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EXTENDED ABSTRACT

Deployment of highly redundant robots in real application

scenarios require the capability of generating sophisticated

behaviours. Many complex movements like getting up from a

chair, squatting or even acrobatics have been rarely object of

studies so far. Approximately, in the literature we can identify

two different approaches for motion generation: whole body

trajectory optimization [1], [2] and multi-task coordination

techniques [3], [4] [5].

Nevertheless, the aforementioned methods, displays several

criticalities. In formulating optimization problems for finding

whole-body trajectory, the authors usually employ a open

loop description (with or without dynamics) with lesser guar-

antees on the final behaviour on the real robot. For multi-

task optimization is always required to identify each sub-

tasks composing the global behaviour and to hand design the

relations among them. Moreover the previous methods are

often defined as optimal control problem with quadratic cost

functions and they always require an analytical formulation in

order to be solved which restricts the range of applications.

In this work we introduce an unified framework that tack-

les all the aforementioned limitations and can be used for

both trajectory optimization and multi-task coordination. The

framework distinctive features to deal with any kind of non-

linear cost functions and no need of an explicit mathematical

modelling for the optimization problem is inherited from the

employment of Black-Box Optimization (BBO) algorithms.

in our framework we choose the Covariance Matrix Adap-

tion Evolution Strategy (CMA-ES) as our optimizer. CMA-

ES [6] is a stochastic BBO algorithm that requires little to

no tuning to work. BBO is a trial and error approach which

need to collect information about the fitness function and the

process by performing a sequence of experiments (rollouts) to

find an optimal solutions.

Finding an optimal solution requires for the experiment to

be performed many times, therefore, for safety reasons, is

better to employ a simulation engine in which running the

experiment. In CMA-ES basic implementation for each itera-

tion K candidates are sampled from a multivariate Gaussian

distribution N (π̄, σ2Σ) (see Fig. 7). We compute the fitness

corresponding to each candidate and we keep only the “fittest”
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Fig. 1. Control scheme for the multi-task coordination case
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Fig. 2. Control scheme for trajectory optimization

samples: we define the Ke candidates, π1:Ke
, elites. With this

candidates subset we update mean, covariance, and step size of

the search distribution N (π̄, σ2Σ). For the update of σ2 and

Σ both information from the last generation and the previous

ones are blended together.

In [7], [8] we used Black Box optimization to tackle the

problem of the automatic design of the priorities for multi-

task coordination problem. In our framework we adopted a

soft task prioritization scheme where each elementary task is

modulated by a task priority or task weight function αi(t).
Following the scheme of Fig. 1, given nt elementary tasks the

final controller is given by:

u(q, q̇, t) =

nt∑
i=1

α̂i(π̂i, t)ui(q, q̇) . (1)

Our framework has been used for learning task priorities for a

Jaco Arm (Fig. 3) reaching task and for a bimanual task while

avoiding an obstacle with an iCub humanoid (Fig. 4) which
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Fig. 3. A Jaco arm performing a reaching task
while avoiding an obstacle. Here we show how
the learning change the activation function from
the manual tuning

Fig. 4. A bimanual task
for reaching two point
without colliding with a
board. In this case only
the upper body is con-
trolled

Fig. 5. A gazebo simula-
tion for learning the op-
timal stand up trajectory
from a chair

Fig. 6. here is show the robot
CoM trajectories for the standing
up task in the sagittal plane

only the upper body was controlled. In [8] we considered

explicitly the problem’s constraints to increase safety and

we showed that (1+1)CMA-ES with Constrained Covariance

Adaptation [9] has the best performance with respect to a

benchmark composed by analytical and robotics problems

Fig. 7. In this figure is shown how the CMA-ES machinery for searching an
optimal solution

In [10] we adapted our approach for a trajectory optimiza-

tion problem as shown in Fig. 2. Here we introduced a closed

loop trajectory constrained optimization that has the property

to enhance the feasibility of the resulting optimal trajectory

on the real robot. In this work we focused on optimizing the

desired task trajectory of the robot Center of Mass (CoM).

The CoM Cartesian trajectory is modelled as a weighted sum

of normalized Radial Basis Functions (RBFs):

p∗,icom(πi, t) =

∑nr

k=1 πikψk(μk, σk, t)∑nr

k=1 ψk(μk, σk, t)
(2)

where p∗,icom is the desired profile in time of one of the

coordinate of the final CoM trajectory, ψk(μk, σk, t) =
exp
(−1/2[(t− μk)/σk]

2
)
, with fixed mean μk and variance

σk of the basis functions, nr is the number of RBFs and

πi = (πi1, . . . , πinr
) ⊆ R

nP is the set of parameters for each

trajectory dimension. In this work we applied our framework

to find the right trajectory for achieving a stand-up from a

chair task with an iCub humanoid robots (see Fig 5 and 6).

As a low level controller for the dynamic balancing of the

robot we used the momentum controller introduced in [11].
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