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Abstract— In most MPC-based schemes used for humanoid
gait generation, simple Quadratic Programming (QP) prob-
lems are considered for real-time implementation. Since these
only allow for convex constraints, the generated gait may
be conservative. In this paper we focus on the non-convex
reachable region of the swinging foot, also known as Kinematic
Admissible Region (KAR), and the corresponding constraint.
We represent an approximation of such non-convex region as
the union of multiple non-overlapping convex sub-regions. By
leveraging the concept of feasibility region, i.e., the subset
of the state space for which a QP problem is feasible, and
introducing a proper selection criterion, we are able to maintain
linearity of the constraints and thus use our Intrinsically Stable
Model Predictive Control (IS-MPC) scheme with a negligible
additional computational load. This approach allows for a wider
range of possible generated motions and is very effective when
reacting to a push or avoiding an obstacle, as illustrated in
dynamically simulated scenarios.

I. INTRODUCTION

Humanoid robots aim at achieving the flexibility of biped
locomotion by mimicking human morphology. Designing
control schemes capable of emulating human behavior,
however, is a challenging task. In order to achieve real-
time control, the complex dynamics of humanoids are often
approximated using the Linear Inverted Pendulum (LIP) [1]
model, which captures the essential relation between the
Center of Mass (CoM) and the Zero Moment Point (ZMP, the
point with respect to which horizontal momenta are zero).
Dynamic balance can be guaranteed by keeping the ZMP
inside the convex hull of the contact surfaces, i.e., the support
polygon. The linearity of the LIP allows for efficient Model
Predictive Control (MPC) [2] formulations, where the ZMP
is kept within the support polygon by means of constraints.

Among the beneficial aspects of MPC, there is the possi-
bility to include the footstep positions as decision variables
of the optimization problem [3], [4], thus allowing the robot
to not only plan CoM and ZMP trajectories in real-time,
but also to perform reactive stepping, e.g., when subject to
a disturbance. To make sure that the resulting footsteps are
kinematically realizable by the robot, they must be confined
to an admissible region. In general, this region is non-convex,
and its boundaries depend on both the robot configuration
and the environment, thus it is not realistic to compute
it exactly in a real-time implementation. By far, the most
common approach is to restrict this region to a convex
polytope with fixed shape and dimensions (e.g., a rectangle).
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Fig. 1. MPC-based gait generation schemes commonly prescribe to place
footsteps within convex regions (left). By allowing these regions to be non-
convex it is possible to let the robot place one foot in front of the other
(middle), hence enhancing its reactive stepping capabilities, or delimit an
area where stepping is not allowed (right), e.g., in order to avoid a small
obstacle.

Restricting the allowed region for the footsteps to a convex
polytope allows to adopt a linear-quadratic formulation for
the optimization problem, which can be very efficiently
solved using the techniques of Quadratic Programming (QP)
[3], [5].

On the other hand, placing footsteps in front of each other
can be quite effective against perturbations, as shown in [6]
where the authors use pre-computed trajectories. Obtaining
this behavior in MPC-based gait generation is not straight-
forward as the kinematic admissible region becomes non-
convex (see Fig. 1). Mixed-Integer Quadratic Programming
(MIQP) permits to reformulate a non-convex constraint as a
set of mutually exclusive convex constraints by introducing
additional integer variables [7], [8], and is quite effective for
footstep planning applications, but the introduced extra com-
putational load does not allow for real-time implementations.

Non-convex regions arise in problems of obstacle avoid-
ance, as the allowed states lie outside a finite region around
the obstacle. Planning algorithms can usually deal efficiently
with non-convex constraints [9], [10], [11], but real-time ap-
proaches often require convex approximations of the admis-
sible regions [4]. Real-Time Iteration (RTI) (e.g., see [12])
can work with non-convex constraints by determining time-
varying convex approximations around a trajectory, but it
often lacks convergence guarantees, and the result might
heavily rely on the quality of the initial guess. It is possible
to decompose the non-convex region into multiple convex
sub-regions, and select a single one to formulate a convex
constraint. This is done in [13], [14], which however use a
heuristic selection of the sub-region that does not involve
feasibility considerations.

In [15], we presented an Intrinsically Stable MPC (IS-
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Fig. 2. A block scheme of the proposed approach. Red blocks highlight additions to the standard IS-MPC framework.

MPC) for humanoid gait generation, which features an
explicit stability constraint that guarantees a bounded CoM
trajectory with respect to the ZMP. IS-MPC allows automatic
footstep placement, and enforces convex allowed regions for
the footsteps in order to comply with the robot kinematic
limits. We introduced the concept of feasibility region, i.e.,
the subset of the state space where the constrained optimiza-
tion problem admits a solution, and in [16] we showed how
this region can be employed in the design of a step timing
adaptation module, that would otherwise require nonlinear
optimization.

In this paper, we show how the feasibility region can be
used to efficiently treat non-convex allowed regions for the
footsteps. The idea is to divide a non-convex polytope into a
set of convex sub-regions, and determine which one can be
used in a QP formulation according to a specific criterion.
The result of our algorithm is a unique convex sub-region,
allowing for a very efficient solution since the underlying
formulation remains linear-quadratic. The criterion according
to which the sub-region is selected involves evaluating the
feasibility of the resulting QP problem, and thus ensures that
a solution will be found if it exists. Differently from related
approaches (e.g., [17]) the proposed method does not require
solving multiple optimization problems at a given time-step,
thanks to the fact that the feasibility region can be evaluated
in closed-form.

This general idea can be used in different practical ap-
plications. We consider two: extending the allowed region
for the footsteps in order to improve reactive stepping, and
performing obstacle avoidance (see Fig. 1). We validate the
proposed method by means of dynamic simulations on an
HRP-4 humanoid robot.

The paper is organized as follows. Section II provides
an overview of the approach, while Sect. III briefly recalls
standard IS-MPC. Section IV describes the main contribution
of this paper enabling handling non-convex regions, and
Sect. V show dynamic simulations on a HRP-4 humanoid
robot. Concluding remarks are provided in Sect. VI.

II. THE PROPOSED APPROACH

Standard IS-MPC, introduced in [15], solves at each time
instant a QP problem, which admits a solution if the current
state lies inside a subset of the state space called feasibility
region. The bounds of this region can be easily computed

given the enforced constraints. In particular, one of these
constraints aims at keeping the footsteps within a convex
region.

We extend this scheme in order to allow a non-convex
reachable region of the swinging foot – the non-convex
Kinematic Admissible Region (KAR) – and thus increase
the reactivity of the humanoid, e.g., to an external push.
However, since we want to keep solving QP problems for
real-time implementation, we cannot include a non-convex
constraint. In our extension, we first approximate the KAR
with a non-convex polytope and then decompose this approx-
imation into a set of non-overlapping convex sub-regions.
Finally we choose one of the convex sub-regions in such a
way to ensure feasibility of the corresponding QP problem in
IS-MPC. We perform this procedure only for the first footstep
inside the control horizon, although in principle it can be
extended to multiple predicted footsteps.

The general architecture of the modified IS-MPC scheme
is shown in Fig. 2. A footstep plan, consisting of a se-
quence of candidate footstep positions, orientations, and
their associated timings, is given as input to an IS-MPC
block which computes CoM/ZMP trajectories and the actual
footstep positions in order to match the original plan as close
as possible. A set of linear constraints are enforced at each
time instant in the underlying QP problem.

One of these constraints requires the footsteps to be within
a specific convex area. In the reported scheme, this area, a
convex sub-region of the KAR, is determined by a set of
basic steps:

• in the kinematic admissible region decomposition block
the KAR region is approximated as a non-convex poly-
tope and then divided into a set of non-overlapping
convex sub-regions;

• the feasibility check block evaluates the feasibility of
each sub-region, i.e., determines if using any of the
convex sub-regions as an allowed area for the footsteps
results in a feasible QP problem. This block outputs a
set of feasible convex sub-regions;

• the sub-region selection block evaluates all these sub-
regions and, according to a specific criterion, chooses a
unique feasible sub-region. This region will activate the
corresponding kinematic constraint in the IS-MPC QP
problem.

The IS-MPC block generates CoM/ZMP trajectories and
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footstep positions, along with the swing foot trajectory,
which are sent to a kinematic control block where joint
commands are finally computed.

We propose two possible applications of this extended IS-
MPC scheme: i) the area where the swinging foot is allowed
to step is enlarged with respect to the usual conservative
rectangle, thus allowing to place a foot in front of the
other; this extends the capabilities of reactive stepping w.r.t.
external perturbations; ii) if one or more small obstacles are
present, we consider the non-convex obstacle free region as
the KAR. It is assumed that the obstacle is detected.

This technique can be applied to a wide range of scenarios,
and it adds no significant computational cost, as the the
formulation of the optimization problem at the core of MPC
remains quadratic with linear convex constraints. We apply
the procedure only to the first predicted footstep in order
to simplifies the algorithm. Nevertheless, a more general
formulation could easily be implemented and still have neg-
ligible impact on the computational load. The first footstep,
however, has the most immediate effect on the resulting
gait, and extension to footsteps farther into the future has
diminishing returns.

III. INTRINSICALLY STABLE MPC

This section will describe the standard IS-MPC algorithm.
The scheme works in a discrete fashion over sampling
intervals of duration δ. Its goal is to determine CoM and ZMP
trajectories, as well as footstep positions, such that the latter
follow as closely as possible a given footstep plan, which is
made available over a preview horizon Tp = Pδ, across P
sampling intervals. A prediction model is used to forecast the
evolution of the system along a control horizon of duration
Tc = Cδ, across C sampling intervals, with C < P . The
current time is denoted as tk = kδ, and the generic time
along the control horizon is indicated as tk+i = (k + i)δ,
with i = 0, . . . , C − 1. Sampled variables are denoted with
a superscript, e.g., x(tk+i) = xk+i.

We assume that all footsteps have the same orientation,
which simplifies the exposition by decoupling the x and
the y component in every equation1. Whenever possible,
we will only give equations for the x component, with the
understanding that there will be an identical counterpart for
the y component.

The footstep plan specifies the beginning of each step,
denoted with tjs, taken to be at the beginning of the corre-
sponding double support phase. The j-th step will have a
duration T j

s , split into a double support phase of duration
T j
ds and a single support phase of duration T j

ss.

A. Prediction Model

The prediction model for the CoM/ZMP dynamics is the
LIP, which is derived by considering the moment balance
around the ZMP and assuming a flat horizontal ground,
constant CoM height and negligible angular momentum

1This assumption is adopted to simplify the exposition of the IS-MPC
scheme itself. The proposed extension is unaffected, and would work
identically even with variable orientations.

variation around the CoM. The dynamics along the x axis
(sagittal) and y axis (coronal) can be represented by two
decoupled identical linear differential equations, e.g., for x

ẍc = η2(xc − xz), (1)

where xc and xz denote the CoM and ZMP respectively,
while η =

√
g/z̄c is the pendulum natural frequency, with

g the gravity acceleration, and z̄c the constant height of the
CoM. In order to achieve smoother trajectories, the model is
dynamically extended to have the ZMP velocity ẋz as input.

B. ZMP Constraints

To keep the ZMP within the support polygon, we adopt a
moving constraint formulation [18], where the allowed area
for the ZMP is given by a region with fixed shape, having
the same dimensions of the footprint. The center of this
region moves in such a way that the moving shape is always
contained within the support polygon.

The ZMP constraint can be written as∣∣∣xz − xj−1
f − (xj

f − xj−1
f )σ(t, tjs, t

j
s + T j

ds)
∣∣∣ ≤ 1

2
dz,x,

for t ∈
[
tjs, t

j+1
s

)
, where dz,x is the square footprint width.

Here σ is a piecewise linear sigmoidal function, defined as

σ (t, ti, tf ) =
1

tf − ti
(ρ (t− ti)− ρ (t− tf )) ,

where ρ(t) = tδ−1(t) is the unit ramp. In a more compact
form, it is possible to write the ZMP constraints as

xm
z (t, x1

f , . . . , x
F
f ) ≤ xz ≤ xM

z (t, x1
f , . . . , x

F
f ), (2)

for t ∈
[
tjs, t

j+1
s

)
, where the ZMP bounds xm

z and xM
z appear

as functions of time as well as of the predicted footstep
positions.

C. Stability Constraint

Due to the unstable nature of humanoid dynamics, it is
not sufficient to ensure that the ZMP is inside the support
polygon at all times, as the associated CoM trajectory might
be divergent w.r.t. the ZMP, leading to an unrealizable
motion. In order to avoid this, IS-MPC includes a stability
constraint that guarantees that the CoM trajectory is bounded
with respect to the ZMP.

In the LIP, the unstable behavior is highlighted by defining
the coordinate xu, often referred to as Divergent Component
of Motion (DCM) [19] or capture point [20]: xu = xc+ẋc/η,
which results in the unstable dynamics

ẋu = η (xu − xz) .

xc will remain bounded with respect to xz provided that

xk
u = η

∫ ∞

tk

e−η(τ−tk)xz(τ)dτ, (3)

and that ẋz is bounded. The integral in the right-hand side
can be split as the integral from tk to tk + Tc, that can be
readily expressed in terms of the ZMP velocity inputs ẋz

within the MPC control horizon, plus the integral from tk +
Tc to +∞, which depends on the inputs outside the control
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horizon and therefore makes condition (3) non-causal. To
obtain a causal constraint, we compute an approximate value
for the second integral by using an anticipative tail, i.e., a
ZMP trajectory x̃z from tk + Tc to +∞ conjectured on the
basis of short-term information given by the footstep plan.
This leads to the following stability constraint

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xk
u − c̃kx, (4)

where
c̃kx = η

∫ ∞

tk+C

e−η(τ−tk)x̃z(τ)dτ.

Note that the integral in the left-hand side of (4) can be
written in closed form as a linear function of the ZMP
velocity inputs ẋk

z , . . . , ẋ
k+C−1
z .

D. Kinematic Constraints

The kinematic constraint is enforced to guarantee that all
footsteps are positioned in such a way to comply with the
kinematic limits of the robot. In the standard version of IS-
MPC, the j-th predicted footstep must lie within a convex
region K̄j , chosen as a rectangular approximation of the
KAR:

(xj
f , y

j
f ) ∈ K̄j , j = 1, . . . , F, (5)

with K̄j given by

K̄j =

{
(x, y) :

∣∣∣x− xj−1
f

∣∣∣ ≤ da,x
2

,
∣∣∣y − yj−1

f ± ℓ
∣∣∣ ≤ da,y

2

}
.

Here, da,x and da,y are the dimensions of this rectangular
approximation, ℓ is a lateral displacement, and the ± sign
is a shorthand notation to express the fact that the displace-
ment occurs alternatively towards the positive and negative
direction of the y axis, depending on whether the support
foot is the right or left one.

E. QP Formulation

At each iteration the IS-MPC solves a QP problem whose
decision variables are given by

Ẋk
z =

(
ẋk
z . . . ẋk+C−1

z

)T
, Ẏ k

z =
(
ẏkz . . . ẏk+C−1

z

)T
,

Xk
f =

(
x1
f . . . xF

f

)T
, Y k

f =
(
y1f . . . yFf

)T
.

The QP problem is formulated as

min
Ẋk

z , Ẏ
k
z ,

Xk
f , Y

k
f

∥∥∥Ẋk
z

∥∥∥2

+
∥∥∥Ẏ k

z

∥∥∥2

+ β

(∥∥∥Xf − X̂f

∥∥∥2

+
∥∥∥Yf − Ŷf

∥∥∥2
)

subject to:
- ZMP constraints (2) for x and y

- stability constraints (4) for x and y

- kinematic constraints (5).
(6)

This QP problem is solved at each iteration, computing
the full predicted trajectory over the control horizon. In
the typical MPC fashion, the first control sample from the
solution (ẋk

z , ẏ
k
z ) is used to integrate (1), obtaining a desired

CoM position. The first predicted footstep (x1
f , y

1
f ) is used

as a target position to generate a swing foot trajectory. These
CoM and swing foot trajectories are treated as references to
be tracked by the kinematic controller.

F. Feasibility Region

As shown in [16], in order for IS-MPC to be feasible,
i.e., the QP to be solvable, the state at tk must be within a
feasibility region. The bounds of this region can be deter-
mined based on the constraints imposed on the QP problem
constructed at time tk. On the converse, if the state is not
inside the feasibility region, the QP problem (6) does not
admit a solution.

For example, when the robot is subject to a strong pertur-
bation, which almost instantaneously modifies the state, we
may have two possible outcomes: i) the modified state might
still be inside the feasibility region, and so the MPC will
be perfectly capable of recovering from the perturbation; ii)
the modified state might exit the feasibility region, in which
case the constrained optimization has no solution and the
algorithm fails.

Let us recall a result that will be used in the following
section.

Proposition 1: IS-MPC is feasible at tk if and only if
(xk

u, y
k
u) ∈ Fk, with

Fk = {(xu, yu) : x
k,m
u ≤ xu ≤ xk,M

u , yk,mu ≤ yu ≤ yk,Mu }

with the following compact notation for xk,m
u and xk,M

u

(identical quantities hold for the y component)

xk,m
u = η

∫ tk+C

tk

e−η(τ−tk)xm,min
z (τ)dτ + c̃kx

xk,M
u = η

∫ tk+C

tk

e−η(τ−tk)xM,max
z (τ)dτ + c̃kx

in which

xm,min
z (t) = min

Xk
f

xm
z (t, x1

f , . . . , x
F
f ) (7)

xM,max
z (t) = max

Xk
f

xM
z (t, x1

f , . . . , x
F
f ) (8)

with Xk
f subject to the kinematic constraints (5).

Proof. See [16].
Equations (7) and (8) represent respectively the minimum

and maximum allowed trajectories for the ZMP, which are
made independent of the footstep position by performing a
min and max operation with respect to Xk

f , subject to the
kinematic constraint. Despite here being defined implicitly,
these terms can be expressed in closed form, and so can the
bounds of the feasibility region.

In the following, we will make use of the fact that the
bounds of Fk depend on the allowed area for the footsteps,
due to the necessity to satisfy the kinematic constraint. In
particular, it will be important to express its dependency
on the allowed area for the first footstep in the control
horizon. In order to highlight this dependency, let us adopt
the notation Fk = Fk(K̄1).
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Fig. 3. Left: in standard IS-MPC the approximation of the KAR is limited
to K1 (see Sect. III-D). In the proposed method we also consider the orange
regions (see Sect. IV-D) in order to better approximate the actual KAR (blue
region). The resulting non-convex polytope K is outlined in red. Right: a
possible configuration of the corresponding feasibility regions for each sub-
region (not-to-scale for improved clarity).

IV. HANDLING THE NON-CONVEX CONSTRAINT

In this section we expand the three red blocks of Fig. 2
which constitute the novelty of the proposed approach.

A. Kinematic Admissible Region Decomposition

Let us approximate the KAR for the first step inside the
control horizon as a non-convex polytope K. This polytope
is an extension of the region K̄1, defined in Sect. III-D (see
Fig. 3). Note that we drop the superscript to lighten the
notation, as the following procedure is only applied to the
first predicted step.

The kinematic admissible region decomposition block per-
forms a decomposition of K into a set of N non-overlapping
convex sub-regions, i.e.,

K =

N⋃
ν=1

Kν s.t.
N⋂

ν=1

Kν = ∅.

In general, there is not a unique way to decompose a
given non-convex set. We will describe our decomposition
procedure for the the two considered scenarios in Sects. IV-D
and IV-E. Other choices are of course possible.

B. Feasibility Check

Any sub-region Kν , if used in the kinematic constraint
(5), will produce a QP problem that is structurally identical
to (6), and whose feasibility can be evaluated by checking
whether

(xk
u, y

k
u) ∈ Fk(Kν). (9)

i.e., if (xk
u, y

k
u) belongs to the feasibility region Fk(Kν).

Therefore, the feasibility check block checks (9) for each sub-
region Kν , with ν = 1, . . . , N , and determines the subset of
all feasible sub-regions.

Note that, while the sub-regions Kν are chosen to be non-
overlapping, the corresponding feasibility regions Fk(Kν)
can overlap. This means that in general there may be more
than one feasible sub-region for (xk

u, y
k
u) at any given time.

walking
direction

K2

K3
K1,b

F(K2)

F(K3)

F(K1,l) F(K1,r)

F(K1,f)

F(K1,b)

obstacle

K1,r

K1,f

K1,l
x

y

current
footstep

(left)

K

Fig. 4. Left: non-convex approximation K of the KAR (red outline)
when an obstacle is present (black), and the corresponding decomposition in
sub-regions. Right: a possible configuration of the corresponding feasibility
regions for each sub-region (not-to-scale for improved clarity).

C. Sub-Region Selection

The sub-region selection block chooses a unique sub-
region among all the ones that have been found to be feasible.
The criterion for this selection will be articulated in two
stages, which will lead to a unique result.

At first, a priority p(Kν) is assigned at each sub-region,
where higher priority indicates that it is preferable to step
inside the corresponding sub-region Kν . Only the highest
priority regions are kept – since the feasibility regions can
overlap, we may have more than one sub-region with highest
priority – thus discarding all the lower priority ones.

Then, among all feasible sub-regions with maximum pri-
ority, we choose the sub-region Kν that maximizes the min-
imum distance between the boundary Fk(Kν) and (xk

u, y
k
u).

This aims at maximizing robustness with respect to pertur-
bations. Intuitively, it will also reduce the probability to pick
a different region in subsequent iterations.

D. Decomposition Procedure: Improving Reactive Stepping

We want to endow the robot with the capability of placing
one foot in front of the other. This becomes particularly
useful in case of external perturbations directed laterally
from the swinging foot towards the support foot, because
the next footstep can be placed further along the direction
of the push, thus granting a higher chance of recovery. We
make this possible by considering the KAR and its non-
convex polytope approximation as shown in Fig. 3. This
polytope includes the rectangular KAR approximation used
in standard IS-MPC (see Sect. III-D), and augments it by
further extending it in front and behind the stance foot. The
convex decomposition of this polytope is operated by simply
having the region K1 ≡ K̄1 extended as much as possible
along the x direction, and two smaller rectangular regions
K2 and K3 in front and behind the current support foot.
The larger region K1 is given priority 1, while, the smaller
regions K2 and K3 are given priority 0. In this way the robot
will place footsteps in front of each other only when this is
strictly necessary in order to recover from a perturbation, and
will prefer a normal gait under any other circumstance.
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E. Decomposition Procedure: Obstacle Avoidance

Obstacle avoidance involves non-convex constraints, as
the admissible region is outside of a finite set (a region
surrounding the obstacle). We describe a procedure for
dealing with a small obstacle, i.e., such that the robot can
step past it but not directly on it.

We propose to approach this case by dividing the non-
convex polytope approximation of the KAR, as shown in
Fig. 4. The obstacle is enclosed in a rectangular region,
and the surrounding space is divided in four sub-regions.
For consistency, we keep the notation as close as possible
to the naming used in Sect. IV-D. As such, the regions in
front and behind the support foot K2 and K3 are identical
as in the previous subsection, while K1 is further divided
into K1,f , K1,b, K1,l and K1,r (respectively front, back, left
and right with respect to the obstacle). The decomposition
is operated2 by having K1,f and K1,b maximally extended
in the y direction, while the remaining space is assigned to
K1,l and K1,r, as depicted in Fig. 4. We assign priority 1 to
the sub-regions K1,f , K1,b, K1,l and K1,r, while sub-regions
K2 and K3 have priority 0.

The decomposition procedure just described can always
be carried out whenever the obstacle is fully contained
inside K1. If this is not the case, a different treatment will
be required. For example, the obstacle might be partially
contained in K1, or on the boundary between K1 and K2.
These cases poses no particular challenge, as a decompo-
sition procedure can be found just as easily. We omit the
details here for compactness.

V. DYNAMIC SIMULATIONS

We performed dynamic simulations on an HRP-4 hu-
manoid robot in the DART environment, using the following
parameters: zc = 0.75 m, dz,x = 0.08 m, dz,y = 0.08 m,
Tc = 1 s, Tp = 2.5 s, δ = 0.01 s. All footsteps have the
same duration T j

s = 1 s, with T j
ds = 0.3 s and T j

ss = 0.7 s.
The size of the sub-regions K1 is 0.5 m along x and 0.16 m
along y, with a lateral displacement ℓ = 0.2 m. The size
of the sub-region K2 and K3 is 0.1 m along x and 0.2 m
along y. The QP problems are solved using hpipm [21]. A
full iteration takes less than 10 ms on a standard PC, and can
thus run in real-time. Videos and comparisons with standard
IS-MPC are included in the accompanying video.

A. Push Recovery

In the first simulation, HRP-4 is walking and is subject to
a diagonal push with magnitude (100, 135, 0) N, occurring
at t = 4 s (the beginning of the single support phase of the
fourth step) and lasting for 0.1 s.

As shown in Fig. 5, the push causes a displacement of
(xk

u, y
k
u) which exits the feasibility region Fk(K1). However,

it is now contained in Fk(K2), which means that the robot
can recover by placing the right foot in K2, i.e., in front of
the left foot. See also the accompanying video.

2There are multiple ways of subdividing this polytope into convex sub-
regions, and the proposed choice is one of the most natural. However, other
choices might be just as effective.
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Fig. 5. Push recovery simulation. The top plot (t = 4.45 s) shows the
state right after the push (denoted as an arrow). In particular, (xk

u, y
k
u) is

inside Fk(K2), so the push is recovered by putting the right foot in front
of the left, as shown in the bottom plot (t = 4.99 s).
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Fig. 6. Obstacle avoidance simulation. The top plot (t = 4.30 s) shows the
decomposition of the non-convex polytope when the obstacle is encountered,
as well as the position of (xk

u, y
k
u). The bottom plot (t = 4.85 s) shows

the resulting placement of the next footstep.

B. Obstacle Avoidance

In this second simulation, a small obstacle with dimen-
sions 0.04 m×0.07 m×0.01 m is placed along the robot
path.

Following the footstep plan would lead the robot to step
onto the black obstacle, but since this is accounted for in
the decomposing procedure, the footstep lands behind the
obstacle. Stepping over the obstacle will be achieved at the
subsequent step. Figure 6 shows the gait and footsteps, and
the accompanying video reports the full animation, as well
as a more challenging scenario involving multiple obstacles.

C. Mixed Scenario

In the last simulation, we show how the robot reacts to
multiple pushes as well as to the presence of an obstacle. The
size of the obstacle is the same as in the previous simulation.
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Fig. 7. Push recovery and obstacle avoidance simulation: snapshots
(top) and CoM/ZMP plots (bottom). The robot successfully recovers from
multiple pushes and avoids stepping on an obstacle.

The robot encounters the obstacle during the fourth step,
and is then subject to two consecutive pushes during the
sixth and seventh step, with magnitude (80, −105, 0) N and
(80, 120, 0) N respectively. As shown in Fig. 7 (bottom),
thanks to the proposed approach, the robot is able to both
avoid the obstacle and suppress the effect of the perturbations
by placing one foot in front of the other. Figure 7 (top)
shows snapshots of the simulation which is included in the
accompanying video.

VI. CONCLUSIONS

The proposed method enhances the original IS-MPC
framework allowing non-convex areas for the reachable
region of the swinging foot, while adding a negligible com-
putational load. DART simulations showed that this method
increases the reactive capabilities of the original scheme, and
can be employed to perform obstacle avoidance.

Future work will address the following points:
• the proposed scheme can be integrated within a

larger framework, including feasibility-driven step tim-
ing adaptation [16];

• by using an appropriate 3D model in place of the LIP it
can be extended to non-flat ground, where non-convex
allowed regions for the footsteps arise very naturally in
the presence of stair steps, and similar features;

• in order to work in cluttered environments, where sev-
eral obstacles can be present at the same time, one could
include a state machine in order to discern between
the possible topological arrangements of the obstacles
within the kinematic admissible region;

• in order to account for tall obstacles, that do not allow
the robot to step past them, one should extend the region
in which the foot cannot be placed, in order to include
all areas that would lead to a foot collision during a
swinging motion.
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