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Abstract—We present an image-based visual servoing strategy
for driving a nonholonomic mobile robot equipped with a pinhole
camera toward a desired configuration. The proposed approach,
which exploits the epipolar geometry defined by the current and
desired camera views, does not need any knowledge of the 3-D
scene geometry. The control scheme is divided into two steps. In the
first, using an approximate input–output linearizing feedback, the
epipoles are zeroed so as to align the robot with the goal. Feature
points are then used in the second translational step to reach the
desired configuration. Asymptotic convergence to the desired con-
figuration is proven, both in the calibrated and partially calibrated
case. Simulation and experimental results show the effectiveness of
the proposed control scheme.

Index Terms—Epipolar geometry, image-based visual servoing
(IBVS), input–output feedback linearization, nonholonomic mo-
bile robots.

I. INTRODUCTION

THIS PAPER presents an image-based visual servoing
(IBVS) method for driving a nonholonomic mobile robot

to a desired configuration (set-point), which is specified through
a desired image previously acquired by an on-board pinhole
camera.

Differently from position-based visual servoing (PBVS), in
IBVS, both the control objective and the control law are directly
expressed in the image feature parameter space [15]. An image
feature parameter is a real-valued quantity that can be calcu-
lated from one or more image features (points, lines, moments,
etc.). As a consequence, IBVS schemes do not need any a priori
knowledge of the 3-D structure of the observed scene. In addi-
tion, IBVS is more robust than PBVS with respect to uncertain-
ties and disturbances affecting the model of the robot, as well
as the calibration of the camera [10], [15]. However, robot con-
vergence can typically be guaranteed only in a neighborhood of
the desired configuration.

For articulated manipulators, error convergence to zero for
the whole task space has been obtained via a hybrid approach
between IBVS and PBVS, called 2-1/2-D visual servoing, and
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introduced in [22] and [23]. Besides image features, this strategy
uses in the control law part of the camera displacement (rotation
and a scaled translation) between the current and the target view,
obtained via a decomposition of the homography matrix.

Recently, there has been an increasing interest in the visual
servoing of mobile robots, which are typically subject to non-
holonomic kinematic constraints. Among the first PBVS ap-
proaches in this area, we mention [26] and [30], where the au-
thors propose to use a pan-tilt camera to add more degrees of
freedom to the vision sensor. In [14], a piecewise-smooth PBVS
for mobile robots is presented, based on the observation of envi-
ronment features. All these methods, however, need metrical in-
formation about the feature position with respect to the camera-
robot frame in order to guarantee convergence to the desired
configuration.

The IBVS method for nonholonomic robots proposed in [8]
does not need any a priori 3-D knowledge of the scene, and
uses an adaptive control law to estimate the feature positions
with respect to the camera-robot frame. A visual servoing
strategy based on the estimation of the height of features on the
plane of motion was proposed in [4] for mobile robots equipped
with different types of vision sensors, such as pan-tilt heads
or panoramic cameras. However, the last two visual servoing
schemes suffer from the same potential drawback, i.e., the
control law uses the inverse of the image Jacobian, and can,
therefore, become singular for certain configurations of the
mobile robot or feature points.

The 2-1/2-D approach has also been used to design a visual
servoing scheme for unicycle mobile robots in [11]. In addi-
tion to the typical requirements of 2-1/2-D techniques, such a
scheme requires perfect knowledge of the camera calibration pa-
rameters and the adaptive estimation of a constant depth-related
parameter during servoing. Since the proposed controller is Lip-
schitz-continuous and time-varying, convergence to the desired
configuration is not exponential.

The IBVS strategy for set-point stabilization of nonholo-
nomic robots proposed in this paper is the outgrowth of [24],
which was the first visual regulation scheme for nonholonomic
mobile robots based on epipolar geometry. In the literature, this
tool has been successfully applied to design visual-control laws
for articulated manipulators [3], [29], [31] and omnidirectional
mobile robots [7].

Given two views (in our case, desired and actual) of the same
scene, the epipoles are the 2-D points where the line joining the
two camera centers intersects the corresponding image planes
[13]. Since the epipoles only encode the relative orientation be-
tween the actual and the desired views, our control algorithm
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is based on the execution of two sequential steps. The first,
which compensates the orientation error so as to align the robot
with the desired configuration, is based on the use of approxi-
mate input–output linearization. The second step, which actu-
ally leads the system to the target, zeroes the translational dis-
placement using feature points. The resulting visual servoing
strategy guarantees asymptotic convergence, with exponential
rate, of the nonholonomic mobile robot to the desired configu-
ration.

The epipoles can be classified as image feature parameters,
since they can be directly computed from many kinds of image
features, such as points [18], apparent contours of curved sur-
faces [7], [33], or optical flows [37]. Thus, according to [15],
our two-step visual servoing algorithm can be classified as an
IBVS scheme.

The main advantages of our approach are as follows.
• Using the epipoles as outputs, the problems arising from

local minima and singularities, which are typically encoun-
tered in IBVS schemes based on the image Jacobian, are
avoided.

• No metrical knowledge of the 3-D scene is needed, because
our IBVS strategy is based on the epipolar geometry, which
is independent from the scene geometry. In particular, dif-
ferently from 2-1/2-D techniques, the proposed algorithm
does not estimate the relative camera displacement via ho-
mography matrix decomposition, a process which requires
manual intervention (in fact, such decomposition is not
unique, and to avoid this ambiguity, it is necessary to dis-
criminate between two possible normal vectors to the target
plane) and could also increase the sensitivity to image noise
[6].

• Since the proposed visual servoing strategy uses the
epipolar geometry, our strategy can be applied in the case
of a 3-D scene exhibiting not only image feature points,
but also other kinds of features, such as smooth surfaces
(e.g., nonplanar object contours) or optical flows.

• Asymptotic convergence to the desired configuration can
be proven also in the case of a partially calibrated pinhole
camera, and, in particular, in the case of unknown focal
length.

From a control viewpoint, it should be emphasized that the
set-point regulation of nonholonomic mobile robots considered
in this paper is more difficult than the trajectory-tracking
problem addressed, e.g., in [19], where the robot tracks an
arbitrarily shaped ground curve observed on the camera image
plane. This is due to the peculiar nature of nonholonomic
systems, for which posture stabilization cannot be achieved via
smooth time-invariant feedback [5].

The paper is organized as follows. Section II introduces the
basic notations and definitions of epipolar geometry for pin-
hole cameras. In Section III, the nonholonomic visual servoing
problem is formulated, and the two-step control strategy is out-
lined. The first step is analyzed in Section IV, where the epipole
kinematics is derived and used to design a control law based on
feedback linearization. Section V describes the feature-based
control law which implements the second step. The proposed
method is extended to the case of a partially calibrated camera
in Section VI. Simulation and experimental results are presented

Fig. 1. Formation of a perspective projection of the 3-D point P in the pinhole
camera model. The optical center of the camera is in O .

in Sections VII and VIII, respectively, to show the effective-
ness and practical applicability of the proposed approach. In
Section IX, we discuss some possible extensions to the basic
problem. In Section X, we provide some concluding remarks
highlighting the main contributions of the paper.

II. BASIC EPIPOLAR GEOMETRY FOR PINHOLE CAMERA

In this section, we quickly review the fundamentals of the per-
spective camera model and multiple-view geometry. The reader
is referred to [13] and [20] for a detailed treatment.

With reference to Fig. 1, consider a pinhole camera with
optical center in , and the associated camera frame

. The full perspective model describes the
relationship in homogeneous coordinates between a 3-D point

(expressed in the world frame ) and its
projection on the image plane (expressed in the image frame

) as

(1)

where are the extrinsic camera parameters (i.e., respec-
tively, the rotation and the translation between the world and
the camera frame, defined in the camera frame), and is the
intrinsic camera parameter matrix

Here, represent the image frame coordinates, in pixels,
of the principal point (i.e., the intersection point between the
image plane and the optical axis ), and are the number
of pixels per unit distance in image coordinates, is the focal
length, and is the angle between the image axes and . In
the following, we suppose that the camera intrinsic parameters
have been determined through a preliminary calibration phase
(although we shall partially relax this assumption later in the
paper), and that . Without loss of generality, it is then
possible to assume (i.e., the origin of the image
frame is at the principal point) and . Hence, matrix

is known, and takes the form

(2)
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Fig. 2. Basic epipolar geometry setup defined by two different views (distinct
camera placements) of the same 3-D point, i.e., the actual view (on the left) and
the desired view (on the right). For later use, the figure refers to the particular
case in which a planar motion occurs between the two cameras, i.e., the planes
x � z and x � z coincide.

Consider now two distinct camera frames
and , corre-

sponding, respectively, to the actual and desired views of the
same 3-D point (see Fig. 2). Without loss of generality, we
assume that the world frame coincides with the desired view
frame (i.e., ).

The two intersections ,
between the segment (the baseline) and

the image planes are called epipoles. Note that each epipole
is expressed (in homogeneous coordinates) in the coordinate
frame of the corresponding image plane (see Fig. 2).

It is easy to understand that the epipoles are invariant with re-
spect to a translation of the image planes along the baseline. This
indicates that only the relative orientation between the planes
can be retrieved from the knowledge of (and of the camera
parameters). This point, which will be further illustrated later,
has precise consequences on the design of our servoing strategy.

The value of the epipoles can be directly computed by com-
paring the desired and actual views. A common approach [18] is
to use the fundamental matrix , an important tool in epipolar
geometry. is defined as

where is the 3 3 skew-symmetric matrix associated with
the translation . Given at least eight generic correspondences
(i.e., images of the same points in the two views), can be
computed up to a scale factor, without any knowledge of the
3-D structure of the observed scene. In the presence of image
noise, can be robustly estimated by means of well-known
algorithms; see, for example, [13] and [18]. The epipoles and

are then readily computed as vectors lying in the left and right
null-spaces, respectively, of

(3)

Fig. 3. Mobile robot with unicycle kinematics carrying a camera.

Other techniques are available to estimate the epipoles, e.g.,
from apparent contours of generically shaped objects [7], [33],
from optical flow [37], or using virtual parallax methods [21].
Also, algorithms based on the so-called homography matrix can
be used to compute the epipoles when a planar scene is observed
[13], [20].

III. THE NONHOLONOMIC VISUAL SERVOING PROBLEM

The objective of this paper is to present a visual servoing
strategy that uses the epipole positions (reconstructed through
an on-board camera) in order to drive a nonholonomic robot to-
ward a desired configuration.

A. Problem Formulation

The nonholonomic mobile robot considered in this paper is a
unicycle moving on a plane (see Fig. 3). Its configuration vector
is defined as , where are the Cartesian coordinates
of the center of the robot in a reference planar frame ,
and is its orientation with respect to the axis (see Fig. 3).
The nonholonomic kinematic model is

(4)

where and are, respectively, the translational and angular
velocity, assumed to be the available control inputs. Without loss
of generality, we suppose that the desired configuration is

, which corresponds to the robot being centered at
the origin and aligned with the positive axis.

The pinhole camera is fixed to the robot body in such a way
that the optical center is in (i.e., at the center of
the robot), the optical axis is aligned with the robot forward
axis, and the axis is parallel to the motion plane. This means
that the desired camera frame coincides with the
planar reference frame .

Since we are pursuing a visual servoing approach, it is as-
sumed that the desired camera view (i.e., the view acquired
with the robot at ) has been gathered in advance, and that a
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Fig. 4. When the actual and desired configurations are aligned, both epipoles
coincide with the origin of the corresponding image frame.

sufficient number of corresponding feature points
is observed in the actual and desired

views (as already mentioned, other methods can be used to re-
construct the epipoles). Therefore, the epipoles and can be
computed at each sampling instant from the fundamental matrix,
as in (3).

On the other hand, the configuration of the mobile robot is
assumed to be completely unknown.

B. Sketch of the Control Method

First we note that, since only planar movements of the camera
are allowed, only the -coordinates of the epipoles (i.e., and

) change during the motion (see Fig. 2). With a slight abuse
of terminology, we will, henceforth, refer to as the actual
epipole, and as the desired epipole.

The design of the proposed visual servoing method is inspired
by the particular situation shown in Fig. 4, in which a pure
translation separates the actual and desired configurations of the
robot. In this case, both the epipoles coincide with the origin
(i.e., the principal point) of the corresponding image frame.
Hence, their coordinates (in particular, and ) are zero.
Moreover, the baseline, the actual optical axis, and the desired
optical axis coincide.

The proposed visual-control algorithm drives the nonholo-
nomic mobile robot to the desired configuration in two steps
(see Fig. 5).

1) From the initial robot configuration , apply a control law
that brings the epipole coordinates and to zero.
As shown in Section IV, such a control may be computed
through input–output feedback linearization. At the end of
this step, the situation is exactly as in Fig. 4: the interme-
diate configuration is aligned with the desired configu-
ration (see Fig. 5, left).

2) From the intermediate robot configuration , apply a con-
trol law producing a translation of the robot from to
(see Fig. 5, right). Clearly, the epipoles cannot be used in
this phase, as they are identically zero (we already noticed
in Section II that a relative translation of the image planes
along the baseline cannot be derived from the epipoles).
However, this step is easily realized on the basis of corre-
sponding points in the images.

Roughly speaking, the first step is aimed at zeroing the
orientation error (and placing the robot along the axis),

Fig. 5. The two steps of the proposed visual servoing strategy. Left: The non-
holonomic robot is first driven to the y axis by zeroing the epipole coordinates
e and e . Right: A feature-based controller is then used to recover the trans-
lation error.

Fig. 6. Planar geometric setup used to compute the epipole kinematics.

while the second step compensates the translation error. In
Sections IV–IX, we will analyze in detail the structure of the
two steps.

IV. FIRST STEP: ZEROING THE EPIPOLES

In this section, we will design a visual feedback for the mo-
bile robot in order to control the motion of the epipoles and re-
alize the first step of our visual-control strategy. To this end,
after deriving the epipole kinematics, we adopt an approximate
input–output linearization approach.

A. Epipole Kinematics

A detailed derivation of the epipole kinematics is now pre-
sented. First, we will derive the expression of the epipoles as a
function of the unicycle configuration . Then, their differential
kinematics will be written with respect to the unicycle veloc-
ities, i.e., the available control inputs. This last step is instru-
mental in the feedback-linearization step of our control method,
in which the epipole positions will be taken as system outputs.

Let us consider the situation in Fig. 6, which shows the
planar setup associated with two views of the same scene: the
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actual view, taken with the robot in a generic configuration
, and the desired view, corresponding to the

robot in the desired configuration . Denote
by the angle between the axis and the line joining the
desired and actual camera centers (i.e., the baseline), and by
the distance between these two points.

First of all, recall that the -coordinates of both epipoles are
identically zero, because the motion of the camera is planar.
Since and , we readily obtain

(5)

Similarly, as

we get

(6)

One may easily verify that these expressions hold for any posi-
tion of the actual camera, i.e., for any sign of and . As
expected, and are clearly invariant if the robot translates
along the baseline. Also, if (i.e., if there is a pure
rotation between the desired and actual views), the epipoles are
not defined.

For feedback-linearization purposes, we will also need the
differential kinematics of the epipoles with respect to the uni-
cycle velocities and . From (4) and (5), the time derivative
of is obtained as

Since from Fig. 6, it results that and ,
we may also write

(7)

The time derivative of may be conveniently computed
starting from , which yields

From we obtain ; using
this in conjunction with (4) yields

(8)

Equations (7) and (8) may be also written as a function of the
epipoles. From Fig. 6, simple geometry gives

where the sign functions guarantee that these expressions hold
for any position of the actual camera. Substituting these in (7)
and (8), we finally obtain

(9)

(10)

Equations (9) and (10) express the rate of variation of the actual
and desired epipole coordinates as a function of the robot input
velocities.

B. Control Based on Approximate Input–Output Linearization

Since the epipole coordinates and are reconstructed
in real time via the on-board camera, they can be considered as
outputs of the complete camera-robot system

The standard procedure to compute an input–output lin-
earizing control law is to differentiate the output functions
and invert, if possible, the resulting map (see [16]). From the
epipole differential kinematics (9) and (10), the relationship
between the control inputs and the output time derivatives is
expressed as

with

Here, we are faced with a major difficulty, i.e., the inverse of the
decoupling matrix cannot be computed, because the param-
eter (the distance between the actual and de-
sired robot positions) is unknown in an image-based control set-
ting. In a control terminology, input–output linearization cannot
be achieved, in general, using output feedback (as opposed to
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state feedback). In our case, however, it is possible to perform
an approximate input–output linearization by setting

(11)

with

where an estimate of has been used. The resulting epipole
velocities are

Note that while the second equation is still linear (although
time-varying) and decoupled, the first one is not. However, con-
vergence of and to zero can be achieved by properly
choosing the distance estimate and the auxiliary inputs ,
as shown in the following result.

Proposition 1: Let

(12)

where , and are positive odd integers, with
. Also, update the distance estimate according to the

following equation:

(13)

initialized at , where is the initial value of . Then, for
sufficiently small , the approximately linearizing control (11)
drives the epipole coordinates and to zero for any initial
condition such that , with exponential convergence
rate.

Proof: First of all, note that the closed-loop equations
under the proposed control law are

(14)

(15)

while the explicit form of the control inputs in (11) is

(16)

(17)

The distance evolves according to

and as , , we get

(18)

Comparing this with (13), it is clear that and obey the same
differential equation. Hence

(19)

under the assumption . As a consequence, the coeffi-
cient of in (15) is negative, and bounded below in modulus.
This means that zero is a terminal attractor [38] for , which
will converge to zero at a finite time instant . From on, the dif-
ferential (14) governing reduces to , so that

will converge to zero with exponential rate . Note that ac-
cording to (16), is identically zero after , so that the robot
performs a pure rotation in this phase. Hence, convergence of
the epipoles to zero is obtained at a finite distance .

It remains to be shown that the proposed control law does not
become singular. In fact, while the angular velocity given by
(17) is always defined, the linear velocity in (16) has a potential
singularity when . As already noticed, after the transient

, we have , and therefore, becomes identically
zero, thus preventing the singularity occurrence. Before , the
dynamics of as given by (14) includes a “perturbation” term
whose effect can be arbitrarily bounded by bounding . Hence,
for sufficiently small , the actual epipole cannot cross zero
during the transient.

Note the following points.
• The above control law (14) and (15) is image-based, be-

cause it only relies on the measured epipoles. No knowl-
edge of the robot configuration or any other odometric data
is assumed.

• The particular form of the exponent of in the con-
trol law (12) is essential in guaranteeing that the desired
epipole converges to zero in finite time, and therefore, that
the proposed control law is never singular. This kind of
control law is also known as a terminal sliding mode.

• The zero dynamics (i.e., the residual dynamics when the
outputs are identically zero [16]) associated with our ap-
proximate input–output linearization controller is obtained
from (18) as . That is, the robot will converge to some
point of the axis at a finite distance from its desired po-
sition, consistently with the above proof.

• If is zero at (i.e., the robot is initially aligned with
the baseline), before applying the proposed controller, it is
necessary to perform a preliminary maneuver in order to
displace the actual epipole to a nonzero value. This can be
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made in closed-loop in a number of ways. For example,
one may enforce a fixed displacement of from zero to
a certain value , and achieve it by setting (a pure
rotation) and

With this choice, we get from (10),
so that converges exponentially to . The maneuver
can be stopped at a finite time obtaining a nonzero final
value of which is arbitrarily close to , and the two-
step algorithm can then be used. Note that does not
change during this maneuver.

• Proposition 1 applies under the assumption that the
epipolar geometry between the desired and actual camera
views is defined. This excludes the case in which a pure
rotation occurs between the initial and desired robot
configurations. However, it is possible to detect such a
situation (e.g., by observing the norm of the 9-dimensional
vector obtained by stacking the fundamental matrix
[21]), estimate the homography matrix (still well defined
in this case), and decompose it to get the rotation matrix

between the two views. Once has been computed, a
simple proportional rotational controller can be used to
zero the orientation error.

• With the inclusion of the two above rotational maneuvers
(i.e., displacement of the initial actual epipole from zero
and recovery of a pure orientation error), the proposed con-
trol scheme achieves global convergence of the robot to the
desired configuration.

A final remark is in order concerning the duration of the first
step. Since convergence of the actual epipole to zero is ex-
ponential, an arbitrarily small error must be accepted in prin-
ciple before switching to the second step of our control scheme.
While in practice this is not a problem, as shown by the simu-
lation and experimental results to be presented later, it is also
possible to modify the proposed control law so as to guarantee
finite-time convergence of both epipoles. To this end, one pos-
sibility is to replace (12) with

(20)

It is easy to verify that if is chosen so as to satisfy

the desired epipole reaches zero before under the as-
sumptions of Proposition 1, and therefore, the singularity is still
avoided.

C. Control Parameter Selection

We now present some guidelines for the selection of the con-
trol parameters, i.e., , and .

1) Choice of : Since the control law (14) and (15) is only
aimed at zeroing the epipoles, the Cartesian distance between

the actual and desired robot positions may increase during the
first step. An upper bound on the possible increment can be de-
rived as follows. From (13), we have

where we have considered that is monotonically de-
creasing to zero, and we have denoted by the min-
imum absolute value of the actual epipole during the transient
phase of the first step (i.e., before ), which is certainly nonzero
under the hypothesis of Proposition 1. Hence, the maximum
increment of during the first step depends on its maximum
duration , and is derived as

Since from (19), can be computed from (15) set-
ting , which corresponds to the slowest possible dynamics.
An easy computation gives

As in view of the fact that , we can
conclude that the maximum distance increment for is

This shows that the fractional exponent should be chosen
close to zero in order to reduce . According to (15), this will
also result in a faster convergence of , i.e., in a quicker ap-
proach of the robot to the axis.

2) Choice of , : In principle, Proposition 1 requires that
a sufficiently small is used in order to guarantee that the con-
trol law does not become singular (i.e., that does not cross
zero) during the transient. To select in practice, one may
take into account the following arguments, which are based on
the observation that with the proposed control law, the epipoles

never change sign.
• If the initial epipole values are discordant in

sign, the perturbation term in (14) pulls away from the
singularity. Hence, any value of is legal, while only
determines the speed of convergence of to zero after .

• If the initial epipole values are concordant in
sign, the perturbation term in (14) pushes toward the
singularity. Hence, should be sufficiently small. The an-
alytic derivation of an upper bound on appears to be very
difficult, due to the complexity of the dynamics (14). One
possibility is to set until , or even setting it to a neg-
ative value (a destabilizing action), so as to keep away
from zero. From on, can be set back to a positive value.
In our experience, however, no special strategy of this kind
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was necessary. Both in simulation and experiments, con-
stant values of and were sufficient to achieve singu-
larity avoidance.

3) Choice of : According to Proposition 1, it is necessary
to initialize at a value . To this end, one may use an
upper bound on derived from the knowledge of the environ-
ment where the robot moves. If is available (possibly through
3-D reconstruction techniques or a priori information) and used
to initialize , then any positive value of and will guarantee
global convergence of the epipoles and singularity avoidance.

V. SECOND STEP: MATCHING THE FEATURES

At the end of the first step, both the desired and actual epipoles
are zero and the intermediate robot configuration is aligned
with the desired configuration (see Fig. 5). We now present an
image-based control law which uses feature points to realize
the second step of our visual servoing strategy, i.e., moving the
robot from to so as to recover the translation error. As the
epipole-based controller of the previous section, also the second
step controller works directly in the camera image plane.

The basic idea consists in translating the robot until each fea-
ture in the actual image plane matches the
corresponding feature in the desired image plane. A similar
approach has been proposed in [3] and [34]. In principle, only
one feature is needed to implement this idea, and therefore, we
will present the controller for the case . The proposed
method can be easily extended to include a larger number of
features, a convenient choice in the case of noisy images.

Assuming that the chosen feature point is not located along
the optical axis of the desired camera frame, denote by

the difference between the squared norms of the
actual feature and the desired feature , a quantity which can
be directly computed from the actual and the desired images.

Proposition 2: Let the robot velocities during the second step
be defined as

(21)

(22)

where . Then, the robot configuration converges expo-
nentially from the intermediate configuration to the origin.

Proof: At the beginning of the second step, an unknown
translation occurs between the actual and desired
camera frames (see Figs. 2 and 5). Here, , where
is the Euclidean distance between the actual and desired robot
Cartesian positions. The minus (plus) sign should be taken when
the actual camera frame is ahead (behind) the desired one, as in
Fig. 5.

According to the model (1), with the expression of in (2),
the perspective projection of the feature point
on the desired image plane is (recall that
the desired camera frame coincides with the world frame). In
nonhomogeneous coordinates, we have

Since the intermediate configuration is aligned with the desired
configuration, and the angular velocity is identically zero during

the second step, the perspective projection of on the actual
image plane is , which gives in nonhomoge-
neous coordinates

Hence, it is

(23)
with , since and as a
consequence of the assumption that the chosen feature point
is observable from both and .

We have thus expressed the difference between the squared
norms of the actual and the desired feature as a function of the
signed distance between the actual and desired configurations.
Note that when the feature point is along the optical axis of
the desired camera frame, it is , so that
regardless of the feature-point displacement along the optical
axis. The bijectivity of the map would be lost in that case.

Consider now the Lyapunov candidate

which is positive definite. Under the proposed control law (21)
and (22), we have and thus

where we have used (23). Since is negative definite, expo-
nential convergence of the robot configuration to the origin is
guaranteed for any initial value of , i.e., for any .

A couple of remarks are now in order with respect to the con-
trol algorithm resulting from the sequence of the two steps so
far presented. First of all, note that if the modified control law
(20) is used, the first step has a finite duration. This fact, in ad-
dition to the exponential convergence guaranteed by the second
step, allows us to claim exponential convergence for the entire
two-step algorithm.

From a structural viewpoint, our two-step IBVS controller
is time-invariant, but clearly discontinuous with respect to the
robot state. However, this is not surprising, for it is well known
that no smooth time-invariant stabilizing feedback exists for
nonholonomic systems, and that only non-Lipschitz control
laws (either time-invariant or not) can achieve exponential
convergence [27]. Note finally that the structure of the pro-
posed control law guarantees that switching from the first to the
second step occurs only once, i.e., when the robot has reached
the axis.

VI. THE PARTIALLY CALIBRATED CAMERA CASE

So far, it has been assumed that all the camera intrinsic param-
eters are known and available for implementing the proposed
two-phase controller. In this section, however, we show that our
control scheme is effective even if the focal length is unknown
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(partially calibrated camera), a desirable property in any visual
servoing strategy.

First of all, note that only the first step (zeroing the epipoles)
makes use of the focal length for computing the control inputs
(16) and (17), as well for updating the parameter through (13),
while the second step (matching the features) is insensitive to its
value, as shown by (21) and (22).

Assume that is unknown, so that a constant value
is used to perform the approximate input–output linearization
of Section IV-B. The obtained control inputs are [compare with
(11)]

(24)

with

We have the following result.
Proposition 3: Let the auxiliary controls be chosen as

in Proposition 1, and update the distance estimate using for
, i.e., according to

(25)

initialized at . If and is sufficiently small, the
approximately linearizing control (24) drives the epipole coor-
dinates and to zero for any initial condition such that

, with exponential convergence rate.
Proof: The closed-loop equations under the modified con-

trol law become [compare with (14) and (15)]

(26)

(27)

while the control inputs are computed as in (16) and (17) with
in place of . To guarantee that still goes to zero in finite

time, it is necessary to show that the coefficient of in (27)
is negative and bounded below in modulus.

It is easy to prove the following inequalities:

where we have used . Hence

and it only remains to be shown that does not become or
tend to zero. The distance evolves according to

(28)

Comparing this with (25), we have

(29)

Simple manipulations allow verifying that the time-varying co-
efficient is bounded above and below

(30)

Therefore:
• cannot become zero at a finite time instant, because

, and if decreases , then decreases

faster ;
• cannot tend to zero because (29) and (30) imply that:

1) if tends to zero, then tends to zero with the same
speed; 2) if tends to infinity, then tends to infinity with
the same speed.

Having proven that zero is still a terminal attractor for ,
which will converge to zero at a finite time instant , the rest of
the proof is exactly the same as that of Proposition 1. In par-
ticular, note that from time on, the differential (26) governing

reduces to

with

so that will converge to zero with exponential rate at least
equal to .

VII. SIMULATIONS

In this section, we present simulation results of our IBVS
strategy for nonholonomic mobile robots in the calibrated and
partially calibrated case. Simulations have been performed
using Matlab-Simulink and the Epipolar Geometry Toolbox.1

Eight pairs of corresponding feature points are identified in
the desired and actual images. They are used for epipole recon-
struction in the first step, and directly in the second step.

In the first simulation, it is assumed that the camera has been
calibrated in advance (see Section II) and that, in particular,

0.03 m. The unicycle robot moves under the action of the
proposed two-step visual strategy from its initial configuration

. First, the control law (16) and (17) is ap-
plied, with , , and . The initial
estimate of the robot distance has been set to 2 m. As
shown in Fig. 7, both the epipoles coordinates and are
driven to zero (note that, as expected, the second is zeroed in
finite time). The resulting control inputs are in Fig. 8, while the

1The Epipolar Geometry Toolbox, developed at the University of Siena,
Siena, Italy, allows the creation of single and multicamera scenarios as well as
the computation of visual information and the estimation of epipolar geometry.
See http://egt.dii.unisi.it for additional information.
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Fig. 7. Simulation results, calibrated camera. First step: Epipole behavior. Note
how the desired epipole coordinate e reaches zero in finite time.

Fig. 8. Simulation results, calibrated camera. First step: Linear (left) and an-
gular (right) velocity of the mobile robot. Note how the linear velocity goes to
zero with e .

Fig. 9. Simulation results, calibrated camera. First step: Robot trajectory.

robot trajectory for the first step is given in Fig. 9. To guarantee
a finite time duration for the first step, a tolerance of m has
been used for .

The second step is then executed under the action of the con-
trol law (21) and (22), with . The exponential decrease
of the distance between the actual and desired robot positions

Fig. 10. Simulation results, calibrated camera. Second step: Exponential de-
crease of the distance d between the actual and the desired robot position.

Fig. 11. Simulation results, calibrated camera. Second step: Linear velocity.

is shown in Fig. 10. The linear velocity and the robot trajec-
tory are given in Figs. 11 and 12, respectively.

We also report in Fig. 13 the overall motion of the feature
points in the actual image plane. Note how during the initial
phase of the first step, the distance between the actual and
desired features tends to increase as the robot moves toward the

axis. As the actual epipole coordinate goes to zero (i.e., the
robot rotates to align with the axis), this distance decreases.
Then, during the second step, is brought to zero.

The second simulation is executed with exactly the same pa-
rameters and initial conditions of the first. However, the actual
value 0.03 m of the focal length is assumed to be unknown,
and a very imprecise estimate 0.005 m has been used in the
control law (and in the update of ). As shown by the epipole
behavior in Fig. 14 and the Cartesian trajectory in Fig. 15, the
first step of the proposed control strategy still works as expected
(recall that the second-step controller does not need the focal
length).
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Fig. 12. Simulation results, calibrated camera. Second step: Robot trajectory.

Fig. 13. Simulation results, calibrated camera. Motion of the feature points on
the image plane from the initial position (+) to the desired one (�).

VIII. EXPERIMENTAL RESULTS

To further validate the proposed visual servoing strategy, ex-
perimental results are presented next. The vision sensor is the
pinhole camera LU175C by Lumenera. The mobile robot is a Pi-
oneer 3X-DE by ActivMedia (see Fig. 16), connected to a note-
book with a 2-GHz Pentium 4 processor and 640 MB of RAM.
The pinhole camera has been coarsely calibrated, obtaining
0.004 m, , 512 pixels. The image resolution has
been fixed at 1280 1024 pixels.

The desired image has been acquired in advance from the
target configuration, while the current image is available at
each sampling time. A set of 26 corresponding feature points
(Fig. 19) was chosen in the two images and then tracked in real
time by means of a Lucas–Kanade pyramidal algorithm [1].

It is well known that epipolar geometry computation should
not be performed directly from raw pixel data, due to the uncer-
tainties given by huge numbers. Therefore, feature points are
normalized using Hartley’s method [12]. The normalized fea-
tures are then used to compute the epipoles by means of the
LMedS estimator [2], which is known to be computationally ef-
ficient and robust to image noise and outliers. The overall sam-
pling time of the servoing scheme is about 0.09 s.

Fig. 14. Simulation results, partially calibrated camera. First step: Epipole be-
havior.

Fig. 15. Simulation results, partially calibrated camera. First step: Robot tra-
jectory.

Fig. 16. Mobile robot Pioneer 3X-DE used for the experiments, equipped with
the LU175C pinhole camera by Lumenera.

The robot moves under the action of the two-step visual
strategy. First, control law (16) and (17) is applied, with

, and . The initial estimate of the
robot distance is 12 m. Both the epipoles and are
driven to zero, as shown in Fig. 17. As expected, is zeroed
in finite time. The same is true for , due to the fact that
angular velocities below a certain threshold are set back to the
threshold to avoid the robot actuator deadzone.
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Fig. 17. Experimental results. First step: Epipole behavior.

Fig. 18. Experimental results. First step: Exponential decrease of the average
differenceD between the square norms of the actual and desired features.

Then, the second step is executed under the action of the con-
trol law (21) and (22), with (note that the distance
between features are measured in pixels in the experiments).
The exponential decrease of (the average difference between
the square norms of the actual and desired features) is shown in
Fig. 18. Note that, due to floor irregularities and wheel slippage,

does not decrease exactly to zero.
Figs. 19 and 20 collect six snapshots of the robot motion

during the first and second steps, respectively. Note the “ghost”
robot representing the target. On the right of each snapshot, the
actual (red cross) and desired (green circle) feature points are
shown superimposed to the desired image.

During the first step (Fig. 19), the epipoles are driven to the
principal point. Note that the epipoles are outside the desired
image at the initial position. The second step (Fig. 20) is then ex-
ecuted, and the actual feature points converge to their target. The
overall servoing performance is satisfactory, resulting in a posi-
tioning error of about 4 cm with respect to the target position.

Video clips of this experiment are available at http://sirslab.
dii.unisi.it/vision/research.html.

Fig. 19. Experimental results. Snapshots of the robot motion (left) during the
first step. Also shown is the epipole/feature motion (right) superimposed on the
desired image. In particular, red crosses denote the actual features, while green
circles identify the desired features.

Note finally that degeneracies in epipole estimation, which
may occur when the actual and desired views are very close
(small baseline), were never met in our experiments. This is es-
sentially due to the fact that our two-step IBVS scheme esti-
mates and uses the epipoles only in the first phase, in which the
translation error between the two views is typically relevant. In
any case, one way to address the degeneracy problem is to use
more than two views, as proposed in [35].

IX. SOME EXTENSIONS TO THE BASIC PROBLEM

We now mention some directions of possible extension of the
problem considered in this paper. All of them are the subject of
our current work.

1) Keeping the Features in the Field of View: This important
issue is not addressed in this paper. One way to alleviate the
problem is to exploit the possibility of estimating the epipolar
geometry from other image data (e.g., contours or optical flow)
than feature points. In principle, one could conceive an algo-
rithm that selects different image data at each sampling interval
to guarantee a continuous estimation. To address more effec-
tively the field-of-view issue, however, two possible strategies
can be envisaged. The first consists of using panoramic instead
of pinhole cameras, and the second of adding a pan-tilt head.
While the first case involves the analysis of epipolar geometry
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Fig. 20. Experimental results. Snapshots of the robot motion and epipole/fea-
ture motion during the second step.

for panoramic cameras [25], [36], a camera-robot system with a
pan-tilt head can be easily treated within the control framework
proposed in this paper. The key observation here is that from the
features/epipoles in the pan-tilt camera, it is possible to compute
the equivalent features/epipoles in a virtual fixed camera, pro-
vided that the pan and tilt angles are known. Hence, the pan-tilt
head can be controlled so as to keep the features in the field of
view, while the equivalent features/epipoles are used to imple-
ment the control law proposed in this paper.

Different Camera Arrangements and/or Robot Kinematics:
A further extension to the basic problem is the case where the
camera center is displaced with respect to the center of instan-
taneous rotation of the unicycle, either due to incorrect align-
ment or to a design choice. It is interesting to note that such an
arrangement would lead to a simpler control design. In fact, a
point displaced from the center of the unicycle can be driven
along arbitrary Cartesian trajectories [32]. This means that the
camera center can follow arbitrary velocities (in particular, those
orthogonal to the robot forward axis), making it possible to de-
crease instantaneously2 the value of even if . The
implication of this fact is that no singularity would occur in the

2This is not possible when the camera displacement is zero, for in this case,
the only feasible instantaneous motions when e = 0 are translations along
the baseline and rotations about the robot center. None of these motions moves
the baseline, and thus, the desired epipole e would not change.

feedback linearization design. Since the possibility of driving
displaced points along arbitrary Cartesian trajectories holds also
for more general robot kinematics [9], it should be possible to
extend the proposed method, e.g., to car-like robots.

2) Robustness to Model Perturbations: Our two-step visual-
regulation scheme was designed and analyzed using the nom-
inal kinematic model (4). While the experimental results of the
previous section have shown that the performance is satisfactory
in real-world conditions, an analytical study of the performance
of the method in the presence of model perturbations has not
been conducted in this paper. For example, in a differential-drive
kinematic arrangement, unequal wheels or asymmetric actua-
tion could result in a nonnegligible rotation of the robot, even
when the nominal angular velocity is zero (as in the second step
of our control scheme). This situation can be formalized and
studied by introducing an input perturbation in model (4). One
possible way we are considering to make our strategy more ro-
bust is to apply the two-step controller in an iterative fashion,
following the approach proposed in [17] and specialized to gen-
eral nonholonomic robots in [28].

X. CONCLUSIONS

A novel IBVS strategy has been presented for nonholonomic
mobile robots. The control scheme, which is divided in two in-
dependent and sequential steps, drives the robot to a desired
configuration specified through the corresponding view, previ-
ously acquired by the on-board camera. A key point is the use
of multiple-view epipolar geometry during the first step in order
to compensate the rotational error and align the current view to
the desired one. An approximate input–output linearizing feed-
back is used to cope with the nonholonomy of the camera-robot
system.

The advantages of our approach are summarized hereafter.
• Differently from PBVS techniques, there is no need to as-

sume any a priori knowledge of the 3-D scene structure. In
fact, feature points, image contours, or optical flow can be
used to robustly estimate the epipoles.

• In comparison with 2-1/2-D visual servoing techniques,
our algorithm does not need any partial camera pose-es-
timation phase.

• Global exponential convergence is obtained for any con-
stant overestimation of the robot Cartesian initial distance
to the desired configuration.

• The result also holds in the case of a partially calibrated
pinhole camera (unknown focal length).

Simulations and experiments on a real robot have shown the
practical applicability and effectiveness of the proposed visual
servoing algorithm, and a number of possible extensions have
been discussed.
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