand transitive closure algorithmsto data
flow analysis and compilers. See[13].

2. Exact all-pairs shortest paths for small dis-
tances

2.1. Single-source shortest path trees of depth d—
deletions-only

In this section, we give a deletions-only algorithm for
maintaining a single-source shortest path tree from a vertex
s of depth up to d, in a graph whose edges weights are
positive integers.

When atree edge (u, v) is deleted, the algorithm mimics
Dijkstra's single source shortest path algorithm to reinsert
the vertices in the subtree rooted at v. That is, a vertex v
is added to the shortest path tree when its distance to s is
minimal among the vertices not in the tree. The goal isto
spend no more time than that proportional to 1 + the sum
of the degrees of those vertices whose distance from s have
been changed by the deletion.

We call avertex is changed if we've determined that the
distancefrom s to w hasincreased. A vertexissettledif itis
joinedto the source by tree edges. A vertex isuncertainif it
has been examined but it is not yet determined if its distance
from s has changed.

For each vertex w, for distances no greater than d, I(w)
denotes the distance of w from s before the deletion, until
I(w) isrevised, in which caseit is revised to the distance of
w from s after the deletion. If the distance is greater than d,
thenl(w) = oo.

Each vertex w maintains a set predlist(w) containing
all vertices z which are either settled or uncertain and such
that (w,z) € E and (w, z) is not atree edge. For each w,
we maintain d(w) = MiN.¢,rediist(w) 1(2) + weight(z,w)
and let minpred(w) be a vertex z which minimizes the
expression.

The data structure is initialized by computing a shortest
path tree and forming predlist(w) for each vertex w.

When atree edge (u, v) is deleted from the graph, (u, v)
is removed from the shortest path tree. Vertex v becomes
uncertain. All other verticesin v's subtree are unexamined
and not in the tree.

If any vertex w is uncertain, w is stored in a heap H
with key(w) = I(w), the old distance of w from s. If w
is changed and unsettled, then w is aso stored in H with
key(w) = d(w). H isempty between runs of Delete.

If key(w) is minimal over al keysstored in H and w is
uncertain, the algorithm decidesif w has changed, based on
whether d(w) = key(w) (i.e. I(w)). If w isnot changed,
it can be settled. When w is settled, al its descendants
(which are unexamined) are automatically reinserted into
the tree. (The edges between them are intact.) If d(w) #
key(w) then w is changed, and is unsettled. If key(w) is
minimal over al keysin H and w is changed, this means
that key(w) = d(w) and w can be settled.

Delete(u, v)
Make_uncertain(v);
Repeat until H is empty.
w < delete_-min(H)
if key(w) > dthenfordl win H, [(w) < oo; STOP.
if uncertain(w) then do
if key(w) = d(w) then Settle(w);
elsedo
Make_changed(w);
for each tree edge (w, z) do
remove (w, z) from tree;
Make_uncertain(z);
else Settle(w).

Make_changed(w)

For each nontree edge (w, z) € E, removew from predlist(z).

Add w to H with key(w) <+ d(w).

uncertain(w) < false

Settle(w)
Add edge (minpred(w),w) to tree.
Remove minpred(w) from predlist(w).
If not(uncertain(w)) then do
foral (w, z), insert w into predlist(z).
l(w) + d(w).

Make_uncertain(z)
uncertain(z) < true; add z to H with key(z) = I(2).

Proof of correctness: The proof follows that of Dijkstra's
algorithm, with some minor differences. We note that the
only vertices that need to be examined are v and those
vertices in v's subtree which have an ancestor which has
changed. We also note that to follow Dijkstra’s algorithm,
we wish to choose the settled vertex in predlist(w) which
minimizesd(w). But theverticesin predlist are not neces-
sarily settled; they may be uncertain or unexamined. Hence
one needs to argue that the minimality of key(w) when
w « delete_min(H) implies that minpred(w) is settled.
We |eave the details to the reader.

Analysis. Each predlist and H may be implemented as
a heap of up to d keys, one for each distance represented
in the list. Hence, Make_certain runs in time O(logd),
Settle(w) runsin O(logd) if w is uncertain, and O(logd
degreeof w) if w is changed. Make_changed runsin time
O(logd = degree of w).

Thecost of running Deleteisthen O(logd) if nodistances
change (but the total number of edges stored is reduced by
1), or O(degree(w)logd) for each w such that I(w) is
increased. Thus the worst case time for the deletion of
a single edge is no more than O(}_, degree(v) logd) or
O(mlogd).

Over aseguence of deletions, /(w) can increase no more
than d times, for atotal charge of O(d * degree(w) logd) or
(dmlogd) for all vertices. Also no more than O(m logd)
is incurred by those deletions where no distances change.
Thisgives atotal cost of O(mdlogd).

211 A faster implementation

We eliminate the use of heaps and save a factor of logd,
in the amortized time. We sketch that variation here. Each
predlist(w) is represented by an array such that for i =
1,...,d, predlist(w)[i] isthe set of all settled and uncertain
vertices z such that I(z) + weight(z,w) = i. The heap
H is replaced by the set of al changed, unsettled vertices
plus an array H' such that for i = 1,...,d, H'[i] is a set
of uncertain vertices w with [(w) = i. Note that in the

algorithm, the sequence of minimum keys extracted from
the heap is nondecreasing. We keep a pointer L to the next
possible value for the minimum key. When Delete(u, v) is
run, L isinitially set tol(v).

For each value of L, each changed and unsettled vertex
w is examined to see if it can be settled or not, determined
by whether predlist(w)[L] is nonempty or not. After these
verticesareexamined, the uncertain verticesw’ withl(w') =
L are then either settled or become changed and unsettled.
While L < d and there remain unsettled vertices, L is
incremented and the processis repeated.

Analysis of faster implementation This implementation re-
duces the costs of Make_certain, Settle, and Make_changed
by a factor of logd. If no distances from the source are
changed, the cost of Deleteis O(1).

If there is at least one vertex whose distance from the
source s has changed, then there are two costs to consider:
the cost charged to each changed vertex and the cost of
incrementing L. L isincremented until all uncertain vertices
are settled, up to d — 1 times. This introduces an extra
additive cost of O(d) for each run of Delete. The total cost
of these incrementsis O(md) since there are no more than
m deletions.

Since each changed vertex is examined each time L is
incremented until the vertex is settled, the cost charged to
each changed vertex w in thisimplementationisis O(A,, +
degree(w)) where A,, = changein distance of w from s.
Hencetheworst case cost per operation becomesO (nd+m).
However the total cost over all deletions remains O(md)
since the cost per vertex w is maximized when its distance
increases by only one each time it is increased, for a maxi-
mum cost of O(d * degree(w)). Thusthetotal cost over all
deletionsis O(} ", (degree(w) * d)) = O(md).

In later sections, we will assume that the faster imple-
mentation is used. Its only drawbacks are its worst case
performance and extra costs incurred for the operation of
increasing an edge weight, described bel ow.

2.1.2 Handling edge weight increases

It is not hard to modify the algorithm to handle an increase
in edge weight. Suppose weight(u,v) isincreased. Then
make (u, v) anontree edge by inserting into predlist(v)
and run Delete(u,v).

If the first implementation method is used, then the cost
of Delete is, as before, O(logd) plus O(degree(w)logd)
for each w such that I(w) isincreased. Since each edge can
be increased no more than b < d times, no more than mb
calls to Delete can be made for the purpose of increasing
edge weights. Hence adding this operation resultsin a cost
of O(mblogd+ md) which |eavesthe asymptotictotal time
unchanged.

If the second implementation method is used and no dis-
tancesfrom s areincreased then the cost of theedgeincrease
isO(1). If anincreaseto an edge weight causes some vertex
w to increaseits distance from the source, then, as described
above, thereisan extraadditivecost of O(d). Thiscanoccur
no more than min{inc, nd} times, where inc is the number
of edges whose weights have increased.

Hence the total cost is O(md + min{inc * d, nd?}). So
the operationsto increase an edge weight could increase the
asymtotic value of the total cost if nd > m andinc > m.

In the later sections, we do not discuss the specia op-
eration of increasing edge weights, but the technique and
analysis follow easily from what is described here. We
leave thisto the reader.

2.1.3 All-pairsshortest paths, deletionsonly

We maintain all-pairs shortest paths in a graph whose
weights are positive integers less than b and where updates
are restricted to edge deletions and edge weight increases.
It suffices to maintain a single source shortest path tree of
depth d = nb for each vertex. Then the shortest path from
avertex u to w is given by [(w) in the tree for u. The total
cost of processing the deletionsis O(mn?2b). Hence, if there
are Q(m) update operations, amortized cost is O(n?b) per
update operation.

2.2. A forest of In and Out trees

We show how to maintain all-pairs shortest paths and
distancesfor pairs of verticesno more than distance d apart.

During the algorithm, we maintain single source shortest
path trees In, and Out, of depth no greater than d for
each vertex v € V. Thefirst is for vertices which reach v
and the second is for vertices which are reachable from v.
Let In,(u) be the distance from « to v in the tree In,, and
Out, (u) bethedistancefromv tow intree Out,. Wedefine
In,(v) = Out,(v) = 0for al v.

For each pair of vertices v, w and depth £ = 1,2, ...d,
we keep count(u,w, k) equal to the number of v such that
In,(u) + Out,(w) = k and alist list(u,w, k) of these
vertices. For each pair of vertices u, w, we keep D(u, w)
set to the minimum & such that count(i, j, k) is positive. If
thereis no such &, then D(u, w) = oo.

To initialize, it suffices to maintain only Out,, trees for
each vertex v. Then set count(v,w, k) = 1if Out,(w) =
k; else count(v,w, k) = 0.

e To do insert(E,): Remove In, and Out, if they
exist. Build and maintain anew In, and anew Out,,,
using the set of edges in the current graph G. For
each u, w, k, adjust count(u,w, k), list(u,w, k) and
D(u,w) accordingly. We call vertex v the center of
insert(E,).

e To do delete(E'"): Process each deleted edge in ev-
ery In and Out tree data structure which containsiit.
Each time a vertex u moves down in a tree, we may
need to adjust the count(u,w, k), count(w,u, k),
list(u,w, k), and D(u, w).

e Toanswer the query: "What isthe distance from v to
w?', return D (u, w).

e To return the shortest path from vertex utow: Letv
be avertex in list(i, j, D(i,7)). The path from « to
vinIn,(u) andfromov to w in Out,(w) isashortest
path.

Analysis and implementation details: We can initialize and
maintain each single source shortest path tree in O(md).
For the original forest of Out trees, we caninitidize count,
list and D in O(n) time per tree. Thetotal cost to maintain
theseis O(nd) per tree, since Out, (w) canincrease at most
d times, for any v and w. Thusthetota cost for initializing
and maintaining the initial forest of Out treesis O(nmd +
n?d) = O(nmd).

For each insert(E,), when In, and Out, trees are de-
stroyed and recreated, we can reset count, list and D in
O(n?) and maintain each tree in O(md) time. Eachtime a
vertex moves down in atree, In, for example, count and
list must berevised, for each vertex in Out,, orupton — 1
vertices. Henceif every vertex moves down d timesin each
tree, the maximum cost of maintainingthe count andthelists
over al modifications to the single-souce shortest path tree
is O(n?d). Thiscost may be charged to the insert operation
which constructs the single-source shortest path trees. Thus
the total cost per insertis O(n?d + md) = O(n?d).

Determining D (u, w) takes no longer than O(d) timefor
each pair of vertices u,w. We can charge O(n?d) to each
delete operation for the cost of updating the D’s. Alter-
natively, for each u,w, we can maintain the £’s such that
count(u,w,k) > 0in a heap to extract the minimum in
O(logd) time with each change to the count. Thisgivesan
additional logd factor but reduces the cost of a deletion.

The total cost of a sequence with del deletions, ins in-
sertions and ¢ queries is O(nmd + (del + ins)n?d + q)
or O((nmdlogd + ins * n?dlogd + q), depending on the
implementation. The first implementation has amortized
time O(n?d) per update operation in a sequence of length
Q(m/n). The second has amortized time O(n2dlogd) per
insertion if there are Q(m/n) insertions and O(ndlogd)
per deletion, if del + ins x n = Q(m).

Proof of correctness:

Lemma 2.1 The algorithm maintains the following invari-
ant:

Invariant: Let p be a shortest path from u to w of length
d' < d. Let v bethe vertex in p which was most recently a

center of aninsertion. Thenthereisapathfromutovinlin,
and fromwv to w in Out, suchthat In,(u) + Out,(w) = d'.

Proof: Sincetheedgesinpfromu tov andfromwv tow were
present in the graph at the time In, and Out, were most
recently created, they are included in these data structures.
Also, only edges currently in the graph are in these data
structures, since edges which have been deleted from G
since I'n,, and Out, werebuilt have been deleted from these
datastructures. Since In,, and Out, maintain shortest paths
from each vertex into v and to each vertex out of v, thenin
particular, the sum of distance from v to v and fromv to u
isd'.

It follows from the invariant and the accurate updating of
count, list and D that:

Theorem 2.2 For any pair of vertices u,w € V, if the
distance from u to w is no greater than d, then the dis-
tance from u to w is given by the minimum & such that
count(i, j, k) > 0,1.e, D(u,w).

3. Transitive closure

We maintain k = [Ign] forests F*, F?, ..., F* where
each F'* contains apair of breadthfirst search trees In‘ and
Out? of depth 2 for each vertex v € V.

We define count®(u, w) = 1if (u,w) € E and O other-
wise. For al pairs of vertices u, w, and each forest F'* we
maintain

e count®(u,w): the number of verticesv such that u €
Ini andw € Out;

e list'(u,w): the set of vertices v such that u € In’
and w € Out!.

F? is the forest of In and Out trees of depth 2, con-
structed as in the previous section for unweighted edges,
for the current graph G = (V, E). We maintain B! =
{(u,w) | count’"t(u,w) > O}. Initialy, F* isthe forest of
breadthfirst search trees of depth 2 constructed for the graph
(V, EY).

Note also that count’(u,w) is used, rather than
count®(u,w, k). Different values of k are not distinguished
and we keep the count for depths up to 4 which is greater
than the depth of the breadthfirst search trees.

In the routines below, insert(E,,i) and delete(E',1)
are defined as in the previous section, with the modified
definition of count, for theforest F'i. That is, insert(E,, 1)
adds E,, to E; and usesthe set of edges E¢ to construct new
trees In! and Out! in F%; delete(E', i) deletesedgesin E’
from the data structures for F°.

To insert a set of edgesincident to a vertex v:

InsertTC(E,)
fori =1,...,kdo
insert(E,,1);
E, + {(u,v) € E'}U{(v,u) € E'}.

Note that when executing insertT'C(E,), we only re-
build In! and Out? even thoughit is possible that inserting
edgesincident to v may have made count®~(u, w) positive
for some verticesu, w # v. Thus, after theinitialization, it
may no longer be the case that F'* is the same as the forest
of breadthfirst search trees of depth 2 that we would have
constructed and maintained for the graph (V, E?).

To delete any set of edges E':

DeleteTC(E')
fori =1,...,kdo
delete(E',1);
E' < {(z,y) | count'(x,y) changed frompositive to O}

Proof of correctness. Let dist(u,w) denote the shortest
distance from « to w in the current graph G. We first show:

Lemma 3.1 Thefollowinginvariant holdsfor i = O, ..., k:
Invariant(i): For all verticesu and w, the count®(u,w) >

0if dist(u,w) < 2¢, and only if there is a path fromu to w.
It follows that:

Theorem 3.2 For all u,w € V, count*(u, w) > 0iff there
isa path fromu to w.

Proof of Lemma: Theproof isby inductiononi. Fori = 0,
we have count®(u, w) > 0iff thereis an edge (u,w) € E.
Let us assume both directions of the invariant are true for
i— 1

Suppose there is path p from v to w of length [< 27,
Let v be the most recent center of an insertion in p. Let
2 be the midpoint of p. Assume z lies between u and v.
(If 2 lies between v and w, the argument is similar.) Then,
dist(u,z) < 2071, dist(z,v) < 2071 and dist(v,w) <
2=, Since v is the most recent center of an insertion,
these inequalities were true when In,, and Out, were most
recently built, and have been true since that time.

Hence, by induction, count~(u,z), count’~(z,v)
and count'~1(v,w) were all positive when In, and Out,
were built, and therefore (u,z), (z,v), and, (v,w) are
edges in these data structures. Hence, In,(u) < 2 and
Out,(w) < 1, and count®(u,w) > 0. This concludes one
direction of the proof.

Suppose count®(u,w) > 0 but thereis no path from u to
w. But count®(u,w) > 0impliesthat there is some v such
that In? (u)+Out’ (w) < 4. Buteachedge(z,y)inIn, and
Out, isinserted only if counti~1(x,y) > Oandisdeleted if
count'~1(z, y) becomes 0. Hence count'~1(x,y) > 0. By

our induction assumption, each edgerepresentsapath, hence
thereis apath fromw to w consisting of their concatenation.

Analysis. From Section 2.2, we see that the cost of main-
taining an initial forest is O(nmd) and atotal of O(knmd)
for maintain al & initial forests. Each update operation re-
quiresan update operationto each forest, at acost of O (n?d)
per update operation or atotal of O(kn?d). Hence, the cost
of per updateis O (n2dk) for asequence of length Q(m/n).
For k = [Ign] andd = 2, thisisO(n?logn).

4. Approximate shortest path

We give an approximate shortest path algorithm in di-
rected graphs, first for graphs with unweighted edges.

Letd = Ign and k = Ign/Iglgn. We initidize and
maintaink = logn/ logd forests F, F2, ..., F* of breadth-
first search trees In! and Out! of depth d for each vertex
veV.

For all pairsof verticesu,w, j = 1, ..., d, and each forest
F* wemaintain

e count®(u,w,j): the number of vertices v such that
Ini,(u) + Outi,(w) = j;

o B = {(u,w) | count’~Y(u,w,j) > 0forany j};;
o listi(u,w,j): {v | Ini(u) + Outi (w) = j};

e approxdist(u,w): the pair (i', j') suchthat i’ is the
minimal ¢ suchthat (u,w) € E* and j' istheminimal
j such that count® (u,w, j) > 0.

For each vertex, In! and Out! arethe breadthfirst search
trees constructed in the previous section, for depth d, for the
graph G = (V, E).

We perform updates and answer queries as follows.

e To insert a set of edges E, incident to a vertex v
or delete an arbitrary set of edges E’, we use the
routines InsertT C(E,) and DeleteT C(E") withthe
definitions of count and list as defined above, and
also maintain approxdist.

e To answer aquery: What is the approximate shortest
path from u to w?, we output jdi~! where (i,j) =
approzdist(u,w).

e To generate an approximate shortest path from u to
w: Let (i,j) = approzdist(u,w). We choose a
vertex v fromlist?(u, w, j) and recursively determine
approximate shortest paths for each edge on the path
fromu tow in Inf (u) and each edge on the path from
vtow in OUt: (w).

Proof of correctness. We first show the following.

Lemmad4.l Let dist(u, w) bethe shortest distance from u
tow inthe current graph. The following invariant holds:

I nvariant(s):

1. For each edge (u,w) in E¢, dist(u,w) < d* L.

2. If there is a path of length j from u to w in F* then
dist(u,w) < jdi—1,

3. If dist(u,w) < (d — 1)*~* then (u,w) isan edgein E°.
4, For j = 2,3,4,....d,if dist(u,w) < (j — 1)(d — 1)1
then thereis a path from « to w of length no greater than j
inF”.

Proof: We prove Invariant (1) is by induction oni. It is
straightforward and is | eft to the reader.

Invariant (2) follows easily from (1) and is left to the
reader.

Invariant (3) istrue for i = 0. We assume it istruefor i
and show itistruefori + 1. Let v bethe most recent center
of insertion in the path of length no greater than (d — 1)°.
We can partition the path from « to v and the path from
v to w into segments of length (d — 1)~ with no more
than two segments of length less than (d — 1)*~1, one on
either side of v. Either there are d — 1 segments of length
(d— 1)"~1 or there are d — 2 segments of length (d — 1)*~1
and two segments with fewer edges. In either case, there
are no more than d total segments. Since each segment
has length no greater than (d — 1)~ then by the induction
assumption, each segment is represented by an edgein E?,
and was represented by an edgein E¢ when Inf and Out!
were constructed. Then I'nf (u) + Out! (w) < d and hence
(u,w) isrepresented by an edgein £+,

The proof of Invariant (4) is similar to the proof of In-
variant (3) and is left to the reader.

Theinvariant implies the following theorem.

Theorem 4.2 Let approxzdist(u,w) = (i,7). Ifj =1
then (d — 1)i! < dist(u,w) < d~1; andif j > 2, then
(j—1(d— 1)t < dist(u,w) < jdi=1 le, jdi~tis
within a factor of 2[d/(d — 1)]**+1 of the actual distance, for
anyi < k.

To bound every length, we must have (d — 1)1 > n,
or k > logn/log(d — 2) + 1. Choosing d = Ign and
k = Ign/lglgn, we get a error less than 2 + € for any
positive constant e.

Analysis. Asin the analysis of the transitive closure algo-
rithm we see that the cost of maintaining all initial forestsis
O(knmd). EachupdateoperationrequiresO(kn?d). Main-
taining approxdist for every pair of vertices can be per-
formed O(n?k). Hence, the cost of per update is O (n?dk)
for asequenceof lengthQ(m /n),or O(n?log? n/ loglogn)
whend = Ign and k = Ign/loglogmn.

4.1. Reducing theerror

We sketch the technique for lowering the error to 1 + €
forany e < 1.

The error is worst when j is a small value greater than
1. Toreducethis error, we can add a certain redundancy, so
that when j is small, the path of length j is also represented
at alower level in the hierarchy of forests.

To do this, we use trees of distance d?. As before, E' =
{(u,w) | count*"*(u,w,j) > Oforany j < d}. However,
we define weight(u, w) = j' where j' isthe minimal over
al j < d such that count®(u,w, j) > 0.

The invariants follow as before, where length of a path
refers to the sum of the weights of the edges in the path.
The only differenceis that if approxdist(u,w) = (i,7), it
must be the case that either i = 1 or j > d; otherwise there
is a path from u to w in F*~1. In the first case, j isthe
exact distance. In the second case, the error factor is no
greater than (d/(d—1))*t. Ford = 2Ign/In(1+¢), since
i < logn/logd, theerror factor islessthan 1+¢. Theupdate
timeisincreased by afactor of d to O(n?d?k) since trees of
depth d? are maintained. Setting & = Ign and substituting
infor k and d, the update timeis O(n? log®n/€?).

4.1.1 Graphswith weighted edges

If weight(u,w) is between j — 1 and j(d?), for d> >
j > d, represent (u,w) by an edge weighted jd in E°.
If weight(u,w) < d then add an edge weighted j into F*.
Furthermore, sincethe shortest distance may be bn where
b is the maximum weight of any edge, then we need to
increase the the number & of forests to Q(log(nb)/ logd).
Choosing d = O(log(bn)/log(1 + €)) gives the desired
error. Setting £ = Igbn and substituting into O(n2d?k)
gives an update time of O(n?log®(bn)/ log?(1 + ¢)).

5. Exact shortest paths for arbitrarily long
paths

For graphs with unweighted edges, we construct and
maintain a forest F' of In and Out breadthfirst search trees
of depth d. Werefer to v astheroot of In, and Out,.

A subset S C V isablocker for F' if every directed path
starting or ending at the root, i.e., in an Out tree or an In
tree respectively, of exactly length d contains avertex in S
whichis distinct from the root.

Lemmab.1 LetS beablocker for F'. Thenfor all u,w € V
such that w is reachable from u, there is a shortest path
p from v to w which may be partitioned into consecutive
subpaths (u, s1), (s1, 82), ---, (8, w) (Where (x,y) denotes
a subpath from vertex z to vertex y) with the following
properties: (1) s1,...,s» € S; and (2) For each subpath

(z,y), thereis some v such that z € In,, y € Out, and
(z,y) consists of the contenation of the path from z to v in
In, with the path fromu to y in Out,,.

Proof: We prove this by induction on the length of p. Let
p be a shortest path from « to w. If p haslength no greater
than d then thereis some v such that w isin In, and w isin
Out,.

Now suppose the lemmais true for all pairsu, w and all
lengthsup to s > d. Consider a path of length s + 1. Let
e = (i, 7) bethemost recently inserted edgein the path. Let
the distance of ¢ from « be d’. Thenif d’ < d, then there
is a shortest path fromw to 7 in I'n;. Leti’ be avertex of
distance d' + d from u in p. Since al edges from p were
present in the graph at the time Out; was constructed, i’ is
in Out; and must be aleaf at distance d from i. Then there
issome s € S on the path from i to ' in Out, not equal
to 4, such that a shortest path from i to ' passes through s.
Hence there is a shortest path from « to w containing the
path fromw to 7 in In; and fromi to s in OQut,. Whileit is
possiblethat v = i, since s # i, theremainder of the path p,
from s to w, is shorter and can be appropriately partitioned,
by induction. If d' > d let i’ be avertex of distance d from
i, betweenwu andi. Theni' isaledf in I'n; at distanced from
i, and thereis an element s between i’ and i. Hencethe path
from u to s and the path from s to w are both of size less
than p. By induction, the lemma holds for them, and hence
for their concatenation. i

We observe that given a set of n elements and L subsets
of these elements, each of size d, some element is contained
inat least Ld/n subsets. We use this to show:

Lemma5.2 Ablocker S for F' of size O(n/dlogn) can be
constructed deterministically in time O(n? + ndInn).

Proof: Let the score of vertex be the number of leaves of
depth d inthe subtreesrooted at that vertex, summed over all
In and Out trees in which that vertex appears as a nonroot.
Let L be the total number of leaves at depth d in all In and
Out trees.

To construct S, repeatly find the vertex of maximum
score, add it to S, then remove it and its subtrees from
every tree in which it appears. Hence, the number of leaves
remaining in the set of trees has been reduced, from L to
(1—d/n)L. After O(nInL/d) selections, S isablocker.

To find the scores, it suffices to traverse each tree in pos-
torder, labeling a parent node with the sum of its children’s
labels. To revise the score when a vertex v is added to S,
let I;(v) be the number of leaves in v’s subtree in tree ¢.
Then for each w in v’s subtree, when w is removed from ¢,
subtract I;(w) from score(w), and subtract I;(v) from v’s
ancestors. The running time of this algorithm is O(1) per
vertex in atree, since each is removed once from a tree or
O(n?) over all trees plus for each v inserted into .S a cost

of O(d) per tree to visit v’s ancestors, for a total cost of
O(n? 4+ ndInn).

Recall that D(u,w) = dist(u,w) if the distance is no
greater than d and oo otherwise.

Stitching Algorithm
1. Construct ablocker S for F.

2. Use any O(n3) algorithm to compute the static all-
pairs shortest paths on the graph G' = (S, E®) where
the weight of edge (s, s’) isgiven by D(s,s’). Let
SS(s,s') denotethe shortest distance from s to s', as
computed by this algorithm.

3. Foreachu € V,s € S,if D(u, s) = oo, let D(u, s) =
miny cs D(u, s') +SS(s', s). A shortest pathfrom «
to s is the concatenation of a shortest path from u to
s" with onefrom s” to s, where s’ is a vertex which
minimizes the expression.

4. Foreachu,w € V, if D(u,w) = oo, let D(u,w) =
Minses D(u, s) + D(s,w). A shortest path from u
to w is the concatenation of a shortest path from u to
s" with one from s" to w, where s" is a vertex which
minimizes the expression.

Analysis. The cost of constructing the blocker is O(n? +
ndlogn). The cost of performing the stitching algo-
rithm is dominated by the cost of the last step which is
O(n?|S|) = O(m?(nlogn/d)). The amortized cost per
update of maintaining the shortest paths up to length d is
O(n?d). Choosingd = |S| = (nlogn)-° gives an amor-
tized update time of O(n?°/Togn).

5.1. Exact shortest paths for graphswith weighted
edges

We maintain all-pairs shortest distances up to d in
weighted graphs, using the algorithm described previoudly,
and we stitch together aswe did before. The only difference
occursin the definition and size of the blocker S.

Let b bethebound onthemaximumweight, b < /n. We
call asubset S C V ab-blocker for F' if every path starting
or ending at theroot in an Out tree or an In tree respectively,
of length greater than (d — b) contains avertex in S which
is distinct from the root. (Here, length refers to the sum
of the weights of edges in the path.) Each path contains
[(d — b)/b] vertices excluding the root. Hence we can con-
struct in asimilar way ab-blocker of sizeO(n logn/(d/b)).
The cost of stitching together is O((n3blogn)/d).The cost
per update of maintaining the all-pairs shortest paths up to
distanced isO(n?d). Choosingd = |S| = \/nblogn gives
arunning time of O(n?5,/blogn).

References

[1] G.Ausielo, G.Italiano, A. Spaccamela, and U. Nanni. Incre-
mental a gorithm for minimal length paths. |n Proceedings of
the ACM-S AM Symposium on Discrete Algorithms (SODA),
pages 12-21, 1990.

[2] A. Buchsbaum, P. Kanellakis, and J. Vitter. A data struc-
ture for arc insertion and regular path finding,. Annals of
Mathematics and Artificial Intelligence, 3:187-210, 1991.

[3] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation,
9:1-6, 1990.

[4] D. Frigioni, M. loffreda, U. Nanni, and G. Pasqualone. Ex-
perimental analysis of dynamic algorithms for the single-
source shortest path problem. ACM Jounal of Experimental
Algorithmics, 3, article 5, 1998.

[5] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molinas. Proximity search in databases. In Pro-
ceedings of the 24th VLDB Conference, 1998.

[6] M. Henzinger and M. Fredman. Lower bounds for fully
dynamic connectivity problems in graphs. Algorithmica,
22:351-362, 1998.

[7] M. Henzinger and V. King. Fully dynamic biconnectivity
and transtive closure. In 36th Symposium on Foundations of
Computer Science (FOCS), 1995.

[8] G.F Italiano. Amortized efficiency of a path retrieval data
structure. Theoretical Computer Science, 48:273-281, 1986.

[9] G.F Italiano. Finding paths and deleting edges in directed
acyclic graphs. Information Processing Letters, pages 5-11,
1988.

[10] V.Kingand G. Sagert. A fully dynamic agorithm for main-
taining the transitive closure. In Proceedings of the Thirty-
first Annual Symposiumon the Theory of Computing (STOC),
1999.

[12] H.L. Poutréand J. van Leeuwen. Maintenance of transitive
closure and transitive reduction of graphs. In Proc. Workshop
on Graph-Theoretic Concepts in Computer Science, pages
106-120. LNCS 314, Springer Verlag, 1988.

[12] G. Ramaingam and T. Reps. An incremental agorithm
for a generalization of the shortest-path problem. Jounal of
Algorithms, 21(2):267-305, 1996.

[13] T.Reps. www. ¢cs. Wi sc/ sinifreps.

[14] T. Reps and G. Ramalingam. On the computational com-
plexity of dynamic graph problems. Theoretical Computer
Science A, 158:233-277, 1996.

[15] U. Zwick. All pairs shortest paths in weighted directed
graphs—exact and almost exact algorithms. In 39th Sym-
posium on Foundations of Computer Science (FOCS), pages
310-319, 1998.

